(18.206.177.17) 您好!臺灣時間:2021/04/11 03:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林孟毅
研究生(外文):Meng-Yi Lin
論文名稱:以生態工程解析方法進行偶氮染料褪色菌相評估
論文名稱(外文):Ecological engineering analysis for the assesment of bacterial consortium in azo dye decolorization
指導教授:張嘉修張嘉修引用關係
指導教授(外文):Jo-Shu Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:91
中文關鍵詞:偶氮染料E. coliDH5a生態工程混合菌相P. luteola
外文關鍵詞:mixed cultureecological engineeringazo dyeE. coliDH5aP. luteola
相關次數:
  • 被引用被引用:11
  • 點閱點閱:153
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
本研究以染料生物褪色為模式,利用生態工程(Ecological engineering) 角度分析多元菌相分佈與其生物功能性之相關性,進而探討解決實場廢水處理問題之方案。本研究所使用使用之褪色菌種Pseudomonas luteola需於好氧條件生長,但在缺氧狀態進行褪色,因此可以溶氧控制機制進行其生長與褪色之調控。在菌相生態演化分析中,以Lotka-Volterra競爭方程式進行對二元菌相在混合培養情形下之模式推演,並藉染料之添加作為瞭解染料對於二菌個別與混合培養下之差異,並估算出二元菌相參數。本研究中,顯然Escherichia coli DH5a對P. luteola之競爭係數>3而P. luteola對E. coli DH5a之競爭係數<1,顯示二菌抑制效應關係。此競爭效應亦響應於「取代序列法」(Replacement Series method)好氧培養下二元褪色菌種之相互取代關係。然而好氧條件下所出現之取代效應於靜置褪色條件下幾乎不存在,兩菌相呈均勻分佈之生態狀況,因此溶氧程度於此對生態演化為最重要之關鍵。探討二元菌相之總褪色速率ODR(overall decolorization rate)發現:不同「比例」與「數量」之物種組合有不同之響應值,此乃顯示二物種所各自扮演之特殊功能性。依響應值集合之總褪色速率□ODR)響應曲面中得到,當菌相分佈為P. luteola=0.86×109 cell/ml,E. coli DH5a=0.85×109 cell/ml時,可得最大響應值為 =12.6 mg dye/h/L。綜合上述結果可知,以生態分析所得之參數有利於廢水馴化之調控,並可藉此對「多元生態」中功能性微生物與具生物補強特性微生物之生長情況得到最佳處理效果之物種分佈。此外本研究以長期廢水處理之角度進行連續式培養,並藉階梯式(shift-up/shift-down)稀釋速率操作探討其中生態演化情形。研究結果發現:染料之存在與否對於連續式培養有截然不同之生態現象,且菌體對不同階梯式稀釋速率改變方式□shift-up or shift-down)顯示出不可逆之生物穩態現象。本研究以上述之模式與操作進行生態工程解析用意在於提供評估實場廢水處理時菌相生態「群體」結構(community structure)與「群體」功能(community function)相關性之創新研究方法,期能藉由暸解廢水生物處理工程中複雜的菌種生態現象,以利於處理系統之控制與最適化操作。
In this study, azo dye decolorization was used as a model system to investigate the correlation between population distribution and biological function in a mixed consortium from ecological engineering aspects. The approach may be extended to tackle the problems involved in practical biological treatment of wastewater. The bacterial decolorizer used in this study was Pseudomonas luteola, which decolorizes azo dye anaerobically, while preferably grows under aerobic conditions. Therefore, it is feasible to manipulate dissolved oxygen in the system to regulate cell growth and decolorization of the bacterium. In the analysis of ecological evolution of cell population, Lotka-Volterra competition equation was used to describe binary system, in which a decolorizer (P. luteola) and a non-decolorizer (Escherichia coli DH5a) coexisted. The results show that the competitive coefficient of Escherichia coli DH5a over P. luteola (a12)was greater than 3, while the competitive coefficient of P. luteola over E. coli DH5a (a21)was less than 1, suggesting that both strains inhibited each other when they were cultivated together and that the inhibitory effect of E. coli DH5a on P. luteola was stronger. This competition effect was also observed in the Replacement Series analysis under aerobic conditions. However, the replacement effect did not occur under anaerobic conditions, as the