(18.206.12.76) 您好!臺灣時間:2021/04/23 09:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:戴佑理
研究生(外文):Yu-Lee Tai
論文名稱:鎳之奈米化及孔洞化在電化學儲能上之應用
論文名稱(外文):Application of Porous and Nanosized Nickel in Electrochemical Energy Storage
指導教授:鄧熙聖
指導教授(外文):Hsisheng Teng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:63
中文關鍵詞:管狀電極陣列氫氧化鎳電極鎳-磷無電鍍氫化鎳電極鎳/碳複合電極硝酸氧化處理模板合成
外文關鍵詞:Nickel hydroxide electrodeOxidation with nitric acidNickel oxide electrodeNi-P electroless depositionTemplate synthesisNi/C composite electrodeTubule electrode array
相關次數:
  • 被引用被引用:2
  • 點閱點閱:146
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
本文分成兩個部份來探討鎳之電化學行為模式。第一部份為利用模板合成的方法,加上無電鍍的技術,製作出均一孔洞的鎳-磷管狀物質,探討熱處理對晶相與電化學行為之影響,此部份鎳之性質屬於的電池之行為模式。第二部份則是在碳纖維布上,利用化學含浸的方法,將鎳氧化物植入到碳的表面,並探討溫度對電化學的影響,此部份著重在鎳的電容行為模式探討。
第一部份:以鎳為主的管狀陣列是利用聚碳酸酯為模板,並利用無電鍍的技術,並利用次磷酸鹽為還原劑沉積而得,管壁內徑大約180 nm,管壁厚度為20 nm,長度大約2 μm左右,電極陣列所曝露出的表面積為平板的8.8倍多,在測器上有良好的潛力。循環伏安圖中Ni(OH)2/NiOOH氧化還原對在KOH溶液中比平板高出40倍之多,可能是因為奈米化的結構所造成的影響。並可從氧化還原對中發現熱處理的效應增加了電極儲存的能量。本實驗則提供了鎳氫電池另一個高效能的選擇。
第二部份:為了要增進活性碳的電容量,於是將碳的表面沉積上一層鎳氧化物。而NiO/NiOOH的可逆氧化還原反應,加強了碳的電容量。利用硝酸鎳為原使原料,經由熱處理來改變鎳的不同形態,氧化鎳增加了電容,金屬鎳則降低了電極的內阻。硝酸的前氧化處理則增進了鎳在碳表面的均勻分散性,並減少了鎳聚集的效應。電容經1 %鎳處理後可由141增加到204 F/g,增加率大約有45%之多,過多的鎳則會因阻塞了孔洞而使得電容減小。
It is divided into two parts to discuss the electrochemical performance of Ni. Both capacitive and battery behavior will be discussed in the present work. The first one is the porosity of nickel-based electrode array. The second part is the nanoscale of the nickel oxide on carbon fiber.
Nickel-based tubule electrode array was fabricated using electroless deposition with polycarbonate membrane serving as template. Hypophosphite was the reducing agent in Ni deposition, and electrodes made of Ni-P alloy were formed. The tubule has an internal diameter of ca. 180 nm, a wall thickness of ca. 20 nm, and a length of ca. 2 mm. The electrode array provided an exposed area ca. 8.8 times as large as that of a planar electrode, suggesting a potential application of the array in sensor devices. Cyclic voltammetric measurements in KOH showed that the electrochemical response from the Ni(OH)2/NiOOH redox reaction for the electrode arrays was more than 40 times larger than that for an planar electrode. The nanoscale structure of the tubule might be responsible for this magnification of the redox response. Heat treatment combined with overcharge oxidation of the electrode arrays was found to significantly improve the charge storage capacity resulting from the redox reaction. The present work has provided important concepts capable of improving the performance of a nickel hydroxide electrode for nickel metal hydride batteries.
Impregnation of Ni on activated carbon fabric was conducted in an attempt to promote the capacitance of the carbon employed as electrodes in electrochemical capacitors using KOH as the electrolyte. With the addition of pseudocapacitance resulting from the NiO/NiOOH redox reaction, the enhancement of carbon capacitance, basically double-layer type, is expected. Ni(NO3)2 was the source of Ni in the impregnation and heat treatment on the impregnated carbons was required to decompose the nitrates. The heat treatment also caused formation of metallic Ni, thus leading to a decrease in electrode resistance. Oxidation of the carbon with HNO3 prior to Ni impregnation was found to improve Ni dispersion and thus to promote the capacitance. The present work has demonstrated that the capacitance of a carbon fabric electrode can be enhanced by 50% (from 141 to 204 F/g) through 1 wt% of Ni loading. However, the enhancement can be restricted by pore blockage due to a high extent of Ni loading.
