(100.26.179.251) 您好!臺灣時間:2021/04/15 15:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林婉嬪
研究生(外文):Wuan-Pin Lin
論文名稱:水稻及蝴蝶蘭中MAPK訊息傳遞基因之選殖及特性分析
論文名稱(外文):Molecular cloning and characterization of MAPK cascade genes in rice (Oryza sativa) and orchid (Phalaenopsis amabilis)
指導教授:黃定鼎黃定鼎引用關係
指導教授(外文):Dinq-Ding Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物學系碩博士班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:47
中文關鍵詞:抗寒逆境訊息傳遞蝴蝶蘭水稻
外文關鍵詞:MAPKPhalaenopsis amabilisOryza sativastresscold toleranceMEKorchid
相關次數:
  • 被引用被引用:1
  • 點閱點閱:143
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
摘要
植物在面對外界不理想環境的衝擊,如病原菌的感染、溫度的刺激……時,會發展出一套複雜的機制來傳遞外界訊號,並引發生理及形態上的適應來加以因應。其中MAPK (mitogen-activated protein kinase)訊息傳遞途徑為最典型且最重要的途徑之一,而位於中游的MEK則為訊息整合之樞紐。本研究主要在於分析水稻一新鑑定之MEK-OsMEK2之特性,以及利用水稻MAPK訊息傳遞之基礎研究成果,提供臺灣原生種蝴蝶蘭(P. amabilis)抗寒之應用基礎,以期協助解決蝴蝶蘭所面臨的寒害問題。
根據親緣演化分析之結果,OsMEK2屬於Group A1之MEK,其氨基酸序列與NtSIPKK具有67%相同度及80%相似度。為進一步了解OsMEK2基因之特性與功能,以北方墨點分析顯示,OsMEK2基因主要表現於水稻根部及較成熟的器官中。OsMEK2在4℃溫度下會被快速誘導,為一極度低溫誘導之基因。以甘露糖(mannose)造成水稻細胞之ATP合成減少,則OsMEK2之mRNA會呈現漸近累積之表現趨勢,若以缺糖飢餓(sucrose starvation)處理卻導致OsMEK2呈現負調控表現,顯示兩逆境雖同時引發ATP合成減少,但可能透過不同途徑來調控。若以不同濃度NaCl處理水稻細胞,則發現OsMEK2會受到高鹽逆境之快速誘導,而於低鹽害下並未有顯著差異。由以上結果推測,OsMEK2在水稻發育過程及遭受逆境之情形下,均可能扮演著調控的角色。
前人研究指出於水稻中轉殖OsMAPK2使其過度表現,會提升水稻對於寒害之抗性。本研究於E.coli中大量表現GST-OsMAPK融合蛋白,發現GST-OsMAPK2之蛋白表現量顯著高於GST-OsMAPK4;若以anti-phosphotyrosine抗體偵測亦發現,GST-OsMAPK2之tyrosine磷酸化程度高於GST-OsMAPK4;若於4℃低溫逆境下,OsMAPK2之表現量亦較OsMAPK4高且持續。故於後續實驗選殖蝴蝶蘭中OsMAPK2之同源基因-PaMAPK1及其上游調控因子-PaMEK1,作為抗寒之轉殖應用。
根據親緣演化分析結果顯示,PaMAPK1及PaMEK1分屬於Group A1之MAPK及Group C之MEK,符合預期之分類結果。PaMAPK1與水稻OsMAPK2之氨基酸序列具有68%相同度及79%之相似度,而PaMEK1與玉米ZmMAPKK1之氨基酸序列具有74%相同度及86%之相似度。組織特異性表現分析顯示,PaMAPK1及PaMEK1於花苞之基礎轉錄量均較葉片高。若於蝴蝶蘭四個花器中,兩基因主要表現於唇瓣部位。而寒害處理結果亦證實,PaMAPK1及PaMEK1不論於花苞或葉片中均為寒害逆境誘導之基因。由上述結果所提供的資訊推測,此一MAPK聯級機制有可能參與了蝴蝶蘭花器分化的調控,並推測若將PaMAPK1轉殖於不耐寒之蝴蝶蘭品系中,應可提升其對於低溫的耐受性,進而降低植株的傷害,相信將會是產業界的一大福音。
Abstract
Plants are constantly exposed to a variety of biotic and abiotic stresses. To survive under these challenges, plants have developed elaborate mechanisms to perceive external signals and to manifest adaptive responses with proper physiological and morphological changes. The mitogen-activated protein (MAP) kinase cascade is one of the well-characterized intracellular signaling modules, and that cross-talk between various signal-transduction pathways might be concentrated at MEK level in plant MAPK cascades. In this study, a novel MEK gene of rice, OsMEK2, has been identified and characterized. Furthermore, we hope to improve the adaptation of original species of Taiwan orchids (P. amabilis) under cold stress by the results of basic researches of rice MAPK gene.
