(34.204.185.54) 您好!臺灣時間:2021/04/11 05:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊志文
研究生(外文):Chih-Wen Yang
論文名稱:考慮選擇集合、市場定位及個體異質性之城際客運選擇模式
論文名稱(外文):Heterogeneous Disaggregate Intercity Passenger Choice Models with Choice Set Generation and Brand Positioning
指導教授:段良雄段良雄引用關係
指導教授(外文):Liang-Shyong Duann
學位類別:博士
校院名稱:國立成功大學
系所名稱:交通管理學系碩博士班
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:151
中文關鍵詞:多項羅機個體異質性市場定位選擇集合兩階段選擇模式隨機係數
外文關鍵詞:Two-stage discrete choice modelRandom coefficientsMultinomial logitChoice set generationBrand positioningIndividual heterogeneity
相關次數:
  • 被引用被引用:25
  • 點閱點閱:668
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:185
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討的主題為多元替選方案下的城際客運選擇行為。在由多運具與多品牌(服務等級)組成的多元選擇情境下,分別從消費者層面的選擇決策與產品層面的方案差異性進行個體選擇行為之探討。研究目的在於探討個體的選擇集合、方案的市場定位及個體異質性對選擇行為之影響。實證研究的資料是利用自行設計的電腦問卷蒐集敘述性偏好數據,旅次型態為台南台北間城際大眾運輸旅客的旅運選擇,研究對象為由運具與品牌組成的8種現有運輸方案,以及新方案高鐵。
在選擇集合課題方面,藉由兩階段選擇模式的構建探討內生性的個體選擇集合,以比較不同選擇集合假設的模式優劣,並探討個體異質性對於兩階段選擇模式之影響,以及新方案高鐵對於選擇行為之影響。實證結果發現以內生方式決定個體旅客選擇集合的兩階段選擇模式的解釋能力相當良好。旅行時間與旅行成本變數在兩階段選擇模式的選擇集合與方案選擇階段都發揮了作用。在異質性方面,不論是在選擇集合階段或方案選擇階段考慮個體的異質性均可顯著增加模式的解釋能力,但方案選擇階段的個體異質程度對模式解釋能力之影響大於選擇集合階段之影響。兩階段均考慮個體異質性模式之績效優於僅在單一階段考慮異質性之模式,而個體在不同階段的異質性可能互相影響。新方案高鐵加入市場對個體旅客的選擇集合與方案選擇均產生影響。
在市場定位課題方面,分別以選擇彈性與個體偏好的定位方法探討替選方案的市場定位,以比較不同定位方法的差異,並探討服務水準變數與個體社經特性對於市場定位之影響,以及高鐵加入對於市場定位的影響。實證結果發現以個體偏好作為定位依據的選擇圖像具有較佳的模式解釋能力,而連續性的隨機權重法為較佳的異質指定方式。在解釋變數的定位效果方面,旅行成本、旅行時間、及個人所得為市場定位的重要影響因素。現有運輸方案的市場定位分佈偏向於以旅行成本高低作為區隔,可區分為三家航空公司、和欣客運及台鐵自強號、統聯客運及國光客運等3大集群,而高鐵加入後對於台鐵自強號與立榮航空的影響最大。
在整合模式方面,構建結合選擇集合與市場定位的整合模式,以期能同時從消費者層面的選擇集合及產品層面的市場定位完整地探討個體的選擇行為。實證結果發現整合模式顯著優於單獨考慮選擇集合或市場定位的選擇模式,並能大幅提升模式的解釋能力。不考慮選擇集合的定位模式可能導致選擇集合機率低的方案之市場定位產生偏誤。
This research considered both consumers’ decision-making and attributes difference among products to study travel behavior of intercity passengers faced multi-alternative choice situation. The subjects include the effects of choice set generation, brand positioning, and individual’s heterogeneity on individuals’ travel behavior. A customized computer survey was designed to collect the stated preference data of intercity travelers traveling between Tainan and Taipei. The full choice set includes eight existing alternatives and one new alternative, i.e., High Speed Rail (HSR).