two strains evenly distributed in the anaerobic culture. This implies that the dissolved oxygen is a critical factor for ecology evolution of the binary bacterial system. The results also show that overall decolorization rate (ODR) of the binary decolorization process varied with the “population ratio” and “population size” of the two species. The optimal ODR (12.6 mg dye/L/h) occurred when the cell concentration of P. luteola and E. coli DH5a was 0.85 x 109 and 0.86 x 109 cell/ml, respectively. Thus, ecological environment can be adjusted or acclimated to achieve an optimal community function. In addition, this study also investigates the ecology evolution of the binary system in continuous mode with sequential shift-up and shift-down of the dilution rates. The result shows that the bacterial evolution was quite different in the presence or absence of the azo dye. The cell population distribution was irreversible at the same dilution rates during shift-up and shift-down processes. The information obtained from this work is expected to provide a simplified and feasible approach to evaluate the interrelation of the community structure and community function of a complicated wastewater system in order to locate an optimal operation condition for biological treatment.
中文摘要............................... I
Abstract .............................. III
誌謝..................................... V
圖目錄................................ XI
表目錄..............................XIII
符號................................. XIV
第一章緒論.............................. 1
1-1 前言.................................... 1
1-2 研究動機與目的............................ 2
第二章文獻回顧與原理.......................... 6
2-1 染料................................... 6
2-1-1 染料之簡介............................... 6
2-1-2 偶氮染料............................. 6
2-1-3 反應性染料............................... 7
2-1-4 染料之使用與污染現況...................... 8
2-2 染料廢水色度處理技術........................... 9
2-2-1 物理褪色法............................. 10
2-2-2 化學褪色法............................. 10
2-2-3 生物褪色法............................. 11
2-2-4 偶氮還原酵素之褪色機制...................... 13
2-3 生態工程研究............................. 14
2-3-1 生態工程簡介......................... 14
2-3-2 生態工程分析研究...................... 16
2-3-2-1 Lotka-Volterra Competition Equation ......... 16
2-3-2-2 取代序列法........................ 18
第三章實驗與方法.......................... 22
3-1 藥品................................. 22
3-2 實驗儀器與裝置............................... 22
3-3 菌種介紹與菌種定量............................. 26
3-3-1 菌種簡介........................... 26
3-3-2 菌種培養........................... 27
3-3-3 菌體定量........................... 28
3-3-3-1 細胞的光學密度測量................. 28
3-3-3-2 細胞活菌數(Colony-Forming Unit;CFU)測量....28
3-4 染料濃度之定量分析............................. 29
3-5 二元菌相基質與生長動力學之實驗................. 30
3-5-1 不同基質濃度與P. luteola 生長關係............ 30
3-5-2 不同基質濃度與E. coli DH5α生長關係............. 30
3-6 二元褪色菌相生態工程......................... 31
3-6-1 二元菌相混合培養...................... 31