According to the phylogenetic analysis based on the amino acid sequences, OsMEK2 belongs to the Group A1 MEK subfamily, and shares high homology with NtSIPKK (67% identity and 80% similarity) from tobacco. Northern blot analysis showed that OsMEK2 was predominantly expressed in root and mature tissues of rice. OsMEK2 is an extremely low-temperature responsive gene rapidly induced during 4℃ treatment. In suspension-cultured cells, the mRNA level of OsMEK2 was gradually accumulated in response to mannose treatment, however it was down-regulated upon sucrose starvation. Differential induction of OsMEK2 in response to mannose and sucrose starvation suggests that there should be probably different regulation mechanism of the two stresses concerning of ATP reduction. Upon NaCl salt stresses, OsMEK2 transcripts were rapidly induced at high concentration and showed no change at low concentration. These results suggest that OsMEK2 may function both in the developmental stages and in stress-responsive pathway of rice.
Overexpression of OsMAPK2 had been found to have an increased tolerance to cold stress of transgenic rice plant. GST-OsMAPK2 fusion protein, when overexpressed in E.coli, exhibited higher translation and tyrosine phosphorylation level than those of GST-OsMAPK4. Furthermore, the accumulation of OsMAPK2 mRNA was more than that of OsMAPK4 at 4℃ treatment. Thus we made an attempt to isolate the OsMAPK2 homologue, PaMAPK1, and its upstream factor, PaMEK1, in orchid for further application to cold tolerance.
According to the phylogenetic analysis based on the amino acid sequences, PaMAPK1 and PaMEK1 belongs to the Group A1 MAPK and Group C MEK subfamily, respectively. PaMAPK1 protein shares high homology with OsMAPK2 (68% identity and 79% similarity), and PaMEK1 is closely related to the maize ZmMAPKK1 (74% identity and 86% similarity). Tissue-specific analysis indicated that the basal transcription level of PaMAPK1 and PaMEK1 was higher in flower buds than that in leaf tissues. Among four concentric whorls of floral organ, expression of PaMAPK1 and its upstream factor PaMEK1 was predominantly in labellum of orchid flower. PaMAPK1 and PaMEK1 were induced rapidly by cold stress both in flower buds and leaf tissues. Our results suggest that this MAPK cascade may involve not only in developmental regulation of flowers but also in cold stress-signaling pathway of orchids. Overexpression of PaMAPK1 in transgenic orchid may function in positive regulation of cold tolerance, and it could be a great benefit to the horticulture industry.