First, we constructed two-stage discrete choice models and compared their explanatory power. The effect of individual’s heterogeneity on choice set generation and alternative choice was also discussed. The results showed that two-stage choice models, whose choice sets were endogenously determined, had very good explanatory power. Travel time and travel cost variables affected both the choice set generation stage and alternative choice stage. Considering heterogeneity in the choice set generation stage and/or alternative choice stage would significantly increase choice models’ explanatory power. The effect of heterogeneity in the alternative choice stage is greater than that of the choice set generation stage. The model considering heterogeneity in both stages had best results. Including heterogeneity in one stage would affect the results in the other stage. The new alternative high-speed rail did affect individual traveler’s choice behavior in both stages.
Second, we used both attributes’ elasticities and individual’s preference to analyze brand positioning and compared their difference. The effects of level of service attributes and individual’s socio-economical characteristics on brand positioning were discussed. This study also investigated the change of market competition after the introduction of HSR. The results showed that choice mapping, using individual’s preference as the bases of brand positioning, had good explanatory power and random weight method was the best way to capture individual’s heterogeneity. Travel cost, travel time, and personal income were very important in the determination of brand positioning. The brand positioning of existing alternatives was decided by their travel cost. The market can be distinguished into three groups: three airlines, Ho-Hsin bus and Tze-Chiang railway, United bus and Kuo-Kuang bus. Tze-Chiang railway and UNI airline would suffer most after the introduction of HSR.
Third, we developed an integrated model combining both choice set generation and brand positioning. The results show that this model had better explanatory power than those considering only choice set generation or brand positioning. The brand positioning of alternatives with low choice probabilities in the choice set generation stage would be biased if the choice set generation was not considered.
目 錄
中文摘要I
英文摘要II
誌 謝 III
目 錄 IV
圖表目錄VII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 研究範圍與限制 4
1.4 研究內容 4
1.5 研究方法 7
1.6 研究流程 8
第二章 文獻回顧 9
2.1 個體選擇模式 9
2.1.1 一般化極端值相關模式 10
2.1.2 隨機係數羅機模式 12
2.2 選擇集合之研究 15
2.2.1 第一類模式 16
2.2.2 第二類模式 18
2.2.3 第三類模式 20
2.2.4 選擇集合:偏好的表徵 21
2.2.5 小結 23
2.3 品牌定位之研究 24
2.3.1 品牌偏好 24
2.3.2 品牌定位 28
2.3.3 新品牌介入 31
第三章 模式構建 33
3.1 選擇集合 33
3.1.1 一階段選擇模式 34
3.1.2 兩階段選擇模式 35
3.1.3 異質性兩階段選擇模式 37
3.1.4 選擇集合一致性之探討 38
3.2 市場定位 39
3.2.1 競爭圖像 40
3.2.2 選擇圖像 41
3.2.3 修正隨機權重模式 47
3.2.4 高鐵的市場定位 48
3.3 整合性模式 49
3.4 校估技術 51
3.4.1 校估程式 51
3.4.2 最大模擬概似法 51
第四章 資料蒐集與分析 53
4.1 問卷設計 53
4.1.1 敘述偏好法 54
4.1.2 題組設計 55
4.1.3 屬性設計 56
4.2 問卷調查 59
4.3 選擇偏好分析 60
4.4 旅次及社經特性分析 63
第五章 實證研究 66
5.1 選擇集合 66
5.1.1 確定性選擇集合 67
5.1.2 機率性選擇集合 71
5.1.3 異質性選擇集合 78
5.1.4 高鐵介入之探討 83
5.2 市場定位 86
5.2.1 選擇彈性定位 86
5.2.2 維度權重定位:市場區隔法90
5.2.3 維度權重定位:隨機權重法93
5.2.4 解釋變數定位效果 101
5.2.5 高鐵市場定位 106
5.3 整合模式 113
5.3.1 模式比較 113
5.3.2 定位比較 115
第六章 結論與建議 118
6.1 結論 118
6.2 建議 123
參考文獻 126
附錄A:電腦問卷 132
附錄B:CDM模式旅行時間價值之公式推導142
附錄C:三維空間之隨機權重定位模式144
附錄D:高鐵市場定位:單獨估計 147
附錄E:整合模式旅行時間價值之公式推導 150
簡 歷
著作權聲明
參考文獻
Andrews, R. L. (1995), Mathematical models of brand choice behavior, European Journal of Operational Research, 82, 1-17.
