跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 09:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡青紅
研究生(外文):Ching-Hung Chien
論文名稱:利用傳統培養方法和分子生物方法探討厭氧生物產氫反應槽的微生物社會結構
論文名稱(外文):Cultivation-Dependent and -Independent Approaches for Determining Microbial Community in Anaerobic Bio-Hydrogen Reactor
指導教授:曾怡禎曾怡禎引用關係
指導教授(外文):I-Cheng Tseng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物學系碩博士班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:71
中文關鍵詞:產氫菌變性梯度明膠電泳微生物社會親緣演化分析
外文關鍵詞:phylogenetic analysismicrobial communitypolyphasic approachDGGEhydrogen producing bacteria
相關次數:
  • 被引用被引用:25
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基於環境保護與資源永續利用的觀念,氫已被視為21世紀的最佳替代能源。利用微生物產氫的方式已漸受重視,其中厭氧微生物在不需要光照下,可將廢棄的有機物分解產氫,具有低成本、減廢與資源回收再利用的優點。因此,本研究主要結合傳統培養和分子生物方法,分離本土性的產氫菌株與建立本土性產氫菌的16S rDNA資料庫,以提供生物產氫反應槽的植種來源與作為分子標誌以監測生物產氫反應槽中菌群的變動。本研究總共分離出231株菌株,其中產氫菌株佔約52.8%。親緣演化分析的結果顯示,篩選出的11株高產氫菌株,有8株與Clostridium之16S rDNA親緣關係相近,且大部分屬於Clostridium的Cluster I,而其餘的3株則分別與Klebsiella和Megasphaera之親緣關係相近。分別由酵母粉為進流基質的生物產氫反應槽污泥和牛糞堆肥所分離出來的產氫菌株FYa102和C008(施,2002)之產氫活性均高於標準菌株Clostridium buryricum,此二菌株之16S rDNA與Clostridium tyrobutyricum的相似度達99%和98%。利用選殖分析的分法,建立以蔗糖和麥粕為進流基質之生物反應槽的16S rDNA clone library。結果顯示,以蔗糖為進流基質的生物反應槽,有76%的clones為與Clostridium之親緣相近的菌群。相反地,以麥粕為進流基質的生物產氫反應槽,只有0.7%的clones與Clostridium之親緣關係相近,而主要由Bulleidia和Calomator親緣相近的菌群構成,是故生物產氫反應槽的微生物社會結構將受進流基質的影響。而利用傳統培養的方法,自以麥粕為進流基質的生物產氫槽的污泥中,並無分離到與Bulleidia和Calomator親緣相近的菌群,卻分離到與Clostridium、Megasphaera、Lactobacillus和Bacillus之親緣關係相近的分離菌株。綜合以上結果,結合傳統培養和分子生物的方法,將可更完整呈現生物產氫反應槽的微生物社會結構,但造成結果上差異的原因,需要更深入的探討。本研究亦利用所獲得厭氧產氫菌的16S rDNA序列當作分子標誌,藉由變性梯度明膠電泳的指紋圖譜探討生物產氫反應槽中微生物社會結構的變動,在本文中亦有詳加討論。
The realization of fossil fuel reserves are limited and have adverse effects on the environment has forced us to search for alternative sources of energy. Hydrogen is a promising candidate as a clean energy source in the future. Among the many processes of hydrogen production, biological production of hydrogen is potentially more attractive, especially if wastewater and organic waste could be used as the raw material for producing hydrogen. In this study, polyphasic approach combined cultivation-dependent with cultivation-independent methods was used to study the microbial communities in bio-hydrogen reactors. Phylogenetic analysis of a bacterial 16S rDNA clone library from the bio-hydrogen reactor with sucrose as influent showed that a majority of the clones was phylogenetic affinity with the genus of Clostridium (76%). Conversely, the bio-hydrogen reactor with wheat husk as influent showed that only 0.7% were phylogenetic affinity with the genus of Clostridium, but a majority were belonged to the genus of Bulleidia (56.7%) and Calomator (32.0%). The data revealed that the microbial community of bio-hydrogen reactors was affected by the substrates of influent. A total of 231 strains were isolated and 52.8% of which were hydrogen producing bacteria. Comparison of the 16S rDNA sequences of the 13 isolates revealed that 8 isolates with high hydrogen producing potential were members of the Clostridium, most closely related to the Clostridium Cluster I. The hydrogen producing bacteria FYa102 and C008 (Shih, 2002) were closely related to the Clostridium tyrobutyricum, possessed higher hydrogen producing potential than the Clostridium butyricum. The microbial diversity of bio-hydrogen reactors was also investigated by denaturing gel electrophoresis (DGGE) approach. The results indicated that the microbial community analyzed by the cultivation-dependent and cultivation-independent methods were not consistent. The 16S rDNA database of the anaerobic hydrogen producing bacteria was also used as molecular marker to monitor the dynamic change of hydrogen producing bacteria in the bio-hydrogen reactors.
