(18.232.55.103) 您好!臺灣時間:2021/04/23 01:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭斐真
研究生(外文):Fei-Chen Cheng
論文名稱:酚類化合物對假單胞菌之瞬時耗氧速率與結構-活性定量關係之研究
論文名稱(外文):The Study of Pseudomonas putida Initial Oxygen Uptake (PIOU) of Phenolic Compounds and the Quantitative Structure-Activity Relationships(QSARs)
指導教授:黃守仁黃守仁引用關係黃得時黃得時引用關係
指導教授(外文):Thou-Jen WhangDed-Shih Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:65
中文關鍵詞:假單胞菌結構-活性定量關係
外文關鍵詞:QSARsPseudomonasPhenol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用假單胞菌(ATCC 23973)對化合物的瞬時耗氧速率來評估苯環單取代與酚類化合物的毒性,酚類化合物大都為非競爭型抑制劑,該類化合物的抑制常數Ki值代表的意義為抑制假單胞菌50% 瞬時耗氧速率的抑制劑濃度,因此,我們用Ki值做為化合物毒性的指標。
由於化學物質的毒性受到毒物進入生物相的穿透力以及與生物體之反應位置的相互作用的影響,因此,我們建立了Ki值與辛醇-水分配係數(logP)和最低未填滿分子軌域能量(LUMO)的結構-活性定量關係,並由此關係預測化合物對假單胞菌的抑制機制。
其中有一些化合物(pKa≦6.5),它們的毒性偏低,因為該類化合物在實驗溶液中皆以共軛鹼(phenoxides)的形式存在,所以它們的毒性為共軛鹼所表現出的行為,而非如文獻上將其歸類的弱酸呼吸去偶合物,就是它們會抑制三磷酸腺苷的形成以及氧化鄰酸化的作用。
在與其他毒性測試方法的比較,發現本實驗結果與纖毛蟲的毒性測試有高度的相關性(r = 0.92)。
We have used the Pseudomonas putida (ATCC 23973) initial oxygen uptake (PIOU) data to assess the toxicity of the monosubstituted aromatic compounds and phenol derivatives. The inhibition constant, Ki, of monosubstituted aromatic compounds and phenol derivatives were measured and found that most phenol derivatives are belonging to the non-competitive inhibitors toward Pseudomonas putida. These Ki constant represent the concentration of the phenol derivatives, under which 50% of the oxygen uptake activity of Pseudomonas putida has been inhibited. Thus, Ki is used as an index to assess the toxicity.
The penetration ability of the toxic chemical into the organism and its following reaction site with the organism are use to assess the toxicity. Thus, the Ki value was correlated with both the n-octanol/water partition coefficient (log p) and the energy of lowest unoccupied molecular orbital (LUMO) to establish a quantitative structure-activity relationship (QSAR) model and found that this established equation allow one to predict the inhibition mechanism toward P.putida.
Several phenol derivatives ( pKa≤6.5 ) with lower toxicity previously called uncupler was also found not following the QSAR behavior, i.e. can not be explained using the established QSAR equation. The abnormal toxicity behavior of these compounds was found mainly due to having weak acid dissociation property into its conjugate base rather than due to being an uncoupler inhibiting the oxidative phosphorylation of ADP to form ATP.
Comparing our results obtained from PIOU method with that from other test methods, it was found that our results have a good relationship with that from a 2-day Tetrahymena pyriformis with r = 0.92.
中文摘要...................................i
英文摘要...................................ii
誌謝.......................................iii.