目錄
誌謝………………………………………………………………………1
目錄……………………………………………………………………..2
表目錄……………………………………………………………………4
圖目錄……………………………………………………………………5
縮寫符號對照表…………………………………………………………6
中文摘要…………………………………………………………………7
英文摘要…………………………………………………………………9
前言………………………………………………………………………11
1. 蛋白質磷酸化作用在植物中之角色………………………………11
2. MAPK訊息傳遞作用機制……………………………………………15
3. 植物界之MAPK訊息傳遞……………………………………………16
4. 蝴蝶蘭(Phalaenopsis)之簡介……………………………………22
5. 研究目的……………………………………………………………23
材料與方法………………………………………………………………25
1. 水稻懸浮細胞株之建立及培養……………………………………25
2. 水稻之組織特異性取材及逆境處理………………………………25
3. 融合蛋白活性分析…………………………………………………27
4. 蝴蝶蘭成株之培植…………………………………………………28
5. 蝴蝶蘭基因選殖……………………………………………………28
6. 快速增幅cDNA末端(RACE)…………………………………………33
7. 蝴蝶蘭之組織特異性取材及逆境處理……………………………35
8. 南方墨點轉漬法……………………………………………………36
9. 北方墨點轉漬法……………………………………………………39
結果………………………………………………………………………42
1. 水稻OsMEK2之基因選殖及序列分析………………………………42
2. 水稻OsMEK2之基因表現情形探討…………………………………43
3. 水稻OsMAPK4之基因表現情形探討…………………………………44
4. 水稻OsMAPK4與OsMAPK2之融合蛋白分析…………………………45
5. 蝴蝶蘭PaMAPK1之基因選殖及序列分析……………………………46
6. 蝴蝶蘭PaMAPK1之基因表現情形探討………………………………48
7. 蝴蝶蘭PaMEK1之基因選殖及序列分析……………………………48
8. 蝴蝶蘭PaMEK1基因表現情形探討…………………………………50
討論………………………………………………………………………51
參考文獻…………………………………………………………………58
附錄………………………………………………………………………94
自述………………………………………………………………………101
參考文獻
Adam A.L., Pike S., Hoyos E., Stone J.M., Walker J.C., and Novacky A. (1997) Rapid and transient activation of a myelin basic protein kinase in tobacco leaves treated with harpin from Erwinia amylovora. Plant Physiol. 115: 853-861
Aguan K., Sugawara K., Suzuki N., and Kusano T. (1993) Low-temperature dependent expression of a rice gene encoding a protein with a leucine zipper motif. Mol. Gen. Genet. 240: 1-8
Barizza E., Schiavo F., Terzi M., and Filippini F. (1999) Evidence suggesting protein tyrosine phosphorylation in plants depends on the developmental conditions. FEBS Lett. 447: 191-194
Bilwes A.M., Alex L.A., Crane B.R., and Simon M.I. (1998) Structure of CheA, a signal-transducing histidine kinase. Cell 96: 131-14
Bögre L., Calderini O., Binarova P., Mattauch M., Till S., Kiegerl S., Jonak C., Pollaschek C., Barker P., Huskisson N.S., Hirt H., and Heberle-Bors E. (1999) A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division. Plant Cell 11: 101-114
Brill J. A., Elison E.A., and Fink G.R. (1994) A role for autophosphorylation revealed by activated alleles of FUS3, the yeast MAP kinase homolog. Mol. Biol. Cell 5: 297-312
Calderini O., Bogre L., Vicente O., Binarova P., Heberle-Bors E., and Wilson C. (1998) A cell cycle regulated MAP kinase with a possible role in cytokinesis in tobacco cells. J. Cell Sci. 111: 3091-3100
Calderini O., Glab N., Bergounioux C., Heberle-Bors E., and Wilson C. (2001) A novel tobacco mitogen-activated protein (MAP) kinase kinase, NtMEK1, activates the cell cycle-regulated p43Ntf6 MAP kinase. J. Biol. Chem. 276: 18139-18145
Cardinale F., Jonak C., Ligterink W., Niehausi K., Boller T., and Hirt H. (2000) Differential activation of four specific MAPK pathways by distinct elicitors. J. Biol. Chem. 275: 36734-36740
Cardinale F., Meskiene I., Ouaked F., and Hirt H. (2002) Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. Plant Cell 14: 703-711
Charest D.L., Mordret G., Harder K.W., Jirik F., and Pelech S.L. (1993) Molecular cloning, expression and characterization of the human mitogen-activated protein kinase p44erk1. Mol. Cell. Biol. 13: 4679-4690
Choi G., Yi H., Lee J., Kwon Y.K., Soh M.S., Shin B., Luka Z., Hahn T.R., and Song P.S. (1999) Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature 401: 610-613
Cooper J.A., Bowen-Pore D.F., Raines E., Ross R., and Hunter T. (1982) Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins. Cell 31: 263-273
Crosson S., and Moffat K. (2001) Structure of a flavin-binding plant photoreceptor domain: Insights into light-mediated signal transduction. Proc. Natl. Acad. Sci. USA. 98: 2995-3000
Desikan R., Hancock J.T., Ichimura K., Shinozaki K., and Neill S.J. (2001) Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol. 126: 1579-1587