中文摘要...................................................................... Ⅰ
英文摘要...................................................................... Ⅱ
誌謝.......................................................................... Ⅲ
目錄.......................................................................... Ⅳ
表目錄........................................................................ Ⅶ
圖目錄........................................................................ Ⅷ
第一章 前言................................................................... 1
1-1研究緣起................................................................... 1
1-2研究目的................................................................... 3
1-3研究架構................................................................... 4
第二章 文獻回顧............................................................... 5
2-1全球能源危機............................................................... 5
2-1-1替代能源................................................................. 5
2-1-2氫氣..................................................................... 5
2-2生物產氫................................................................... 6
2-2-1機制種類................................................................. 7
2-2-2為何選擇生物產氫......................................................... 11
2-3厭氧發酵產氫............................................................... 13
2-3-1種類與產氫效能........................................................... 13
2-3-2梭菌屬產氫菌............................................................. 13
2-3-2-1生理特性............................................................... 14
2-4厭氧發酵產氫的影響因子..................................................... 16
2-4-1基質種類................................................................. 16
2-4-2植種來源................................................................. 18
2-5分子生物方法應用於微生物生態的研究......................................... 19
2-5-1聚合酵素鏈鎖反應......................................................... 19
2-5-2變性梯度明膠電泳......................................................... 20
2-5-3限制酵素段片法........................................................... 20
2-5-4螢光原位雜交法........................................................... 21
第三章 材料與方法............................................................. 22
3-1產氫菌的分離............................................................... 22
3-1-1樣本來源................................................................. 22
3-1-2產氫菌優厚培養的篩選與分離............................................... 22
3-2分離菌株生理特性的測試..................................................... 23
3-3生物產氫反應槽菌群結構變化的探討........................................... 24
3-3-1厭氧產氫反應槽的進流基質................................................. 24
3-3-2培養條件................................................................. 24
3-4分析方法................................................................... 24
3-4-1氫氣的分析............................................................... 24
3-4-2揮發酸的分析............................................................. 25
3-4-3醇的分析................................................................. 25
3-4-4DNA萃取.................................................................. 25
3-4-5聚合酵素鏈鎖反應......................................................... 26
3-4-6瓊脂膠體電泳............................................................. 28
3-4-7變性梯度明膠電泳......................................................... 28
3-4-8分子選殖................................................................. 30
3-4-9定序..................................................................... 31
3-4-10親緣關係的分析.......................................................... 31
3-4-11掃描式電子顯微鏡的觀察.................................................. 32
3-5主要儀器................................................................... 33
第四章 結果與討論............................................................. 35
4-1本土性產氫菌株的分離....................................................... 35
4-1-1高活性產氫菌株的篩選與分離............................................... 35
4-1-2分離菌株的親緣演化關係................................................... 37
4-1-3分離菌株的生理特性探討................................................... 43
4-2利用分子生物方法分析生物產氫反應槽的菌群結構............................... 48
4-2-1以蔗糖為基質的生物產氫反應槽的選殖分析................................... 48
4-2-1-1DGGE快速篩選........................................................... 48
4-2-1-2親緣演化分析........................................................... 51
4-2-2以麥粕為基質的生物產氫反應槽的選殖分析................................... 55
4-2-2-1DGGE快速篩選........................................................... 55
4-2-2-2親緣演化分析........................................................... 58
4-3以分子生物方法探討生物產氫反應槽菌群結構的變動............................. 63
4-3-1不同水力停留時間操作下的菌群結構差異..................................... 63
4-3-2不同稀釋倍數下的菌群結構差異............................................. 65
4-3-2-1利用多管發酵法探討以麥粕為基質的生物產氫反應槽的菌群變動............... 65
4-3-2-2利用多管發酵法探討以酵母粉為基質的生物產氫反應槽的菌群變動............. 67
第五章 結論與建議............................................................. 69
5-1結論....................................................................... 69
5-2建議....................................................................... 71
第六章 參考文獻............................................................... 72
附錄.......................................................................... 79
自述.......................................................................... 85
林秋裕,李佳盈,蕭清郎,2002。基質對積聚處理污泥厭氧產氫能力之影響。第廿六屆廢水處理技術研討會。
施翠盈,2002。本土性梭菌屬產氫菌株之分離及生理特性研究。碩士論文。國立成功大學生物學研究所,台南市。
黃俊霖,2001。以分子生物技術探討厭氧生物產氫程序之菌群結構。碩士論文。國立中央大學環境工程研究所,中壢市。
Altschul, S. F., W. Gish, W. Miller, E. Myers, and D. J. Lipman. 1990. Basic local alignment serach tool. J. Mol. Bio. 215: 403-410.
