1.Adam, C. D., R. A. Cozzens, and J. K. Byung. Effect of ozonation of the biodegradability of substituted phenols. Wat. Res. 31:2655-2663, 1997.
2.Aptula, A. O., T. I. Netzeva, I. V. Valkova, M. T. D. Cronin, T. W. Schultz, R. Kühne, and G. Schüürmann. Multivariate discrimination between modes of toxic action of phenols. Quant. Struct.-Act. Relat. 21:12-22, 2002
3.Bearden, A. P., G. D. Sinks, and T. W. Schultz. Acclimation to sublethal exposures to a model nonpolar narcotic:population growth kinetics and membrane lipid alterations in Tetrahymena pyriformis. Aquat. toxicol. 46:11-21, 1999.
4.Bearden, A. P., and T. W. Schultz. Structure-activity relationships for Pimephales and Tetrahymena:a mechanism of action approach. Environ. Toxicol. Chem. 16:1311-1317, 1997
5.Bradbury, S. P. Quantitative-activity relationships and ecological risk assessment:an overview of predictive aquatic toxicology research. Toxicol. lett. 79:229-237, 1995.
6.Broderius, S. J., D. K. Michael, and D. H. Marilynn. Use of joint response to define the primary modes of toxic action for diverse industrial organic chemicals. Environ. Toxicol. Chem. 14:1591-1605, 1995
7.Brown, S. C., C. P. G. J. Leslie and H. H. Tabak. Biodegradation kinetics of substituted phenolics:demonstration of a protocol based on electrolytic respirometry. Wat. Res. 24:853-861, 1990.
8.Burback, B. L., J. J. Perry, and L. E. Rudd. Effect of environmental pollutants and their metabolites on soil mycobacterium. Appl. Microbiol. Biotechnol. 41:134-136, 1995.
9.Cronin M. T. D., and T. W. Schultz. Development of Quantitative Structure-Activity Relationship for the tocivity of aromatic compounds to Tetrahymena pyriforms : Comparative assessment of methodologies Chem. Res. Toxicol. 14:1284-1295, 2001.
10.Cronin, M. T. D., A. O. Aptula, C D. Judith, T. I. Netzeva, P. H. Rowe, I. V. Valkova, and T. W. Schultz. Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis. Chemosphere 49:1201-1221, 2002.
11.Cronin, M. T. D., and T. W. Schultz. Sturcture-toxicity relationships for three mechanisms of action of toxicity to Vibrio fischeri. Ecotoxicol. Environ. Saf. 39:65-69, 1998.
12.Dearden, J. C., M. T. D. Cronin, and A.J. Dobbs. Quantitative structure-activity relationships as a tool to assess the comparative toxicity of organic chemicals. Chemosphere. 31:2521-2528, 1995.
13.Dewar, M. J. S., E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107:3902-3909, 1985.
14.Elaine, M. B., A. M. Andrew, J. Wright, and K. Killham. Assessment of toxicology interactions of benzene and its primary degradation producs (catechol and phenol) using a lux-modified bacterial bioassay. Environ. Toxicol. Chem. 16:849-856, 1997.
15.Escher, B. I., and R. P. Schwarzenbach. Mechanistic studies on baseline toxicity and uncoupling of organic compounds as a basis for modeling effective membrance concentrations in aquatic organisms. Aquatic. Sci. 64:20-35, 2002.
16.Froehner, K., T. Backhaus, and L. H. Grimme. Bioassays with Vibrio fisheri for the assessment of delayed toxicity. Chemosphere. 40:821-828, 2000.
17.Hansch, C., A. Leo, and D. Hoekman. Exploring QSAR hydrophobic, electronic, and steric constants. ACS Professional reference Book, American Chemical Society, Washington, DC., 1-133, 1995.
18.Hansch, C., P. P. Maloney, and T. Fujita. Correlation of biological activity of phenoxyacetic acids with Hammett substituted constants and partition coefficients. Nature. 14:178-180, 1962.
19.Hansch, C., D. Hoekman, A. Leo, D. Weininger, and C. D. Selassie. Chem-bioinformatics:comparative QSAR at the interface between chemistry and biology. Chem. Rev. 102:783-812, 2002.
20.Hermens, J. L. M. Electrophiles and acute toxicity to fish. Environ. health perspect. 87:219-225, 1990.
21.Hinteregger, C., R. Leitner, M. Loidl, A. Ferschl, and F. Streichsbier. Degradation of phenol and phenolic compound by Pseudomonas putida EKII. Appl. Microbiol. Biotechnol. 37:252-259, 1962.