Frye C.A., Tang D., and Innes R.W. (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. USA. 98: 373-378
Fu S.F., Chou W.C., Huang D.D., and Huang H.J. (2002) Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant Cell Physiol. 43: 958-963
Fu S.F., Lin W.P., Ho S.L., Chou W.C., Huang D.D., Yu S.M., and Huang H.J. (2003) Molecular cloning and characterization of a novel starvation inducible MAP kinase gene in rice. Plant Physiol. Biochem. 41: 207-213
Gould K.L., Moreno S., Owen D.J., Sazer S., and Nurse P. (1991) Phosphorylation of Thr167 is required for Schizosaccharomyces pombe p34cdc2 function. EMBO J. 10: 3297-3309
He C., Fong S.H.T., Yang D., and Wang G.L. (1999) BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Mol. Plant—Microbe Interact. 12: 1064-1073
Herold A., and Lewis D.H. (1977) Mannose and green plants occurrence, physiology and metabolism, and use as a tool to study the role of orthophosphate. New Phytol. 79: 1-40
Hirt H. (1997) Multiple roles of MAP kinases in plant signal transduction. Trends Plant Sci. 2: 11-15
Huang H.J., Fu S.F., Tai Y.H., Chou W.C., and Huang D.D. (2002) Expression of Oryza sativa MAP kinase gene is developmentally regulated and stress-responsive. Physiol. Plant. 114: 572-580
Huang H.J., Lin Y.M., Huang D.D., Takahashi T., and Sugiyama M. (2003) Protein tyrosine phosphorylation during re-activation of the cell cycle in Arabidopsis hypocotyls. Plant Cell Physiol. 44: (in press)
Huang L.C., Pu S.Y., Murashige T., Fu S.F., Kuo T., Huang D.D., and Huang H.J. (2003) Rejuvenation of Sequoia sempervirens in vitro: Phase and age-related differences in protein tyrosine phosphorylation. Biol. Plant. (accepted)
Huang Y., Li H., Gupta R., Morris P.C., Luan S., and Kieber J.J. (2000) AtMPK4, an Arabidopsis homolog of mitogen-activated protein kinase, isactivated in vitro by AtMEK1 through threonine phosphorylation. Plant Physiol. 122: 1301-1310
Huber S.C., and Huber J.L. (1996) Role and regulation of sucrose phosphate synthase in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 431-444
Ichimura K., Mizoguchi T., and Shinozaki K. (1997) AtMRK1, an Arabidopsis protein kinase related to mammal mixed-lineage kinases and Raf protein kinases. Plant Sci. 130: 171-179
Ichimura K., Mizoguchi T., Irie K., Morris P., Giraudat J., Matsumoto K., and Shinozaki K. (1998) Isolation of AtMEKK1 (a MAP kinase kinase kinase)-interacting proteins and analysis of a MAP kinase cascade in Arabidopsis. Biochem. Biophys. Res. Commun. 253: 532-543
Ichimura K., Mizoguchi T., Yoshida R., Yuasa T., and Shinozaki K. (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J. 24: 655-665
Ichimura K. (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7: 301-308
Jonak C., Kiegerl S., Ligterink W., Barker P.J., Huskisson N.S., and Hirt H. (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc. Natl. Acad. Sci. USA. 93: 11274-11279
Jouannic S., Hamal A., Leprince A.S., Tregear J.W., Kreis M., and Henry Y. (1999) Plant MAP kinase kinase kinases structure, classification and evolution. Gene 233: 1-11
Jouannic S., Champion A., Segui-Simarro J.M., Salimova E., Picaud A., Tregear J., Testillano P., Risueno M.C., Simanis V., Kreis M., and Henry Y. (2001) The protein kinases AtMAP3Kε1 and BnMAP3Kε1 are functional homologues of S. pombe Cdc7p and may be involved in cell division. Plant J. 26: 637-649
Kamata H., Tanaka C., Yagisawa H., Matsuda S., Gotoh Y., Nishida E., and Hirata H. (1996) Suppression of nerve growth factor-induced neuronal differentiation of PC12 cells. N-actylcysteine uncouples the signal transduction from ras to the mitogen-activated protein kinase cascade. J. Biol. Chem. 271: 33018-33025
Khokhlatchev A.V., Canagarajah B., Wilsbacher J., Robinson M., Atkinson M., Goldsmith E., and Cobb M.H. (1998) Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93: 605-615
Kieber J.J., Rothenberg M., Roman G., Feldmann K.A., and Ecker J.R. (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72: 427-441