目錄.......................................v
表目錄.....................................x
圖目錄.....................................xi
第一章 緒論 ..............................1
一、生物分解...............................1
二、利用生物測試化合物的毒性...............2
(一)、魚類.................................3
(二)、MicrotoxTM...........................4
(三)、纖毛蟲(Tetrahymena pyriformis).......5
三、假單胞菌(Pseudomonas putida)的簡介.....5
四、酵素動力學(Enzyme kinetic).............6
(一)、Michaelis-Menten 方程式..............6
(二)、Briggs-Haldane穩定態處理法(steady-state treatment).................................8
(三)、Lineweaver-Burk方程式................9
(四)、酵素抑制之動力學模式.................10
1.競爭型抑制(competitive inhibition).......10
2.非競爭型抑制劑(noncompetitive inhibition)13
3.不競爭型抑制(uncompetitive inhibition)...14
五、假單胞菌瞬時耗氧速率測試...............16
六、結構-活性定量關係(Quantitative Structure-Activity Relationship;QSAR).....16
(一)、Hammett equation.....................17
1. 電子需求.............................17
2. Hammett equation.....................19
(二)、參數(parameters).....................21
1. 親油性參數(Hydrophobic parameters)...21
2. 電子的參數(Electronic parameters)....21
3. 空間的參數(Steric parameters)........22
(三)、QSAR的應用...........................22
七、毒性作用的模式和反應機構...............22
八、研究動機...............................24
第二章 實驗 ..............................25
一、藥品...................................25
(一) 培養細菌基質..........................25
(二) 抑制劑................................25
二、儀器...................................28
三、細菌培養...............................31
(一) 培養基的配置..........................32
(二) 微量元素溶液的配置....................32
(三) 轉菌..................................33
(四) 離心..................................33
四、氧電極的測試...........................33
(一) 溶液的配置............................34
1. 緩衝溶液的配製..........................34
2. 不同受質濃度的配製......................34
3. 不同受質濃度的配製......................34
(二)、瞬時耗氧速率的測試...................35
(三)、數據處理.............................36
五、分子參數與統計分析.....................38
第三章 結果 ..............................40
一、化合物的Ki值...........................40
二、競爭型抑制劑...........................41
三、結構-活性定量關係(Quantitative Structure-Activity Relationship;QSAR).....43
四、偏離點的分析...........................45
第四章 討論 ..............................47
一、假單胞菌瞬時耗氧速率方法(Pseudomonas Initial Oxygen Uptake,PIOU)的特色.................47
二、結構-活性定量關係(QSAR)................48
三、單取代化合物的討論.....................49
四、偏離點的分析...........................50
五、結構-活性定量關係的比較(comparative QSAR).52
(一)、假單胞菌與纖毛蟲(Tetrahymena pyriformis)毒性測試的比較.................................55
(二)、假單胞菌與鰷魚(Pimephales promelas)毒性測試的比較.......................................57
(三)、假單胞菌與Microtox毒性測試方法的比較.58
六、結論...................................59
參考文獻 ..................................60
附錄.......................................xiii
附表一、抑制劑濃度的配製
附表二、化合物PIOU實驗測試結果, Ki值以及物理-化學參數
附表三、抑制劑在各種毒性測試下之數據
PIOU實驗圖表
1.Adam, C. D., R. A. Cozzens, and J. K. Byung. Effect of ozonation of the biodegradability of substituted phenols. Wat. Res. 31:2655-2663, 1997.
2.Aptula, A. O., T. I. Netzeva, I. V. Valkova, M. T. D. Cronin, T. W. Schultz, R. Kühne, and G. Schüürmann. Multivariate discrimination between modes of toxic action of phenols. Quant. Struct.-Act. Relat. 21:12-22, 2002
3.Bearden, A. P., G. D. Sinks, and T. W. Schultz. Acclimation to sublethal exposures to a model nonpolar narcotic:population growth kinetics and membrane lipid alterations in Tetrahymena pyriformis. Aquat. toxicol. 46:11-21, 1999.
4.Bearden, A. P., and T. W. Schultz. Structure-activity relationships for Pimephales and Tetrahymena:a mechanism of action approach. Environ. Toxicol. Chem. 16:1311-1317, 1997
5.Bradbury, S. P. Quantitative-activity relationships and ecological risk assessment:an overview of predictive aquatic toxicology research. Toxicol. lett. 79:229-237, 1995.