Andrews, R. L. and Manrai, A. K. (1995), A feature-based screening model of brand consideration and choice of scanner data, Working paper, Department of Business Administration, University of Delaware, Newark, DE.
Andrews, R. L. and Manrai, A. K. (1998), Feature-based elimination: model and empirical comparison, European Journal of Operational Research, 111, 248-267.
Andrews, R. L. and Manrai, A. K. (1998), Simulation experiments in choice simplification: the effects of task and context on forecasting performance, Journal of Marketing Research, 35, 198-209.
Andrews, R. L. and Srinivansan, T. C. (1995), Studying consideration effects in empirical choice models using scanner panel data, Journal of Marketing Research, 32, 30-41.
Aptech Systems (1995), Gauss Applications: Maximum Likelihood. Aptech Systems Inc., Maple Valley, WA.
Ben-Akiva, M. and Boccara, B. (1995), Discrete choice models with latent choice sets, Journal of Research in Marketing, 12, 9-24.
Ben-Akiva, M. and Bolduc, D. (1996) Multinomial probit with a logit kernel and a general parametric specification of the covariance structure, working paper, Dept. of Civil Engineering, MIT.
Ben-Akiva, M. and Lerman, S. R. (1985), Discrete Choice Analysis: Theory and Application to Travel Demand, The MIT Press, Cambridge, MA.
Bhat, C. R. (1995), A heteroscedastic extreme value model of intercity travel mode choice, Transportation Research B, 29 (6), 471-483.
Bhat, C. R. (1997), An endogenous segmentation mode choice model with an application to intercity travel, Transportation Science, 31 (1), 34-48.
Bhat, C. R. (1997), Covariance heterogeneity in nested logit models: Econometric structure and application to intercity travel, Transportation Research B, 31 (1), 11-21.
Bhat, C. R. (1998), Accommodating variations in responsiveness to level-of-service measures in travel mode choice modeling, Transportation Research A, 32, 495-507.
Bhat, C. R. (2000), Incorporating observed and unobserved heterogeneity in urban work travel mode choice modeling, Transportation Science, 34, 228-238.
Bhat, C. R. (2001), Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model, Transportation Research B, 35, 677-693.
Bradley, M. (1988), Realism and adaptation in designing hypothetical travel choice concepts, Journal of Transport Economics and Policy, 22, 11-26.
Bronnenberg, Bart J. and Vanhonacker, W. R. (1996), Limited choice sets, local price response, and implied measures of price competition, Journal of Marketing Research, 33, 163-173.
Brownstone, D. and Train, K. (1996) Forecasting new product penetration with flexible substitution patterns, Journal of Econometrics, 89, 1, 109-129.
Chamberlain, G. (1980), Analysis of covariance with qualitative data, Review of Economic Studies, 47, 225-238.
Chiang, J., Chib, S., and Narasimhan, C. (1999), Markov chain Monte Carlo and models of consideration set and parameter heterogeneity, Journal of Econometrics, 89, 223-248.
Chintagunta, P. K. (1994), Heterogeneous logit model implication for brands positioning, Journal of Marketing Research, 31, 304-311.
Chintagunta, P. K. (1996), Investigating the effects of a line extension or new brand introduction on market structure, Marketing Letters, 7 (4), 319-328.