Kovtun Y., Chiu W.L., Zeng W., and Sheen J. (1998) Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395: 716-720
Kovtun Y., Chiu W.L., Tena G., and Sheen J. (2000) From the Cover: Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. USA. 97: 2940-2945
Lee K.S., Irie K., Gotoh Y., Watanabe Y., Araki H., Nishida E., Matsumoto K., and Levin D.E. (1993) A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signaling by protein kinase C. Mol. Cell. Biol. 13: 3067-3075
Lewis T.S. (1998) Signal transduction through MAP kinase cascades. Adv. Cancer Res. 74: 49-139
Ligterink W., Kroj T., Nieden U.Z., Hirt H., and Scheel D. (1997) Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science 276: 2054-2057
Liu J., and Zhu J.K. (1997) An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proc. Natl. Acad. Sci. USA. 94: 14960-14964
Liu J., Ishitani M., Halfter U., Kim C.S., and Zhu J.K. (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci. USA. 97: 73730—3734
Marshall C.J. (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80: 179-185
Marwedel T., Umeda M., and Sauter M. (2002) The rice cyclin-dependent kinase-activating kinase R2 regulates S-phase progression. Plant Cell 14: 197-210
Matsuoka D., Nanmori T., Sato Ki K., Fukami Y., Kikkawa U., and Yasuda T. (2002) Activation of AtMEK1, an Arabidopsis mitogen-activated protein kinase kinase, in vitro and in vivo: analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings. Plant J. 29: 637—647
Meskiene I., Bo¨gre L., Glaser W., Balog J., Brandsto¨tter M., Zwerger K., Ammerer G., and Hirt H. (1998) MP2C, a plant protein phosphatase 2C, functions as a negative regulator of mitogen-activated protein kinase pathways in yeast and plants. Proc. Natl. Acad. Sci. USA. 95: 1938-1943
Meyers B.C., Dickerman A.W., Michelmore R.W., Sivaramakrishnan S., Sobral B.W., and Young N.D. (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 20: 317-332
Mizoguchi T., Hayashida N., Yamaguchi-Shinozaki K., Kamada H., and Shinozaki K. (1993) ATMPKs: a gene family of plant MAP kinases in Arabidopsis thaliana. FEBS Lett. 336: 440-444
Mizoguchi T., Irie K., Hirayama T., Hayashida N., Yamaguchi-Shinozaki K., Matsumoto K., and Shinozaki K. (1996) A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 93: 765-769
Mizoguchi T., Ichimura K., Irie K., Morris P., Giraudat J., Matsumoto K., and Shinozaki K. (1998) Identification of a possible MAP kinase cascade in Arabidopsis thaliana based on pair wise yeast two-hybrid analysis and functional complementation tests of yeast mutants. FEBS Lett. 437: 56-60
Morgan D.O. (1995) Principles of CDK regulation. Nature 374: 131-134
Munnik T., Ligterink W., Meskiene I., Calderini O., Beyerly J., Musgrave A., and Hirt H. (1999) Distinct osmo-sensing protein kinase pathways are involved in signaling moderate and severe hyper-osmotic stress. Plant J. 20: 381-388
Nishihama R., Soyano T., Ishikawa M., Araki S., Tanaka H., Asada T., Irie K., Ito M., Terada M., Banno H., Yamazaki Y., and Machida Y. (2002) Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109: 87-99
Nühse T.S., Peck S.C., Hirt H., and Boller T. (2000) Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK6. J. Biol. Chem. 275: 7521-7526
Payne D., Rossomando A., Martino P., Erickson A., Her J.H., Shabanowitz J., Hunt D., Weber M., and Sturgill T. (1991) Identification if two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cells. Plant J. 5: 111-122
Quimby B.B., Wilson C.A., and Corbett A.H. (2000) The interaction between Ran and NTF2 is required for cell cycle progression. Mol. Biol. Cell 11: 2617-2629
Ray L.B., and Sturgill T.W. (1988) Insulin-stimulated microtubule-associated protein kinase is phosphorylated on tyrosine and threonine in vivo. Proc. Natl. Acad. Sci. USA. 85: 3753-3757
Ren D., Yang H., and Zhang S. (2002) Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J. Biol. Chem. 277: 559-565
