(100.26.179.251) 您好!臺灣時間:2021/04/14 08:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡德昌
研究生(外文):De-Chang Tsai
論文名稱:球墨及矽晶第二相顆粒對球墨鑄鐵及鋁-矽合金放電加工特性之效應探討
論文名稱(外文):A Study on the Effects of Spheroidal Graphite and Silicon Second Phase Particles on EDM Characteristics of SG Cast Irons and Al-Si Alloys
指導教授:陳立輝陳立輝引用關係呂傳盛呂傳盛引用關係
指導教授(外文):Li-Hui ChenTruan-Sheng Lui
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:167
中文關鍵詞:峰點密度材料去除率放電加工第二相顆粒
外文關鍵詞:Materials removal rateEDMSecond phase particlesRidge density
相關次數:
  • 被引用被引用:2
  • 點閱點閱:141
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
  本研究之目的在探討第二相對共晶模具材料放電加工特性之效應,實驗材料選擇最具代表性之共晶型兩相材料,一為肥粒體基球墨鑄鐵(2.1wt.%C~4.1wt.%C, 2.0wt.%Si~4.9wt.%Si),另一種為鋁-矽合金(Al-1wt.%Si~29 wt.%Si)。研究方針主要針對放電加工材料去除率之放電加工電學條件以及共晶試料之第二相效應加以釐清,有系統改變之實驗數據包括各試料之化學組成、凝固速率與放電加工條件。

  上述兩種共晶型合金試料之物性縱使明顯廻異,但是實驗結果共通性顯示,肥粒體基球墨鑄鐵與鋁-矽合金在銅電極為正極性時有較大的材料去除率,且其材料去除率隨著加工電流增加而增加,而隨著加工面積及加工時間增加而降低。當放電脈衝時間與衝擊係數增加時,兩者試料的放電加工材料去除率皆有隨之先增後降之趨勢。實驗試料的第二相面積率、粒徑以及型態變化對放電加工速率亦具有依存性。

  當肥粒體基球墨鑄鐵之球墨平均粒徑細化與顆粒數增加時,材料去除速率顯示增加傾向,而當球墨面積率增加時,材料去除速率也有先增後降之趨勢。根據加工表面之次表面觀察結果,肥粒體基球墨鑄鐵在放電脈衝時間時,由於熔湯與未完全融化之球墨顆粒之間的濕潤性不佳,導致放電加工表面之球墨周圍形成凹點,而遠離球墨處則形成峰點,而且此放電加工表面之峰點密度會隨著球墨粒徑細化與顆粒數增加而增加。

  另一方面以鋁-矽合金而言,矽顆粒粒徑及面積率的增加對鋁-矽合金放電加工之材料去除率亦為增加傾向。鋁-矽合金由放電加工面之次表面觀察可知,峰點位置大多會在矽晶顆粒上方形成,且峰點密度隨著初晶矽尺寸及矽顆粒面積率增加而增加。因放電火花會發生在電極及試料表面的峰點上,故峰點密度愈大則放電密度也較大,進而導致材料去除率有增大之傾向。

  經由本研究對具第二相之肥粒體基球墨鑄鐵與鋁-矽合金之放電加工特性探討,確認基材中不論軟質的球墨或硬質的矽顆粒對放電加工材料去除率皆具有主導性之要因,並且釐清了第二相對放電加工過程中材料之去除行為機制。
  The Electro Discharge Machining (EDM) features of the eutectic molding material with second phase were investigated in this study. Ferritic spheroidal graphite (SG) cast irons (2.1wt.%C~4.1wt.%C, 2.0wt.%Si~4.9wt.%Si) and Al-Si alloys (Al-1Si~29Si) were selected as testing materials. Effects of compositions, solidification rate, and EDM parameters were examined.

  Experimental results indicated that the materials removal rate of the ferritic SG cast irons by EDM increased with a smaller graphite size and higher graphite nodule count. As for Al-Si alloys, the second phase, including primary and eutectic silicon particles, had remarkable effects on EDM characteristics. That is, higher primary silicon particles size and higher area fraction of silicon particles would accelerate the removal rate. The EDMed surfaces featured continuous ridges formed by overlapping discharge craters, and the ridge density also tended to increase with a finer graphite nodule size. Owing to the poor wettability between the cast iron melts and semi-molten graphite during solidification process, graphite particles were embedded in the cavities in-between the ridges. The Al-Si alloys EDMed surface feature was similar to that of SG cast irons, showing a wavy ridge pattern. The amount of silicon phase also affected the surface roughness. Notably, silicon particles were located in the ridge regions, not the troughs.

