|
1. Carlson, R. E. and Foley, T. A. ,“The parameter R2 in multiquadric interpolation”, Comput. Math. Appl., 21, 29-42(1991) 2. Chen, C. S. and Rashed, Y. F. ,“Evaluation of thin plate spline based particular solution for Helmholtz-type operators for theDRM”, Mechanics Research Communications, 25, 195-201(1998) 3. Driscoll, T. A. and Fornberg, B., “Interpolation in the of increasinglu flat radial basis functions”, Comput. Math. Appl., 43, 413-422(2002) 4. Duchon, J. ,“Interpolation des donctions de deux variables suivant le principe de flexion des plaques minces”, RAIRO Analyse Numeriques, 10, 5-12(1976) 5. Fedoseyev, A. I., Friedman, M. J. and Kansa, E. J., “Improved multiqudric method for elliptic partial differential equations via PDE collocation on the boundary”, Compu. Math. Appl., 43, 439-455(2002) 6. Fornberg, B. , Driscoll, T. A. , Wright, G. and Charies, R., “Observations on the behavior of radial basis function approximation near boundaries”, Comput. Math. Appl., 43, 473-490 (2002) 7. Franke, R. ,“Scattered data interpolation: tests of some methods”, Math. Comput., 48, 181-200(1982) 8. Golberg, M. A. ,” Cross-validation for parameter estimation in the BEM”, Eng. Anal. Bound. Elem., 19 (2): 157-166(1997) 9. Zhou, X., Hon, Y. C. and Li, J.C., ” Overlapping domain decomposition method by radial basis functions”, Appl. Numer. Math., 44, 241-255 (2003) 10. Hardy, R. L. ,“Multiquadric equations of topography and other irregular surfaces”, J. Geophys. Res., 176, 1905-1915(1971) 11. Hardy, R. L. ,“Theory and applications of the mutiqudric-biharmonic method”, Comput. Math. Appl., 19,163-208(1990) 12. Hon, Y. C. and Mao, X. Z., “An sfficient numerical scheme for burgers’ equation”, Appl. Math. Comput., 95, 37-50(1998) 13. Jichun Li , Alexander, H. , Cheng, D. and Chen, C. S. ,”A comparison of efficiency and error convergence of multiquadric collocation method and finite element method”, Eng. Anal. Bound. Elem., 27, 251-257(2003) 14. Kansa, E. J. ,“Multiquadric- A scattered data approximation scheme with applications to computational fluid dynamics: Ι. Surface approximations and partial differential equations”, Comp. Math. Appl., 19, 127-145(1990) 15. Kansa, E. J. , “Multiquadric- A scattered data approximation scheme with applications to computational fluid dynamics: Π. Solutions to parabolic, hyperbolic, and elliptic partial differential equations”, Comp. Math. Appl., 19, 147-161(1990) 16. Madych, W. R. and Nelson, S. A. ,“Multivariate interpolation and conditionally positive definite functions, Π”, Math. Comput., 54, 211-230 (1990) 17. Madych, W. R. and Nelson, S. A. ,“Miscellaneous error bounds for multiquadeic and telated interpolations”, Comput. Math. Applic., 24, 121-138(1992) 18. Mai-Duy, N. and Tran-Cong, T. ,“Numerical solution of differential equations using multiqudric radial basis function networks”, Neural Networks, 14, 185-199(2001) 19. Moody, J. and Darken, C. J. ,“Fast learning in networks of locally-tuned processing units”, Neural Computations, 1, 281-294(1989) 20. Rippa, S. ,”An algorithm for selecting a good value for the parameter c in radial basis function interpolation”, Adv. Comput. Math., 11, 193-210 (1999) 21. Schaback, R. ,“Error estimates and condition numbers for radial basis functions”, Adv. Comput. Math., 3, 251-264(1995) 22. Shul, M. V. and Mitel, Y. Y. ,“The multiqudric method of approximation a topographic surface”, Geodesy Mapp. Photogramm., 16, 13-17 (1974); translated from Russian for AGU, ACSM ans ASP (1977) 23. Trahan, C. J. and Wyatt, R. E. ,”Radial basis function interpolation in the quantum trajectory method: optimization of the multiquadric shape parameter”, J. comput. Phy., 185, 27-49(2003) 24. Wang, J. G. ,”On the optimal shape parameters of redial basis functions used for 2-D meshless methods”, Comput. Mehtods Appl. Engng., 191, 2611-2630 (2002) 25. Young , D. L. , Tsai, C. C. and Eldho, T. I. ,”Solution of stokes flow using an iterative DRBEM based on compactly-supported , positive-definite radial basis function”, Comput. Math. Appl., 43, 607-619(2002) 26. Zurroukat, M., Power, H. and Chen, C. S. ,”A numerical method for heat transfer problem using collocation and radial basis functions”, Int. J. Number. Mesh Engng., 42, 1263-78(1998)
|