Chintagunta, P. K. (1999), Measuring the effects of new brand introduction on inter-brand strategic interaction, European Journal of Operational Research, 118, 315-331.
Chintagunta, P. K., Jain, D. C., and Vilcassim, N. J. (1991), Investigating heterogeneity in brand preference in logit models for panel data, Journal of Marketing Research, 28 (November), 417-428.
Cooper, L. G. (1988), Competitive maps: the structure underlying asymmetric cross elasticities, Management Science, 34 (6), 707-723.
Daganzo, C. (1979), Multinomial Probit: The Theory and Its Application to Demand Forecasting, Academic Press, New York.
Daly, A. J. (1987), Estimating ‘tree’ logit models, Transportation Research B, 21, 251-268.
Daly, A. J. and Zachary, S. (1978), Improved multiple choice models, In:Hensher, D.A., Dalvi, M.Q.(Eds.), Determinants of Travel Choice, Saxon House, Sussex.
Elrod, T. (1988), Choice map: Inferring a product-market map from panel data, Marketing Science, 7 (1), 21-40.
Fischer, G.W. and Nagin, D. (1981) Random vs. fixed coefficient quantal choice models: An empirical comparison. In C. Manski and D. McFadden (eds.) A Structural Analysis of Discrete Data with Econometric Applications. MIT Press, Cambridge, 273-304.
Fotheringham, A. S. (1988), Consumer store choice and choice set definition, Marketing Science, 6, 299-310.
Fowkes, T. and Wardman, M. (1988), The design of stated preference travel choice experiments, with special reference to inter-personal taste variations, Journal of Transport Economics and Policy, 22, 27-44.
Fowkes, T. and Wardman, M. (1993), Non-orthogonal stated preference design, PTRC 21th Summer Annual Meeting, Proceeds of Seminar D, 113~122.
Gaudry, M.J.I. and Dagenais, M. G. (1979), The Dogit model, Transportation Researchv B, 13, 105-111.
Gonul, F. and Srinivasan, K. (1993), Modeling multiple sources of heterogeneity in multinomial logit models: methodological and managerial issues, Marketing Science, 12 (3), 213-229.
Guadagni, P. M. and Little, J. D. C. (1983), A logit model of brand choice, Marketing Science, 2(2), 203-238.
Haab, T. C. and Hicks, R. L. (1997), Accounting for choice set endogeneity in random utility models of recreation demand, Journal of Environmental Economics and Management, 34, 127-147.
Hague Consulting Group (1992), Alogit Users’ Guide Version 3.2. HCG Report, Dan Haag, The Netherlands.
Horowitz, J. L. and Louviere, J. J. (1995), What is the role of consideration sets in choice modeling?, International Journal of Research in Marketing, 12, 39-54.
Hsiao, C. (1986), Analysis of Panel Data. Cambridge, UK: Cambridge University Press.
Jara-Diaz, S. R. (1991) Income and taste in mode choice models: are they surrogates?, Transportation Research B, 25, 341-350.
Kamakura, W. A. and Russell, G. J. (1989), A probabilistic choice model for market segmentation and elasticity structure, Journal of Marketing Research, 26, 379-390.
Kaul, A. and Rao, V. R. (1995), Research for product positioning and design decisions: An integrative review, International Journal of Research in Marketing, 12, 293-320.
Koppelman, F. S. and Wen, C. H. (1998), Alternative nested logit models: structure, properties and estimation, Transportation Research B, 32(5), 289-298.
Koppelman, F. S. and Wen, C. H. (2000), The paired combinatorial logit models: properties, estimation and application, Transportation Research B, 34, 75-89.
Krishnamurthi, L. and Raj, S. P. (1988), A model of brand choice and purchase quantity price sensitivities, Marketing Science, 7(1), 1-20.
Kroes, E. P. and Sheldon, R.J. (1988), Stated preference methods: An introduction, Journal of Transport Economics and Policy, 22, 11-26.