3-6-1-1 P. luteola 之生長曲線..................... 31
3-6-1-2 E. coli DH5α生長曲線................... 31
3-6-1-3 二元菌相共同培養生長曲線.............. 31
3-6-2 高染料濃度下二元菌相混合培養................ 32
3-6-2-1 高染料濃度下P. luteola 之生長曲線............. 32
3-6-2-2 高染料濃度下E. coli DH5α生長曲線........... 32
3-6-2-3 高染料濃度下二元菌相共同培養生長曲線........ 32
3-7 以「取代序列法」進行菌相演化之探討............... 33
3-7-1 二元褪色菌相之生態演化....................... 33
3-7-1-1 無染料下二元菌相生長條件之生態演化...... 33
3-7-1-2 高染料濃度下二元菌相生長條件之生態演化.... 33
3-7-1-3 低染料濃度下二元菌相褪色條件之生態演化.... 34
3-7-1-4 高染料濃度下二元菌相褪色條件之生態演化.... 34
3-7-2 同源二元菌種組合之生態演化.................... 34
3-7-2-1 無染料下同源二元菌種組合生長條件之生態演化.. 34
3-7-2-2 高染料濃度下同源二元菌種組合生長條件之生態演化....... 35
3-7-2-3 低染料濃度下同源二元菌種組合褪色條件之生態演化....... 35
3-7-2-4 高染料濃度下同源二元菌種組合褪色條件之生態演化....... 35
3-8 染料褪色二元菌相「生物補強」效能之探討............ 35
3-9 重覆批次反應器進行二元褪色菌相之生態工程研究...... 36
3-10 連續式反應器進行二元褪色菌相之生態工程研究........ 37
第四章結果與討論.......................... 39
4-1 二元菌相基質與生長動力學之研究................. 39
4-1-1 不同基質濃度與P. luteola 生長關係............ 39
4-1-2 不同基質濃度與E. coli DH5α生長關係............. 39
4-2 二元褪色菌相生態工程研究....................... 40
4-2-1 二元菌相無染料下生長曲線.................. 40
4-2-1-1 無染料下P. luteola 之生長曲線............... 41
4-2-1-2 無染料下E. coli DH5α生長曲線............. 41
4-2-1-3 無染料下二元菌相共同培養生長曲線.......... 42
4-2-2 二元菌相染料濃度1000mg/L 下生長曲線......... 43
4-2-2-1 染料濃度1000 mg/L 下P. luteola 之生長曲線.... 43
4-2-2-2 染料濃度1000 mg/L 下E. coli DH5α生長曲線... 44
4-2-2-3 染料濃度1000 mg/L 下二元菌相共同培養生長曲線44
4-3 以取代序列法進行菌相演化之探討.................. 45
4-3-1 二元褪色菌相之生態演化....................... 45
4-3-1-1 無染料條件下二元菌相好氧生長條件之生態演化.. 46
4-3-1-2 高染料濃度下二元菌相生長條件之生態演化.... 46
4-3-1-3 低染料濃度下二元菌相褪色條件之生態演化.... 47
4-3-1-4 高染料濃度下二元菌相褪色條件之生態演化.... 48
4-3-2 同源二元菌種組合之生態演化.................... 49
4-3-2-1 無染料下同源二元菌種組合生長條件之生態演化... 50
4-3-2-2 高染料濃度下同源二元菌種組合生長條件之生態演化...... 50
4-3-2-3 低染料濃度下同源二元菌種組合之生態演化.... 51
4-3-2-4 高染料濃度下同源二元菌種組合褪色條件之生態演化....... 51
4-4 染料褪色二元菌相「生物補強」效能之探討............ 52
4-5 重覆批次反應器進行二元褪色菌相之生態工程研究...... 54
4-6 連續式反應器進行二元褪色菌相之生態工程研究.......... 55
第五章結論.............................. 80
第六章參考文獻.......................... 82
附錄.................................... 88
自述.................................... 91
1. 王敏泰,染料化學,五洲出版社,1990
2. 宋欣真、鄭仁川,台灣地區染整之水污染防治現況,工業污染防治,第49 期,第27-46 頁,1994
3. 呂世宗,台灣省染整工廠廢水解決方案之研究,工業污染防治,第三卷,第40-46 頁,1984
4. 邱永亮譯,染料之合成與特性,徐氏基金會出版,第一章,第1-13頁,1987
5. 邱永亮譯,染料化學,徐氏基金會出版,第二冊,第三章,第84-85頁,1987
6. 吳錦、劉洪岐、吳淑岱,環境微生物,科技圖書股份有限公司,第一章,第3-6 頁,1992
7. 康世芳,我國染整廢水問題與計術需求,經濟部中小企業處染整業污染防治講習會,臺北市,1990
8. 徐永錢、顏昭錫、黃杏釗,染料製程廢水之混凝脫色,第二十一屆廢水處理研討會論文集,中華名國環境工程學會,第547 頁,1996
9. 陳水樹,反應性染料之棉染色問題點,染化雜誌,第34 期,第38-46頁,1987
10. 陳姍玗,偶氮染料褪色程式之開發與生態工程之探討,碩士論文,逢甲大學化學工程研究所,2001
11. 張敏超,染整廢水之混凝與脫色,化工資訊,卷6,第56-65 頁,1992
12. 周劍,以固定化Pseudomonas luteola 細胞進行偶氮染料褪色,碩士論文,逢甲大學化學工程研究所,1999
13. 林毓智,偶氮染料微生物褪色之生物反應器操作策略,碩士論文,逢甲大學化學工程研究所,1999
14. 郭泰興,以基因改質大腸桿菌進行偶氮染料褪色,碩士論文,逢甲大學化學工程研究所,2000
15. Akey, W. C., T. W. Jurik, and J. Dekker. A replacement series evaluation of competition between velvetleaf (Abutilon theophrasti) and soybean (Glycine max). Weed Res., 31, 63-72, (1991).
