(3.234.221.162) 您好!臺灣時間:2021/04/14 15:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳勇隆
研究生(外文):Yung-Long Chen
論文名稱:近液化底床波浪引致之懸浮漂砂傳輸特性初步研究
論文名稱(外文):A Preliminary Study on Features of Suspended Sediment Transport near Wave-Fluidized Seabed
指導教授:歐善惠歐善惠引用關係臧效義臧效義引用關係
指導教授(外文):Shan-Hwei OuShiaw-Yih Tzang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:108
中文關鍵詞:液化底床傳輸流速
外文關鍵詞:fluidized seabedsediment transportvelocity
相關次數:
  • 被引用被引用:5
  • 點閱點閱:64
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了解近液化底床處傳輸的特性,本試驗應用超音波Doppler流速計量測底床上方 1cm 處之流速,配合底床上方等間距水深 5 支光學式濃度計量取懸浮漂砂濃度剖面,和底床內部不同深度孔隙水壓反應土壤內部反應﹔試驗波浪條件以規則波、規則波群和具不同群性的不規則波浪進行試驗。由規則波和規則波群試驗結果顯示在非液化反應時,近砂質底床處水平方向流速可以線性波理論描述,其與理論值之比在 0.91~1.14 的範圍內,而垂直方向流速與理論值比在1.03~1.30 範圍內。起始液化反應時,水平方向流速會隨平均孔隙水壓抬升而變小,垂直方向流速則隨孔隙水壓抬升而變大,且不受起始液化層厚度影響,垂直方向流速放大的倍數均是整回合液化試次中最大者。隨液化次數增加,水平和垂直流速縮小和放大的量也會慢慢減少,最後回復非液化反應。當發生液化反應時,垂直方向流速產生振幅放大現象之後,於近底床處會有大量的懸浮漂砂濃度的抬升,且濃度剖面為冪次型態的分佈。具不同群性之不規則波浪試驗結果顯示,海床液化時平均孔隙水壓多階段抬升的過程與波浪群性有關,愈大的 GF 值,其使海床產生起始液化所需有義波高愈小。
In this thesis, a three-component acoustic Doppler velocimeter was adopted to measure the velocity field at 1cm above the seabed. Depth profiles of sediment concentration with 5 optical probes above and pore pressures with 5 transducers inside the seedbed are together used to investigate the features of suspended sediment transport near a wave-fluidized seabed. Regular waves, wave groups and irregular wave of different groupiness were generated in the laboratory flume tests. As a result, in unfluidized responses the measured near-bed velocities can be well predicted by linear theory under regular waves and wave groups. The ratios of measured to predicted were between 0.91 and 1.14 for horizontal velocity, while those were between 1.03 and 1.30 for vertical velocity. However, in fluidized responses a decrease in the horizontal velocity and an increase in the vertical velocity closely correlate with mean pore pressure build-ups. Regardless of the thickness of fluidized soil layers, maximum amplitude amplification in vertical velocity occur in the initially fluidized responses. After several wave-induced soil fluidization, the horizontal velocity amplitude reductions and the vertical velocity amplitude amplifications gradually decreased, become as the unfluidized response. During the fluidization, the suspended sediment concentration increases significantly after the vertical velocity amplitude amplification, while its depth profiles approximate a power law. Experimental results under irregular waves with different groupiness show that stepped build-ups of mean pore pressure closely relate with wave groupiness(GF). The larger values of GF the smaller significant wave height was needed in the initially fluidized responses.