Amann, R. I., W. Ludwig, and K. H. Schliefer. 1995. Phylogenetic identication and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. Mar.: 143-169.
Andreesen, J. R., H. Bahl., and G. Gottschalk. 1989. Introduction to the physiology and biochemistry of the Genus Clostridium. In Minton Nigel P. and Clarke David J. (ed.), Biotechnology handbooks‧3‧Plenum Press, New York and London, pp: 27-33.
Attwood, G.T., K. Reilly, and B.K. Patel. 1996. Clostridium proteoclasticum sp. nov., a novel proteolytic bacterium from the bovine rumen. Int. J. Syst. Bacteriol. 46: 753-758.
Auli, H. 1991. The Genera Pectinatus and Megasphaera. In Albert, B., G. T. Hans, D. Martin, H. Wim, and K. Karl-Heinz (ed.), The Prokaryotes. Vol II. Springer-Verlag, New York, pp: 1993-2004.
Barreto, L., A. Makihira, and K. Riahi. 2003. The hydrogen economy in the 21st century: a sustainable development scenario. International Journal of Hydrogen Energy 28: 267-284.
Beneman, J. 1996. Hydrogen biotechnology-progress and prospect. Nature Biotechnol. 14: 1110.
Bredholt, S., J. Sonnehansen, P. Nielsen, I. M. Mathrani, and B.K. Ahring. 1999. Caldicellulosiruptor Kristjanssonii sp nov., a cellulolytic extremely themophilic, anaerobic bacterium. Int. J. Syst. Bacteriol. 49: 991-996.
Brosius, J., T. J. Dull, D. D. Sleeter, and H. F. Noller. 1981. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J. Mol. Bio. 148: 107-127.
Bryant, M. P. 1986. Ruminococcus. In Butler John P. (ed.), Bergey’s Manual of Systematic Bacteriology. Williams & Wilkins, pp: 1093-1097.
Carolyn, C. E., and E. G. P. Catherine. 2001. International energy agency agreement on the production and utilization of hydrogen. Proceedings of the 2001 DOE Hydrogen Program Review. Nrel/ CP-570-30535.
Cato, E. P., W. L. George, and S. M. Finegold. 1986. Clostridium. In Butler John P. (ed.), Bergey’s Manual of Systematic Bacteriology. Williams & Wilkins, pp: 1141-1200.
Chen, C. G., C. Y. Lin, and J. S. Chang. 2001. Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl. Microbiol. Biotechnol. 57: 56-64.
Collins, M. D., P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-garayzabal, P. Garcia, J. Cai, H. Hippe, and J. A. E. Farrow. 1994. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44: 812-826.
Das, D., and T. N. Veziroglu. 2001. Hydrogen production by biology processes: a survey of literature. International Journal of Hydrogen Energy 26: 13-28.
Dewhirst, F. E., B. J. Paster, N. Tzellas, B. Coleman, J. Downes, D. A. Spratt, and W. G. Wade. 2001. Characterization of novel human oral isolates and cloned 16S rDNA sequences that fall in the family Coriobacteriaceae: description of Olsenella gen. nov., reclassification of Lactobacillus uli as Olsenella uli comb. nov., and description of Olsenella profusa sp. nov. Int. J. Syst. Evol. Microbiol. 51: 1797-1804.
Drent, W. J., G. A. Lahpor., W. M. Wiegant., and J. C. Gottschal. 1991. Fermentationf of Inulin by Clostridium thermosuccinogenes sp. nov., a thermophilic anaerobic bacterium Isolated from various habitats. Appl. Environ. Microbiol. 57: 455-462.