16. Banat, I. M., Nigam, P., Singh, D., and Marchant, R., Microbial decolorization of textile-dye-containing effluents: A review, Biores. Technol., 58, 217-227, (1996).
17. By J. Connolly, On difficulties with replacement-series methodology in nixture experiments, Journal of Applied Ecology, 23, 1235-137, (1986).
18. Chen, B.-Y., Chang, J.-S., Characterization and theoretical analysis on toxicological threshold of mercuric ions to Pseudomonas aeruginosa PU21 (Rip64), Bioprocess Eng., 23, 675-680, (2000).
19. Chen, B.-Y., Induction evolution and entropy of bacteriophage λQ-mutant in Escherichia coli, J. Chin, Inst. Chem. Eng, 32, 1, 81-87, (2001).
20. Chen, B.-Y., Chang, J.-S. ,Chen, S.-Y., Bacterial Species diversity and dye decolorization of a two-species mixed consortium, In press, Eviron. Eng. Sci., (2003)
21. Chung K. T., G. E. Fulk & A. W. Andrews, Mutagenicity test of some commonly used dyes, Appl. Environ. Microbiol., 42, 641-648, (1981).
22. Chung, K-T.and Stevens, S. E., Jr., Degradation of azo dyes by environmental microorganisms and helminthes, Environ. Toxicol. Chem.,12, 2121-2132, (1993).
23. Couhlin, M. F., Kinkle, B. K., Tepper, A., and Bishop, P. L.,Characterization of aerobic azo dye-degrading bacteria and their activity in biofilm, Wat. Sci. Technol., 36, 215-200, (1997).
24. Davis, R. J., Gainer, J. L., Oneal, G.,and Wu, I-W. Photocatalytic decolorization of wasterwater dyes, Wat. Environ. Res., 66, 50-53,(1994).
25. Flores, E. R., Luijten, M., Donlon, B. A., Lettinga, G., and Field, J. A., Complete biodegradation of the azo dye azodisalicylate under anaerobic conditions, Environ., Sci. Technol., 31, 2098-2103, (1997).
26. Glenn, J. K., and Gold, M. H., Decolorization of several polymeric dyes by the lignin-degrading Basidiomycete Phanerochaete chrysosporium, Appl. Environ. Microbiol., 45, 1741-1747, (1983).
27. Gregor, J. E., Fenton, E., Brokensgire, G., Van Den Brink, P and O,SULLIVAN, B., Interactions of Calcium and Aluminium Ions With Alginate, Wat. Res., 30(6), 1319-1324. (1996).
28. Hu T. L., “Decolourization of Reactive Azo Dye by Transformation with Pseudomonas luteola”, Bioresource Technology, 49, 47-51 (1994).
29. Hung, W., Schmidt, A., Nortemann, B., Hempel, D. C., Stolz, A., and Knackmuss, H.-J., Mineralization of the sulfonated azo dye mordant yellow 3 by 6-aminoaphtjalene-2-sulfonate-degrding bacterial consortium. Appl. Environ.Microbiol, 57, 3144-3149, (1991).