Robinson M.J., Stippec S.A., Goldsmith E., White M.A., and Cobb M.H. (1998) Constitutively active ERK2 MAP kinase is sufficient for neurite outgrowth and cell transformation when targeted to the nucleus. Curr. Biol. 8: 1141-1150
Saedler H., Becker A., Winter K.U., Kirchner C., and Theißen G. (2001) MADS-box genes are involved in floral development and evolution. Acta. Biochimica. Polonica. 48: 351-358
Samaj J., Ovecka M., Hlavacka A., Lecourieux F., Meskiene I., Lichtscheidl I., Lenart P., Salaj J., Volkmann D., Bogre L., Baluska F., and Hirt H. (2002) Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. EMBO J. 21: 3296-3306
Sambrook J., Fritsch E.F., and Maniatis T. (1989) Molecular Cloning: A Laboratory Manual, 2nd edi. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Schaffer R., Landgraf J., Accerbi M., Simon V., Larson M., and Wisman E. (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13: 113-123
Schoenbeck M.A., Samac D.A., Fedorova M., Gregerson R.G., Gantt J.S., and Vance C.P. (1999) The alfalfa (Medicago sativa) TDY1 gene encodes a mitogen-activated protein kinase homolog. Mol. Plant—Microbe Interact. 12: 882-893
Seo S., Okamoto M., Seto H., Ishizuka K., Sano H., and Ohashi Y. (1995) Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science 270: 1988-1992
Shah K., Vervoort J., and Vries S.C. (2001) Role of threonines in the Arabidopsis thaliana somatic embryogenesis receptor kinase 1 activation loop in phosphorylation. J. Biol. Chem. 276: 41263-41269
Solomon M.J., Lee T., and Kirschner M.W. (1992) The role of phosphorylation in p34cdc2 activation: Identification of an activating kinase. Mol. Biol. Cell 3: 13-27
Suzuki K., and Shinshi H. (1995) Transient activation and tyrosine phosphorylation of a protein kinase in tobacco cells treated with a fungal elicitor. Plant Cell 7: 639-647
Tan J.L., and Spudich J. (1990) Developmentally regulated protein-tyrosine kinase genes in Dictyostelium discoideum. Mol. Cell. Biol. 10: 3578-3583
Theißen G. (2001) Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant. Biol. 4: 75-85
Tregear J.W., Jouannic S., Schwebel-Dugué N., and Kreis M. (1996) An unusual protein kinase displaying characteristics of both the serine/threonine and tyrosine families is encoded by the Arabidopsis thaliana gene Atn1. Plant Sci. 117: 107-119
Wen J.Q., Oono K., and Imai R. (2002) Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol. 129: 1880-1891
Widmann C., Gibson S., Jarpe M.B., and Johnson G.L. (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79: 143-180
Wilson C., Anglmayer R., Vicente O., and Heberle-Bors E. (1995) Molecular cloning, functional expression in Escherichia coli, and characterization of multiple mitogen-activated protein kinase from tobacco. Eur. J. Biochem. 233: 249-257
Xiong L., and Yang Y. (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15: 745-759
Yamaguchi M., Umeda M., and Uchimiya H. (1998) A rice homolog of Cdk7/MO15 phosphorylates both cyclin-dependent kinases and the carboxy-terminal domain of RNA polymerase II. Plant J. 16: 613-619
Yang K.Y., Liu Y., and Zhang S. (2001) Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl. Acad. Sci. USA. 98: 741-746
Zhang S., and Klessig D.F. (1997) Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 9: 809-824
Zhang S., and Klessig D.F. (1998) The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK. Proc. Natl. Acad. Sci. USA. 95: 7225-7230
Zhang S., and Liu Y. (2001) Activation of salicylic acid-induced protein kinase, a mitogen-activated protein kinase, induces multiple defense responses in tobacco. Plant Cell 13: 1877-1889
Zhou J., Loh Y.T., Bressan R.A., and Martin G.B. (1995) The tomato gene Pti1 encodes a serine/threonine kinase that is phosorylated by Pto and is involved in the hypersensitive response. Cell 83: 925-935
Zhulin I.B., Taylor B.L., and Dixon R. (1997) PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends. Biochem. Sci. 22: 331-333
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