Louviere, J. J., Hensher, D. A., and Swait, J. D. (2000), Stated Choice Methods: Analysis and Applications, Cambridge University Press, New York.
MaFadden, D. (1973), Conditional logit analysis of qualitative choice behavior, In: Zaremmbka, P. (Ed.), Frontiers in Econometrics, Academic Press, New York.
MaFadden, D. (1978), Modeling the choice of residential location, Spatial Interaction Theory and Residential Location (Karlqvist A. Ed., 75-96), North Holland, Amsterdam.
McFadden, D. and Train, K. (2000) Mixed MNL models for discrete response, Journal of Applied Econometrics, 15, 5, 447-470.
Manrai, A. K. (1995), Mathematical models of brand choice behavior, European Journal of Operational Research, 82, 1-17.
Manrai, A. K. (1998), Modeling and measurement methodology in consumer perceptions, preference, consideration, and choice behavior, European Journal of Operational Research, 111, 189-192.
Manrai, A. K. and Andrews, R. L. (1998), Two-stage discrete choice models for scanner panel data: An assessment of process and assumptions, European Journal of Operational Research, 111, 193-215.
Ortuzar, J. D. (2001), On the development of the nested logit model, Transportation Research B, 35, 213-216.
Revelt, D. and Train, K. (1998) Mixed logit with repeated choices: Households'' choices of appliance efficiency level, Review of Economics and Statistics, 80, 4, 647-657.
Russell, G. J. and Bolton, R. N. (1988), Implications of market structure for elasticity structure, Journal of Marketing Research, 25, 229-241.
Siddarth, S., Bucklin, R. E., and Morrison, D. G. (1995), Making the cut: Modeling and analyzing choice set restriction in scanner panel data, Journal of Marketing Research, 32, 255-266.
Stroud, A. and Secrest, D. (1966), Gaussian Quadrature Formulas, Englewood Cliffs, NJ: Prentice-Hall.
Swait, J. D. (1984), Probabilistic choice set formation in transportation demand models, unpublished Ph. D. thesis, Dept. of Civil Engineering, MIT Press, Cambridge, MA.
Swait, J. D. (2001), Choice set generation within the generalized extreme value family of discrete choice models, Transportation Research B, 35, 643-666.
Swait, J. D. and Ben-Akiva, M. (1987), Incorporation random constraints in discrete models of choice set generation, Transportation Research B, 21, 91-102.
Swait, J. D. and Ben-Akiva, M. (1987), Empirical test of a constrained choice discrete model: mode choice in Sao Paulo, Transportation Research B, 21, 103-115.
Swait, J. D. and Louviere, J. J. (1993), The role of the scale parameter in the estimation and comparison of multinomial logit models”, Journal of Marketing Research, 30, 3, 305-314.
Train, K. (1998) Recreation demand models with taste variation over people, Land Economics, 74, 2, 230-239.
Train, K. (2003), Discrete Choice Methods with Simulation, Forthcoming, Cambridge University Press.
Train, K. and McFadden, D. (1978) The goods/leisure tradeoff and disaggregate work trip mode choice models, Transportation Research, 12, 349-353.
Tversky, A. (1972), Elimination by aspects: A theory of choice, Psychological Review, 79, 281-299.
Vovsha, P. (1997), The cross-nested logit model: Application to mode choice un the Tel-Aviv metropolitan area, Transportation Research Record, 1607, 6-15.
Walker, J. (2001), Extend discrete choice models: Integrated framework, flexible error structures, and latent variables, Ph. D. Dissertation, Department of Civil and Engineer, MIT.
Wen, C. H. and Koppelman, F. S. (2001), The generalized nested logit model, Transportation Research B, 35, 627-641.
Williams, H. C. W. L. (1977), On the formation of travel demand models and economic evaluation measures of user benefit, Environment and Planning, 285-344.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