30. Idaka, E., Horitsu, H., and Ogawa, T., Some properties of azoreductase produced by Pseudomonas cepacia Bull, Environment Contamination and Toxicology, 39, 982-989, (1987).
31. James E. Bailey, David F. Ollis, Biochemical Engineering Funda- mentals 2ed edition, McGraw-Hill Book Company, Charpter 13,14, (1986).
32. Jia, J., Yang, J., Liao, J., Wang, W., and Wang, Z. Treatment of dyeing wasterwater with ACF electrodes, Wat. Res., 22, 881-884, (1999).
33. Jinqi L., and Houtian P. L., Aerobic biodegradation of azo dyes by algae. Environ. Poll., 75, 273-278, (1992).
34. Keck, A., Klein, J., Kudlich, M., Stolz, A., H.-J. and Mattes, R. Appl. Environ. Microbiol., 63, 9, 3684-3690, (1997).
35. Lawlor, K., Sublette, K., Duncan, K., Levetin, E., Buck, P., Wells, H.,Jennings, E., Hettenbach, S., Bailey, S., Fisher, J.B., Todd, T.Long-Term Effects of Crude Oil Contamination and Bioremediation in a Soil Ecosystem., Bioremediation J., 1, 1, 41-51, (1997).
36. Mark Wilson and Seeven E. Lindow, Ecological Similarity and Coexistence of Epiphytic Ice-Nucleating (Ice+) Pseudomonas syringae Strain and a Non-Ice- Nucleating(Ice-) Biological Control Agent., Appl. Env. Microbiol., 60, 3128-3137, (1994).
37. Morita, M., Ito, R., Kamidate, T. and Watanabe, H., Kinetics of peroxidase catalyzed decolorisation of Orange II with hydrogen peroxide. Textile Research Journal, 66(7), 470, (1996).
38. Pagga, U. and Taeger, K., Development of a method for adsorption of dyestuffs on actived sludge, Wat. Res, 28, 5, 1051, (1994).
39. Palleria, S. and Chambers, R P., Characterization of a Ca-alginate-immobilized Trametes versicolor bioreactor for decolourization and AOX reduction of paper mill effluents, Biores.Technol, 60, 1-8, (1997).
40. Perry, J. and Vanderklein, E., Water Quality: Management of a Natural Resource. Blackwell Sci. Inc., Cambridge, M. A, (1996).
41. Pianka, Eric R, Competition and the Ecological Niche. In: Evolutionary Ecology., Chapter 11., Harper Collins Publ. New York, (1988). 42. Seshadri, S., Bishop, P. L., and Agha, A. M., Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste management, 14, 127-137,(1994).
43. Sheng, H. and Peng, C. F., Treatment of textile waster by electrochemical methods, Wat. Res., 28, 289-302, (1994).
44. Strickland,A. F, and Perkins,W.S., Decolorization of continuous dyeing wastewater by ozanation. Textile Chemist and Colorist, 27, 5, 11, (1995).
45. Vandevivere, P. C., Bianchi, R., and Verstraete, Treatment and reuse of wastewater from the textile wet-processing industry : Review of emerging technologies, J. chem. Biotechnol., 72, 289-302, (1998).
46. White, David, The Physiology and Biochemistry of Prokaryotes, Chapter 4, 83-108, Oxford University Press, Inc., (1995).
47. Yang, F. and Yu, J., Development of a bioreactor system using an immobilized white rot fungus for decolourization, part II: Continuous decolourization tests, actived sludge., Wat. Res., 28, 1051-1057, (1994).
48. Zhang, F.-M, Knapp, J, S,m and Tapley, K. N., Development of bioreactor systems for decolorization of orange II using white rot fungus.Enzyme Mcrob. Technol., 24, 48-53, (1999).
49. Zimmermann, T., Kulla, H. G., and Leisinger, T., Properties of purified Orange II azoreductasd, the enzyme initiating azo dye degradation by Pseudomonas KF46, European Journal of Biochemistry, 129, 197-203, (1982).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