6.Broderius, S. J., D. K. Michael, and D. H. Marilynn. Use of joint response to define the primary modes of toxic action for diverse industrial organic chemicals. Environ. Toxicol. Chem. 14:1591-1605, 1995
7.Brown, S. C., C. P. G. J. Leslie and H. H. Tabak. Biodegradation kinetics of substituted phenolics:demonstration of a protocol based on electrolytic respirometry. Wat. Res. 24:853-861, 1990.
8.Burback, B. L., J. J. Perry, and L. E. Rudd. Effect of environmental pollutants and their metabolites on soil mycobacterium. Appl. Microbiol. Biotechnol. 41:134-136, 1995.
9.Cronin M. T. D., and T. W. Schultz. Development of Quantitative Structure-Activity Relationship for the tocivity of aromatic compounds to Tetrahymena pyriforms : Comparative assessment of methodologies Chem. Res. Toxicol. 14:1284-1295, 2001.
10.Cronin, M. T. D., A. O. Aptula, C D. Judith, T. I. Netzeva, P. H. Rowe, I. V. Valkova, and T. W. Schultz. Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis. Chemosphere 49:1201-1221, 2002.
11.Cronin, M. T. D., and T. W. Schultz. Sturcture-toxicity relationships for three mechanisms of action of toxicity to Vibrio fischeri. Ecotoxicol. Environ. Saf. 39:65-69, 1998.
12.Dearden, J. C., M. T. D. Cronin, and A.J. Dobbs. Quantitative structure-activity relationships as a tool to assess the comparative toxicity of organic chemicals. Chemosphere. 31:2521-2528, 1995.
13.Dewar, M. J. S., E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107:3902-3909, 1985.
14.Elaine, M. B., A. M. Andrew, J. Wright, and K. Killham. Assessment of toxicology interactions of benzene and its primary degradation producs (catechol and phenol) using a lux-modified bacterial bioassay. Environ. Toxicol. Chem. 16:849-856, 1997.
15.Escher, B. I., and R. P. Schwarzenbach. Mechanistic studies on baseline toxicity and uncoupling of organic compounds as a basis for modeling effective membrance concentrations in aquatic organisms. Aquatic. Sci. 64:20-35, 2002.
16.Froehner, K., T. Backhaus, and L. H. Grimme. Bioassays with Vibrio fisheri for the assessment of delayed toxicity. Chemosphere. 40:821-828, 2000.
17.Hansch, C., A. Leo, and D. Hoekman. Exploring QSAR hydrophobic, electronic, and steric constants. ACS Professional reference Book, American Chemical Society, Washington, DC., 1-133, 1995.
18.Hansch, C., P. P. Maloney, and T. Fujita. Correlation of biological activity of phenoxyacetic acids with Hammett substituted constants and partition coefficients. Nature. 14:178-180, 1962.
19.Hansch, C., D. Hoekman, A. Leo, D. Weininger, and C. D. Selassie. Chem-bioinformatics:comparative QSAR at the interface between chemistry and biology. Chem. Rev. 102:783-812, 2002.
20.Hermens, J. L. M. Electrophiles and acute toxicity to fish. Environ. health perspect. 87:219-225, 1990.
21.Hinteregger, C., R. Leitner, M. Loidl, A. Ferschl, and F. Streichsbier. Degradation of phenol and phenolic compound by Pseudomonas putida EKII. Appl. Microbiol. Biotechnol. 37:252-259, 1962.
22.Huang, D. S., and I. C. Tseng. Toxicity of Phenol and Monochlorophenols to growth and metabolic activities of Pseudomonas. Bull. Environ. Contam. Toxicol. 57:69-76, 1996.
23.Kaschabek, S. R., and W. Reineke. Degradation of chloroaromatics: Purification and characterization of maleyacetate redutase from Pseudomonas sp. Strain B13. J. Bacteriol. 175:6075-6081, 1993.
24.Karelson, M., and V. S. Lobanov. Quantum-chemical descriptors in QSAR/QSPR studies. Chem. Rev 1027-1043, 1996.