中文摘要I
AbstractII
誌謝IV
總目錄V
表目錄VIII
圖目錄IX
第一章 緒論1
1-1 儲能材料簡介1
1-1-1 電池簡介1
1-1-2 超高電容器簡介2
1-1-3電雙層電容與假電容2
1-2 鎳材料簡介3
1-2-1 鎳的基本性質3
1-2-2 鎳的電化學特性3
1-3 模板方法4
1-3-1 模板合成方法介紹4
1-3-2 無電鍍5
1-4 碳在電容器上之應用6
1-4-1 簡介7
1-4-2 活性碳纖維布7
1-4-3碳之氧官能基7
第二章 理論說明與文獻整理11
2-1 無電鍍原理與簡介11
2-1-1 敏化11
2-1-2 活化11
2-1-3 無電鍍11
2-2 電容器之簡介12
2-2-1 電位12
2-2-2 電容器13
2-2-3 三極式和二極式電容器13
2-3 電雙層的觀念與結構14
2-3-1 電雙層原理15
2-3-2 Helmholtz電雙層模型15
2-3-3 Stern電雙層模型16
2-3-4 電雙層結構17
2-4 電化學測試方法17
2-4-1 循環伏安法17
2-4-2 電容器的定電流操作18
2-5電極之改質方法18
2-5-1 表面氧化處理18
2-5-2 金屬氧化物的植入19
2-6 BET吸附基本理論與D-R方程式20
2-6-1 BET等溫吸附模式20
2-6-2 D-R等溫吸附模式21
2-7 X光繞基本理論22
2-7-1 原子面間距22
2-7-2 布拉格方程式23
2-8 熱重量分析23
第三章 實驗方法與設備34
3-1 實驗用藥品與儀器34
3-2 實驗方法35
3-2-1 第一部份:鎳的電池行為探討35
3-2-2 第二部份:鎳的電容行為探討36
第四章 結果與討論43
4-1 鎳之電池特性43
4-1-1 鎳-磷電極物理特性43
4-1-2 鎳-磷電極電化學行為44
4-2 鎳之電容特性46
4-2-1 鎳/碳電極物理特性46
4-2-2 鎳/碳電極電化學行為47
第四章 結論62
參考文獻64
作者自述67
1.Kotz, R.; Carlen, M. Electrochemica Acta 2000 45, 2483.
2.費定國、李桐進, “鋰電池專題報導”, 能源、資源與環境, 3 卷, 1 期, P10.19, 1990.
3.梁桂肇, “小型二次電池的充電特性比較”, 小型二次電池市場與技術專輯, P9-18, 1996.
4.李桐進, “鎳氫化物電池之特性、應用及市場”, 小型二次電池市場與技術專輯, P108.111, 1996.
5.費定國、王國賢, “呼之欲出─鎳氫化物電池產業”, 小型二次電池市場與技術專輯, P104.107, 1996.
6.李敏昌, “日本SONY 鋰離子二次電池研發歷史”, 小型二次電池市場與技術專輯, P40.48, 1996.
7.Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers: New York, (1999).
8.Frackowiak, E.; Béguin, F. Carbon 2001, 39, 937.
9.Kim, H. S.; Itoh, T.; Nishizawa, M.; Mohamedi M.; Umeda, M.; Uchida, I. International J. Hydrogen Energy 2002, 27, 295.
10.Natarajan, C.; Matsumoto, H.; Nogami, G.. J. Electrochem. Soc., 1997, 144, 121.
11.Liu, K. C.; Anderson, M. A. J. Electrochem. Soc. 1996, 143, 124.
12.Srinivasan, V.; Weidner, J. W.; J. Electrochem. Soc. 1997, 144, L210.
13.Natarajan, C.; Matsumoto, H.; Nogami, G.. J. Electrochem. Soc., 1997, 144, 121.
14.Srinivasan, V.; Weidner, J.W. J. Electrochem. Soc., 2000, 147, 880.
15.Possin, G.E. Rev. Sci. Instrum. 1970, 41, 772.
16.Williams, W. D.; Giordano, N. Rev. Sci. Instrum. 1984, 55, 410.
17.Brumlik, C. J.; Menon, V. P.; Martin, C. R. J. Mater. Res,. 1994, 9, 1174.
18.Jirage, K. B.; Hulteen,J. C.; Marin, C. R. Science, 1997, 278, 24.
19.Chakarvarti, S. K.; Vetter, J. Nucl. Instrum. Meth. Phys. Recs. 1991, B62, 109.
20.Hornyak, G. L.; Martin, C. R. J. Phys. Chem., 1997, 101, 1548.