Esteso, M. A., C. N. Estrella., and J. J. Podesta. 1996. Evaluation of the absorption on mild steel of hydrogen evolved in glucose fermentation by pure cultures of Clostridium acetobutylicum and Enterobacter. Sensors Actuators B: Chem. 32: 27-31.
Fabiano, B., and P. Perego. 2002. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. International Journal of Hydrogen Energy 27: 149-156.
Fang, H. P., and H. Liu. 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology 82: 87-93.
Fang, H. P., T. Zhang, and H. Liu. 2002. Microbial diversity of a mesophilic hydrogen-producing sludge. Appl. Microbiol. Biotechnol. 58: 112-118.
Ferris, M. J., G. Muyzer, and D. M. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populaitons inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62: 340-346.
Frederick, M. A. 1999 . Short protocols in molecular biology :/a compendium of methods from Current protocols in molecular biology 4th ed. New York ,Wiley.
Fumiaki, T., J. D. Chang, N. Mizukami, S. T. Tatsuo, and H. Katsushige. 1993. Isolation of a hydrogen-producing bacterium Clostridium beijerinckii strain AM21B, from termites. Can. J. Microbiol. 39: 726-730.
Girbal, L., C. Christen, V. Isabel, and S. Philippe. 1995. Regulation of metabolic shift in Clostridium acetobutylicum ATCC824. FEMS Microbiology Review. 17: 287-297.
Hallenbeck, P. C., and J. R. Benemann. 2002. Biological hydrogen produciton: fundamentals and limiting processes. International Journal of Hydrogen Energy 27: 1185-1193.
Hawkes, F. R., R. Dinsdale, D. L. Hawkes, and I. Hussy. 2002. Sustainable fermentative hydrogen production: challenges for process optimization. Internatioal Journal of Hydrogen Energy 27: 1339-1347.
Hefner III, R. A. 2002. The age of energy gases. International Journal of Hydrogen Energy 27: 1-29.
Heuer, H., M. Drsek, P. Baker, K. Smalla, and E. M. H. Wellington. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233-3241.
Heyndrickx, M., De Vos, P., and De Ley, J. 1991. Fermentation characteristics of Clostridium pasteurianum LMG 3285 grown on glucose and mannitol. J. Appl. Bacteriol. 70: 52-58.
Hippe, H., J. R. Andreesen, and G. Gottschalk. 1991. The Genera Clostridium. In Albert, B., G. T. Hans, D. Martin, H. Wim, and K. Karl-Heinz (ed.), The Prokaryotes. Vol II. Springer-Verlag, New York, pp: 1800-1978.
Horiuchi, J.I., T. Shimizu, K. Tada, T. Kanno, and M. Kobayashi. 2002. Selective production of organic acids in anaerobic acid reactor by pH control. Bioresource Technology 82: 209-213.
Innis, M. A., and D. H. Gelfand. 1990. Optimization of PCRs. In: PCR protocols: A guide in methods and applications. Edited by Inns M. A., Gelfand D. H., Sninsky J. J. and White T. J. Academic Press, INC, pp: 3-12.
James, B. R., and L. R. Jennifer. 2001. Factors that alter rumen microbial ecology. Science 292: 1119-1122.
Jean, S. 1991. The Genera Acetobacter and Gluconobacter. In Albert, B., G. T. Hans, D. Martin, H. Wim, and K. Karl-Heinz (ed.), The Prokaryotes. Vol III. Springer-Verlag, New York, pp: 2268-2286.
Juck, D., T. Charles, L.G. Whyte, and C.W. Greer. 2000. Polyphasic microbial community analysis of petroleum hydrocarbon-contaminated soils from two northern Canadian communities. FEMS Microbiology Ecology 33: 241-249.
Kageyama, A., and Benno, Y. 2000. Phlogenic and phenotypic characterization of some Eubacterium-like isolates from human feces: description of solobacterium moorei gen. nov., sp. Nov. Microbiol. Immunol. 44: 223-227.
Kalia, V. C., S. R. Jain, A. Kumar, and A. P. Joshi. 1994. Fermentation of bio-waste to H2 by Bacillus licheniformis. World J. Microbiol. Biotechol. 10: 224-227.