摘要… … … … … … … … .................................................................................................I
Abstract… … … … . ........................................................................................................ II
目錄… … … … … .......................................................................................................... III
圖目錄… … … … ...........................................................................................................V
表目錄… … … ...............................................................................................................X
符號說明… … … ..........................................................................................................XI
第一章緒論................................................................................................................1
1-1 研究目的與方法............................................................................................1
1-2 本文組織........................................................................................................2
第二章相關研究........................................................................................................3
2-1 海床液化與懸浮漂砂試驗結果....................................................................3
2-1-1 規則波和規則波群.............................................................................3
2-1-2 不規則波浪.......................................................................................13
2-2 近底床處流速與懸浮漂砂相關研究..........................................................15
第三章試驗工作......................................................................................................19
3-1 試驗佈置與步驟..........................................................................................19
3-2 儀器率定......................................................................................................24
3-3 試驗條件......................................................................................................27
3-4 資料處理......................................................................................................29
3-5 資料分析......................................................................................................30
3-5-1 波群分析...........................................................................................30
3-5-2 流速分析...........................................................................................31
第四章試驗結果......................................................................................................38
4-1 孔隙水壓和懸浮漂砂濃度變化..................................................................38
4-1-1 規則波浪...........................................................................................38
4-1-2 不規則波浪.......................................................................................45
4-2 近底床處單點流速量測..............................................................................52
4-2-1 規則波浪...........................................................................................52
4-2-2 不規則波浪.......................................................................................60
第五章分析與討論..................................................................................................74
5-1 海床液化對近底床處流速的影響..............................................................74
5-1-1 平均孔隙水壓抬升因素...................................................................74
5-1-2 孔隙水壓振幅因素...........................................................................83
5-2 傳輸特性......................................................................................................88
5-2-1 近底床處流速的影響.......................................................................88
5-2-2 懸浮漂砂濃度剖面...........................................................................90
5-3 波浪群性對海床液化的影響......................................................................98
第六章結論與建議................................................................................................103
6-1 結論............................................................................................................103
6-2 建議............................................................................................................104
參考文獻...................................................................................................................105
附錄A 試驗儀器照片............................................................................................108
1.Aagaard, T. and B. Greenwood (1995), “Longshore and cross-shore suspended sediment transport at far infragravity frequencies in a barred environment.” Continental Shelf Research. 15, No. 10, pp. 1235-1249.
2.Dean, R. G. and R. A. Dalrymple, “Water wave mechanics for engineers and scientist.” World Scientific, Singapore.
3.Doering, J. C. and A. J. Baryla (2002), “An investigation of the velocity field under regular and irregular waves over a sand beach.” Coastal Engineering, Vol. 44, pp. 275-300.
4.Dohmen-Janssen, C. M., D. M. Hanes, S. R. McLean, C. E. Vincent and J. S. Ribberink (2001), “Sheet flow and supension under wave groups in a lage wave flume (SISTEX99).” Proc. Coast. Dyn. ’01, ASCE, Lund, Sweden, pp. 313-322.
5.Foda, M. A. and S. Y. Tzang (1994), “Resonant fluidization of silty soil by water waves.” J. Geophys. Res. 99 (C10), pp. 20463-20475.
6.Funke, E. R. and E. P. D. Mansard (1980), “On the synthesis of realistic sea state.” Proc. 17th Int. Conf. on Coastal Eng., Sydney, pp. 2974-2991.
7.Hanes, D. M. (1991), “Suspension of sand due to waves groups.” Journal of Geophysical Research 96, pp. 8911-8915.
8.Hasselmann, K., et al (1973), “Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP).” Deutsche Hydr. Zeit Reihe A (80).
9.Hay, A. E. and A. J. Bowen (1994), “Space-time variability of sediment suspension in the surf zone.” Proc. Coast. Dyn. ’94, ASCE, Barcelona, Spain, pp. 962-975.
10.Lee, J., S. O’Neil, K. Bedford and R. Van Evra (1994), “A bottom boundary layer sediment response to wave groups.” Coastal Engineering, ASCE, pp.1827-1836.
11.Mei, C. C. and M. A. Foda (1981), “Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils.” Marine Geotechnology, Vol. 3, pp. 123-150.
12.Tzang, S. Y. (l992), “Water wave-induced soil fluidization in a cohesionless Seabed.” Ph. D. Dissertation, University of California, Berkeley, U. S. A.
13.van Kessel, T. (1997), “Generation and transport of subaqueous fluid mud layers.” Ph. D. Dissertation, Dept. of Civil Engineering, Delft University of Technology, The Netherlands.