21.Nishizawa, M.; Menon, V. P.; Martin, C. R. Science, 1995, 268, 700.
22.Lakshmi, B. B.; Dorhout, P. K.; Martin, C. R. Chem. Mater,. 1998, 9, 857.
23.Martin, C. R. Adv. Mater., 1991, 3, 457.
24.Van Dyke, L. S.; Martin, C. R. Langmuir, 1990, 6, 1123.
25.莊萬發編著“無電解鍍金”, 復漢出版社, 2000.
26.Menon, V. P.; Martin, C. R. Anal. Chem., 1995, 67, 1920.
27.Suzuki, M. Adsorption Engineering, Elsevier: Tokyo, 1990.
28.J. S. Mattson, and Jr. H. B. Mark, Activated Carbon: Surface Chemistry and Adsorption from Solution, Wiley-Vch: New York, 1998.
29.Kinoshita, K. Carbon: Electrochemical and Physicochemical Properties, John Wiley & Sons: New York, 1988.
30.Bard, A. J.; Faulkner, L. R. Electrochemical Principles, Methods, and Applications, Oxford University, Britain, 1996.
31.Young, H. D. Physics, Addison-Wesley Publishing Co.: New York, 1992.
32.Qu, D.; Shi, H. J. Power Sources 1998, 74, 99.
33.Hamann, C. H.; Hamnett, A.; Vielstich, W. Electrochemistry, Wiley-Vch: New York, 1998.
34.Mattson, J. S.; Jr. Mark, H. B. Activated Carbon: Surface Chemistry and Adsorption from Solution, Wiley-Vch: New York, 1971.
35.Bard, A. J.; Faulkner, L. R., “Electrochemical Methods Fundamental and Application”, John Wiley & Sons, Canada, 1980.
36.Hu, Chi-Chang; Huang, Yao-Huang J. Electrochem. Soc., 1999, 146, 2465.
37.Lowell, S.; Shields, J. E. Powder Surface Area and Porosity, 3rd ed.; Chapman & Hall: London, 1991.
38.Ruthven, D. M. Principles of Adsorption and Adsorption Process John Wiley & Sons: New York 1984.
39.Do, D. D. Adsorption Analysis: Equilibria and Kinetics, Imperial College Press: London, 1998.
40.余樹楨, ”晶體之結構與性質”, 渤海堂文化公司印行, 1989.
41.Grzybek, T. Fuel 1993, 72, 619.
42.Pasel, J.; Käβner, P.; Montanari, B.; Gazzano, M.; Vaccari, A.; Makowski, W.; Lojewski, T.; Dziembaj, R.; Papp, H. Appl. Catal. B 1998, 18, 199.
43.Rodríguze-Reinoso, F.; Molina-Sabio, M.; Gonazález, M.T. Carbon, 1995, 33, 15.
44.Tzeng, S. S.; Chang, F. Y. Thin Solid Films 2001, 388, 143.
45.Lambert, M. R.; Duquette, D. J. Thin Solid Films 1989, 177, 207.
46.Ma, E.; Luo, S.; Li, P. Thin Solid Films 1988, 166, 273.
47.Wu, M. S.; Huang, C. M.; Wang, Y. Y.; Wan, C. C. Electrochimica Acta 1999, 44, 4007.
48.Ovshinsky, S. R. In Physical Properties of Amorphous Materials. Adler, D., Schwartz, B. B. and Steele, M. C., Eds.; Plenum Press: New York, 1985; p. 105.
49.Streinz, C. C.; Jartman, A. P.; Motupally, S.; Weidner, J. W. J. Electrochem. Soc., 1995, 142, 1084.
50.Streinz, C. C.; Jartman, A. P.; Motupally, S.; Weidner, J. W. J. Electrochem. Soc., 1995, 142, 4051.
51.Kalu, E. E.; Nwoga, T. T.; Srinivasan, V.; Weidner, J. W. J. Power Sources, 2001, 92 163.
52.Nian, Y.-R.; Teng, H. J. Electrochem. Soc., 2002, 149, A1008.
53.Nian, Y.-R.; Teng, H. Journal of Electroanalytical Chemistry 2003, 540, 119.
54.Hsu, L.-Y.; Teng, H. Applied Catalysis B-Environmental 2003, 42, 69.
55.T.-C. Weng and H. Teng, J. Electrochem. Soc., 2000, 148, A368.
56.Teng, H.; Chang, Y.-J.; Hsieh, C.-T. Carbon 2001, 39 1981.
57.Liu , X.; Osaka, T. J. Electrochem. Soc., 1997, 144, 3066.
58.Mul, G.; Neeft, J.P.A.; Kapteijn, F.; Moulijn, J.A. Carbon 1998, 36 1269.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