Karube, I., N. Urano., T. Matsunaga., and S. Suzuki. 1982. Hydrogen production from glucose by immobilized growing cells of Clostridium butyricum. Eur. J. Appl. Microbiol. 16: 5-9.
Kataoka, N., a. Miya, and K. Kiriyama. 1997. Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria. Wat. Sci. Tech. 36: 41-47.
Kataoka, N., and Y. Tokiwa. 1998. Isolation and characterization of an active mannanase producing anaerobic bacterium, Clostridium tertium Kt-5A, from Lotus Soil. Journal of Applied Microbiology 84: 357-367.
Laguerre, G., M. Allard, F. Revoy, and N. Amarger. 1994. Rapid identification of Rhixobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl. Environ. Microbiol. 60: 56-63.
Lee Y. J., T. Miyahara, T. Noike. 1999. Effect of pH on the microbial hydrogen fermentation. Int Proceedings of the 6th IAWQ Asian Pacific conference. Taipei, 00, 215-220.
Lay J.J. 2000. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol. Bioeng. 68: 269-278.
Lin C.Y., and R.C. Chang. 1999. Hydrogen production during the anaerobic acidogenic conversion of glucose. J. Chem. Technol. Bioteconol. 74: 498-500.
Liu, W. T., A. T. Nielsen, J. H. Wu, C. S. Tsai, Y. Matsuo, and S. Molin. 2001. In situ indentification of polyphosphate and polyhydroxyalknoate-accumlating traits for microbial population in a biological phosphorous removal process. Appl. Environ. Microbiol. 3: 110-122.
Liu, W. T., C. L. Huang, J. Y. Hu, L. Song, S. L. Ong, and W. J. Ng. 2002. Denaturing Gradient Gel Electrophoresis Polymorphism for Rapid 16S rDNA Clone Screening and Microbial Diversity Study. Journal of Bioscience and Bioengineering 93: 101-103.
MacTavish, H. 1998. Hydrogen evolution by direct electron transfer from photosystem I to hydrogenase. J. Biochem. 123: 644-649.
Madigan, M. T., J.M. Martinko, and J. Parker. 1997. Biology of Microorganisms. Prentice-Hall. Inc. Upper Saddle River. NJ.USA.
Maeland, A. J. 2003. Approaches to increasing gravimetric hydrogen storage capacities of solid hydrogen storage materials. International Journal of Hydrogen Energy 28: 821-824.
Miller, D. N., J. E. Bryant, E. L. Madsen, and W. C. Ghiorse. 1999. Evaluation and optimatization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65: 4715-5724.
Mizuno,O., Dinsdale, R., Hawkes, F. R., Hawkes, D. L., and Noike, T. 2000. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Biores. Technol. 73: 59-65.
Momirlan, M., and T. N. Veziroglu. 2002. Current status of hydrogen energy. Renewable & Sustainable Energy Reviews 6: 141-179.
Moyer, C. L., J. M. Tiedjue, F. C. Dobbs, and D. M. Karl. 1996. A computer-stimulated restriction fragment length polymorphism analysis of bacterial small-subunit rRNA genes: efficacy of selected tetrameric restriction enzymes for studies of microbial diversity in nature. App. Environ. Microbiol. 62: 2501-2507.
Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 659-700.
Muyzer, G., A. Teske, C. O. Wirsen, and H. W. Jannasch. 1995. Phylogenetic relationship of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164:165-172.
Muyzer, G., and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Leeuwenhoek 73:127-141.
Nandi, R. and S. Sengupta. 1998. Microbial Production of Hydrogen: An Overview. Critical Reviews in Microbiology 24: 61-84.
Oblinger, J. L. and J. A. Koburger. 1975. Understanding and teaching the most probable number technique. J. Milk Food Technol. 38: 540-545.
Olsen, G. J., D. J. Lane, S. J. Giovannoni, N. R. Pace, and D. A. Stahl. 1987. Microbial and evolution: a ribosomal RNA approach. Annu. Rev. Microbio. 40: 337.
Rachman, M. A., Y. Furutani, Y. Nakashimada, T. Kakizono, and N. Nishio. 1997. Enhanced hydrogen production in altered mixed acid fermentation of glucose by Enterobacter aerogene. J. Ferment. Bioeng. 83: 358-363.
Rachman, M. A., Y. Nakashimada, T. Kakizono, and N. Nishio. 1998. Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl. Microbiol. Biotechnol. 49:450-454.