14.Van Rijn, L. C. and F. J. Havinga (1993), “Transport of fine sands by currents and waves. II.” Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, Vol. 121, No. 2, pp. 123-132.
15.Vincent, C. E. and D. M. Hanes (2002), “The accumlation and decay of near-bed suspended sand concentration due to waves and wave groups.” Continental Shelf Research 22, pp. 1987-2000.
16.Villard, P. V., P. D. Osborne and C. E. Vincent (1999), “Influence of wave groups on sand re-suspension over bedgforms in a large scale wave flume.” Coastal Sediment ’99, pp. 367-36.
17.Williams, J. J., C. P. Rose and P. D. Thone (2002), “Role of wave groups in resuspension of sandy sediments.” Marine Geology. 183, pp. 17-29.
18.林朝福,何獻崇 (1995),「孔隙底床波浪減衰之試驗研究」,第十七屆海洋工程研討會論文集,第 407-422 頁。
19.蘇美光 (1999),「規則波引致之細顆粒砂質海床反應特性試驗研究」,國立成功大學水利及海洋工程學系碩士論文。
20.俞津修 (2000),「隨機波浪及其工程應用」。
21.彭雯章 (2000),「波浪作用下細砂質海床土壤液化反應與懸浮漂砂濃度特性試驗研究」,國立成功大學水利及海洋工程學系碩士論文。
22.簡德深 (2001),「簡諧波與線性波群引致之細砂質海床土壤液化反應與懸浮漂砂試驗研究」,國立成功大學水利及海洋工程學系碩士論文。
23.賴宏祐 (2002),「淺水之規則波與波群引致之細砂質海床液化與懸浮漂砂試驗研究」,國立成功大學水利及海洋工程學系碩士論文。
24.劉穎欣 (2002),「不規則波引致之細砂質海床液化與懸浮漂砂試驗初步研究」,國立成功大學水利及海洋工程學系碩士論文。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張高評:<千古創格,絕世奇文— —李清照「聲聲慢」詞賞析 >,《國文天地》,16卷12期,2001.05,頁89-92。
2. 沈惠英:<宋代女大詞家— —詞彩第一李清照(中)>,《新亞研究所通訊》,61期, 2001.01,頁11-16。
3. 沈惠英:<宋代女大詞家— —詞彩第一李清照(下)>,《新亞研究所通訊》,61期, 2001.07,頁16-20。
4. 沈惠英:<宋代女大詞家— —詞彩第一李清照(上)>,《新亞研究所通訊》,61期,2000.06,頁8-12。
5. 王力堅:<詞意並工、閨情絕調— —李清照「一剪梅」鑒賞>,《人文及社會學科教學通訊》,61期,2000,頁204-208。
6. 林晉士:<李易安詩文中之批判色彩>,《人文及社會學科教學通訊》,60期,2000,頁175-196。
7. 姚道生:<李清照「一剪梅」「輕解羅裳獨上蘭舟」臆說>,《中國語文通訊》,53期,2000,頁26-30。
8. 黃雅莉:<談易安體如何自成一家>,《人文及社會學科教學通訊》,56期,1996,頁157-175。
9. 楊昌年:<願將血淚寄山河— —一代詞宗李清照>,《歷史月刊》,135期,1999,頁38-43。
10. 唐文德:<李清照如夢令的寫景表情藝術>,《語文教育通訊》,18期,1999,頁1-2。
11. 周懋昌:<消瘦的身影沉重的心靈— —李清照「醉花陰」、「武陵春」比較>,《國文天地》,140期,1997,頁50-53。
12. 高慈慧:<易安詞句法初探>,《問學集》,6期,1996,頁71-83。
13. 于中航:<李清照的夢— —「漁家傲」記夢詞詮釋>,《中國國學》,1996,頁131-139。
14. 黃麗貞:<詞壇傑偉李清照(下) >,《中國語文》,463期,1996,頁22-27。
15. 黃麗貞:<詞壇傑偉李清照(中) >,《中國語文》,462期,1995,頁24-30。
 
系統版面圖檔 系統版面圖檔