22.Huang, D. S., and I. C. Tseng. Toxicity of Phenol and Monochlorophenols to growth and metabolic activities of Pseudomonas. Bull. Environ. Contam. Toxicol. 57:69-76, 1996.
23.Kaschabek, S. R., and W. Reineke. Degradation of chloroaromatics: Purification and characterization of maleyacetate redutase from Pseudomonas sp. Strain B13. J. Bacteriol. 175:6075-6081, 1993.
24.Karelson, M., and V. S. Lobanov. Quantum-chemical descriptors in QSAR/QSPR studies. Chem. Rev 1027-1043, 1996.
25.Leo, A. J. Calculating log Poct from structures. Chem. Rev. 93:1281-1306, 1993.
26.Mckim, J. M., S. P. Bradbury, and G. J. Niemi. Fish acute toxicity syndromes and their use in the QSAR approach to hazard assessment. Environ. health perspect. 71:171-186, 1987.
27.Mekapati, S. B., and C. Hansch. On the parametrization of the toxicity of organic chemicals to Tetrahymena pyriformis. The problem of estabilishing a uniform activity. J. Chem. Inf. Comput. Sci. 42:956-961, 2002.
28.Pettigrew, C. V., B.E. Haigler, and J. C. Spain. Simultaneous biodegradation of chlorobenzene and toluene by a Pseudomonas strain. Appl. environ. microbiol. 57:157-162, 1991.
29.Powlowski, J., and V. Shingler. In vireo analysis of polypeptide requirements of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J. Bacteriol. 172:6834-6840, 1990.
30.Schultz, T. W. TETRATOX: Tetrahymena pyriformis population growth impairment endpoint-A surrogate for fish lethality. Toxicol. Methods 7:289-309, 1997(a).
31.Schultz, T. W., and M. T. D. Cronin Quantitative structure-activity relationships for weak acid respiratory uncouplers to Vibrio fisheri. Environ. Toxicol. Chem. 16:357-360, 1997(b).
32.Schultz, T. W., G. D. Sinks, and A. P. Bearden. QSAR in aquatic toxicology: a mechanism of action approach comparing toxic potency to Pimephales promelas, Tetrahymena pyriformis, and Vibrio fischeri. p. 51-109. In: J. Devillers (ed.), Comparative QSAR, Taylor & Francis, New York, 1998.
33.Ramos , E. U., C. Vermeer, H. J. Wouter, and J. L. M. Hermens. Acute toxicity of polar narcotics to three aquatic species (Daphnia magna, Poecilia reticulate and Lymnaea stagnalis) and its relation to hydrophobicity. Chemosphere. 37:633-650, 1998.
34.Ren, S. Predicting three narcosis mechanisms of aquatic toxicity. Toxicol. lett. 133:127-139, 2002.
35.Russom, C. L., S. P. Bradbury, S. J. Broderius, D. E. Hammermeister, and R. A. Drummond. Predicting modes of toxic action from chemical structure:actue toxicity in the fathead minnow (Pimephales promelas). Environ. Toxicol. Chem. 16:948-967, 1997.
36.Sixt, S., J. Altschuh, and R. Bruggemann. Quantitative structure-toxicity relationships for 80 chlorinated compounds using quantum chemical descriptors. Chemosphere. 30:2397-2414, 1995.
37.Takuo, K I., and K. Kobayashi. Relation between toxicity and accumulation of chlorophenols at various pH, and their absorption mechanism in fish. Wat. Res. 29:431-442, 1995.
38.Tao, S., X. Xiaohuan, X. Fuliu, and D. Richard. A QSAR model for predicting toxicity (LC50) to Rainbow trout. Water Res. 36:2926-2930, 2002.
39.Van Leeuwen, C. J., and J. L. M. Hermens. Risk assessment of chemicals : An Introduction. Kluwer Academic Publishers. Netherlands. 37-292, 1995.
40.Veith, G. D., and S. J. Broderius. Rules for distinguishing toxicants that cause Type I and Type II narcosis syndromes. Environ. health perspect. 87:207-211, 1990.
41.Wackett, L. P. Pseudomonas putida-a versatile biocatalyst. Nature Biotech. 21:136-138, 2003.
42.Walker, J. D. Effects of chemicals on microorganisms. Research Journal WPCF. 62:618-624, 1990.
43.施秋榮, 偏鄰苯二酚雙加氧酶的基理型抑制反應-3-胺基甲基兒茶酚的合成與反應機構探討, 國立成功大學化學系碩士論文, 2002.