25.Leo, A. J. Calculating log Poct from structures. Chem. Rev. 93:1281-1306, 1993.
26.Mckim, J. M., S. P. Bradbury, and G. J. Niemi. Fish acute toxicity syndromes and their use in the QSAR approach to hazard assessment. Environ. health perspect. 71:171-186, 1987.
27.Mekapati, S. B., and C. Hansch. On the parametrization of the toxicity of organic chemicals to Tetrahymena pyriformis. The problem of estabilishing a uniform activity. J. Chem. Inf. Comput. Sci. 42:956-961, 2002.
28.Pettigrew, C. V., B.E. Haigler, and J. C. Spain. Simultaneous biodegradation of chlorobenzene and toluene by a Pseudomonas strain. Appl. environ. microbiol. 57:157-162, 1991.
29.Powlowski, J., and V. Shingler. In vireo analysis of polypeptide requirements of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J. Bacteriol. 172:6834-6840, 1990.
30.Schultz, T. W. TETRATOX: Tetrahymena pyriformis population growth impairment endpoint-A surrogate for fish lethality. Toxicol. Methods 7:289-309, 1997(a).
31.Schultz, T. W., and M. T. D. Cronin Quantitative structure-activity relationships for weak acid respiratory uncouplers to Vibrio fisheri. Environ. Toxicol. Chem. 16:357-360, 1997(b).
32.Schultz, T. W., G. D. Sinks, and A. P. Bearden. QSAR in aquatic toxicology: a mechanism of action approach comparing toxic potency to Pimephales promelas, Tetrahymena pyriformis, and Vibrio fischeri. p. 51-109. In: J. Devillers (ed.), Comparative QSAR, Taylor & Francis, New York, 1998.
33.Ramos , E. U., C. Vermeer, H. J. Wouter, and J. L. M. Hermens. Acute toxicity of polar narcotics to three aquatic species (Daphnia magna, Poecilia reticulate and Lymnaea stagnalis) and its relation to hydrophobicity. Chemosphere. 37:633-650, 1998.
34.Ren, S. Predicting three narcosis mechanisms of aquatic toxicity. Toxicol. lett. 133:127-139, 2002.
35.Russom, C. L., S. P. Bradbury, S. J. Broderius, D. E. Hammermeister, and R. A. Drummond. Predicting modes of toxic action from chemical structure:actue toxicity in the fathead minnow (Pimephales promelas). Environ. Toxicol. Chem. 16:948-967, 1997.
36.Sixt, S., J. Altschuh, and R. Bruggemann. Quantitative structure-toxicity relationships for 80 chlorinated compounds using quantum chemical descriptors. Chemosphere. 30:2397-2414, 1995.
37.Takuo, K I., and K. Kobayashi. Relation between toxicity and accumulation of chlorophenols at various pH, and their absorption mechanism in fish. Wat. Res. 29:431-442, 1995.
38.Tao, S., X. Xiaohuan, X. Fuliu, and D. Richard. A QSAR model for predicting toxicity (LC50) to Rainbow trout. Water Res. 36:2926-2930, 2002.
39.Van Leeuwen, C. J., and J. L. M. Hermens. Risk assessment of chemicals : An Introduction. Kluwer Academic Publishers. Netherlands. 37-292, 1995.
40.Veith, G. D., and S. J. Broderius. Rules for distinguishing toxicants that cause Type I and Type II narcosis syndromes. Environ. health perspect. 87:207-211, 1990.
41.Wackett, L. P. Pseudomonas putida-a versatile biocatalyst. Nature Biotech. 21:136-138, 2003.
42.Walker, J. D. Effects of chemicals on microorganisms. Research Journal WPCF. 62:618-624, 1990.
43.施秋榮, 偏鄰苯二酚雙加氧酶的基理型抑制反應-3-胺基甲基兒茶酚的合成與反應機構探討, 國立成功大學化學系碩士論文, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