Rober, B. H. 1991. The Genera Butyrivibrio , Lachnospira, and Roseburia. pp: 2022-2033. In Albert, B., G. T. Hans, D. Martin, H. Wim, and K. Karl-Heinz (ed.), The Prokaryotes. Vol II. Springer-Verlag, New York.
Rogner, H.H. 1998. Hydrogen technologies and the technology learning curve. International Journal of Hydrogen Energy 23:833-840.
Saiki, R. K., D. H. Gelfand, S. Scharf, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239: 487-491.
Saitou, N. and N. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Bio. Evol. 4: 406-425.
Sekiguchi, Y., Y. Kamagata, K. Syutsubo, A. Ohashi, H. Harada, and K. Nakamura. 1998. Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology 144: 2655-2665.
Seyfried, M., D. Lyon, F. A. Rainey, and J. Wiegel. 2002. Calormator viterbensis sp. nov., a novel thermophilic, glycerol-fermenting bacterium isolated from a hot spring in italy. Int. J. Syst. Evol. Microbiol. 52: 1177-1184.
Stackebrandt E. and Rainey F. A. 1997. Phylogenetic Relationships. In Rood, J. I., McClane, B. A., Songer, J. G. and Titball, R. W. (ed.), The Clostridia: Molecular Biology and Pathogenesis, Academic Press, pp: 3-19.
Talera, S., L. Muxi, M. Soubes, and A.J.M. Stams. 1997. Caloramator proteoclasticus sp. Nov. a new moderately thermophilic anaerobic proteolytic bacterium. Int. J. Syst. Bacterio. 47: 651-656.
Tsien, H. C. and R. S. Hanson. 1992. Soluble methane monooxygenase component B gene probe for identification of methanotrophs that rapidly degrade trichloroethylene. Appl. Environ. Microbiol. 58: 953-960.
Ueno, Y., S. Otsuka, and M. Morimoto. 1996. Hydrogen-production from industrial waste water by anaerobic microflora in chemostat culture. Journal of Fermentation and Bioengineering 82: 194-197.
Ueno, Y., S. Haruta, M. Ishii, and Y. Igarashi. 2001. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl. Microbiol. Biotechnol. 57: 555-562.
Van Dyke, M. I., and A. J. McCarthy. 2002. Molecular biological detection and characterization of Clostridium population in municipal landfill sites. Appl. Environ. Microbiol. 68: 2049-2053.
Vavilin, V. A., S. V. Rytow., and L. Y. Lokshian. 1995. Modelling hydrogen partial pressure change as a result of competition between the butyric and propionic groups of acidogenic bacteria. Bioresour. Technol. 54: 171-177.
Wallace, R. J., McKain, N., McEwan, N. R., Miyagawa, E., Chaudhary, L., King, T. P., Walker, N. D., Apajalahti, J. H. A., and Newbold, C. J. "Eubacterium pyruvivorans sp. nov., a novel non-saccharolytic anaerobe from the rumen, which ferments pyruvate and aminoacids, forms caproate and utilizes acetate and propionate." Int. J. Syst. Evol. Microbiol. (in press as of 1 November 2002)
Walter, R. H., W. Norbert, and H. Wilhelm. 1991. The Genera Lactobacillus and Canobacterium, pp: 1534-1594. In Albert, B., G. T. Hans, D. Martin, H. Wim, and K. Karl-Heinz (ed.), The Prokaryotes. Vol II. Springer-Verlag, New York.
Woods, D. R. 1993. History and future potential of the Clostridia in biotechnology In Minton Nigel P. and Clarke David J. (ed.), Biotechnology handbooks, Plenum Press, New York and London, pp: 1-23..
Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221-271.
Yokoi, H., T. Ohkawara, J. Hirose, S. Hayashi, and Y. Takasaki. 1995. Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain Ho-39. J. Ferm. Bioeng. 80: 571-574.
Yokoi, H., S. Mori, J. Hirose, S. Hayashi and Y. Takasaki. 1998. H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol. Lett. 20: 895-899.
Zellner, G., E. Stackebrandt, D. Nagel, P. Messner, N. Weiss, and J. Winter. 1996. Anaerofilum pentosovorans gen. nov., sp. nov., and Anaerofilum agile sp. nov., two new, strictly anaerobic, mesophilic, acidogenic bacteria from anaerobic bioreactors. Int. J. Syst. Bacteriol. 46: 871-875.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top