  Finally, through this study that concerns the EDM characteristics of SG cast irons and Al-Si alloys, the effects of the heterogeneous second phase can be clearly clarified. This could serve as the practical reference for electro-discharge machining of mold materials with heterogeneous second phase and other engineering materials.
第一章 緒論 1

第二章 研究背景及文獻回顧 3
 2-1放電加工過程中材料去除研究之基本事項 3
 2-2放電加工材料去除率之研究現況 6
  2-2-1影響材料去除率之加工電學加工參數要因 6
  2-2-2鑄鐵放電加工材料去除率微觀組織效應之釐清 7
  2-2-3鋁合金放電加工材料去除率微觀組織效應之釐清 8
 2-3本研究選擇球墨鑄鐵與鋁-矽合金進行探討之原因 11
  2-3-1肥粒體基球墨鑄鐵 11
  2-3-2鋁-矽合金 12

第三章共晶兩相材料微觀組織中之第二相對放電加工特性之效應 19
 3-1前言 19
 3-2實驗方法與步驟 20
  3-2-1放電加工實驗電學加工參數之探討 20
  3-2-2 Fe-3.5C-2.8Si 及Al-11Si合金之試料備製與金相 21
 3-3實驗結果 22
  3-3-1 Fe-3.5C-2.8Si與Al-11Si之材料去除率及電極消耗率之比較 22
  3-3-2 Fe-3.5C-2.8Si與Al-11Si之放電加工面觀察 24
 3-4討論 25
  3-4-1材料去除率之放電加工電學參數條件效應 25
  3-4-2 急速凝固層之形成與放電加工速率之間關係 29
  3-4-3 電極消耗率與放電脈衝時間之異質第二相效應 31
 3-5結論 32

第四章 球墨對肥粒體基球墨鑄鐵放電加工特性之效應檢討 61
 4-1前言 61
 4-2實驗方法與步驟 61
 4-3實驗結果 63
  4-3-1球墨顆粒數及粒徑與材料去除率之關係 63
  4-3-2球墨顆粒數及粒徑與急速凝固層厚度及電極消耗率之關係 63
  4-3-3球墨面積率及顆粒數與材料去除率之關係 64
  4-3-4急速凝固層之峰點形成與微觀組織解析 64
 4-4討論 66
  4-4-1球墨顆粒對材料去除率之效應 66
  4-4-2急速凝固層之組織解析 69
 4-5結論 69

第五章 矽顆粒對鋁-矽合金放電加工特性之效應檢討 98 
 5-1前言 98
 5-2實驗方法與步驟 98
 5-3實驗結果.100
  5-3-1放電加工條件之效應 100
  5-3-2矽顆粒之效應 100
  5-3-3急速凝固層之峰點 101
  5-3-4急速凝固層之微觀組織解析 102
 5-4討論 103
  5-4-1矽顆粒與材料去除率之關係 103
  5-4-2急速凝固組織 105
 5-5結論 106

第六章 異質相對放電加工材料去除率之促進效應機制探討 131
 6-1前言 131
 6-2肥粒體基球墨鑄鐵與鋁-矽合金基地中異質第二相對材料去除率影響之效應 131
 6-3異質相之促進效應 135
 6-4急速凝固層峰點形成之第二相效應 140
 6-5 結論 141

第七章 總結論 155

第八章 參考文獻 158
1. C. Dorsch, “EDMing Die Steels”, Cutting Tool Engineering, Vol. 4, pp.22~28, 1994.

2. J. C. Rebelo, A. Morao Dias, D. Kremer and J. L. Lebrun, “Influence of EDM Pulse Energy on the Surface Integrity of Martensitic Steels”, J. Materials Processing Technology, Vol. 84, pp. 90-96, 1998.

3. J. S. Soni, “Experimental Investigation on Migration of Material during EDM of Die Steel (T215 Cr12)”, Wear, No. 177, pp. 71-79, 1994.

4. R. Snoeys, F. Stalens and W. Dekeyser, “Current Trends in Non-Conventional Material Removal Processes”, Annals of the CIRP, Vol. 35/2, pp. 467-492, 1986.

5. D.C.Tsai, T. S. Lui and L.H Chen; “Effect of Graphite Nodules on the EDM Machinability of Ferritic SG Cast Irons”, Materials Transactions, JIM, Vol. 41, no.2, 2000, pp. 293-299.

6. De-Chang Tsai, Truan-Sheng Lui and Li-Hui Chen; “Effect of Silicon Particles on the EDM Characteristics of Al-Si Alloys”, Materials Transactions, JIM, Vol. 43, no. 2, 2002, pp.1-7.

7. D. D. Dibitonto, P. T. Eubank and M. A. Barrufet, “Theoretical Models of the Electrical Discharges Machining Process, PartⅠ: A Simple Anode Erosion Model”, Apply Physical, Vol. 66, No.9, pp. 4095-4103, 1989.

8. M. Kunieda, “Study on Distribution of Spark Locations in EDM”, J. Japan Society for Precision Engineering, Vol.57, No.6, pp. 9-12, 1991.

9. M. Motoki and K. Hashiguchi, “Energy Distribution at the Gap in Electric Discharge Machining”, Annals of the CIRP, Vol. 14, pp. 485-489, 1967.

10.J. Monaghan, D. Brazil and C. Sheridan, “The Production of Cavities in Nickel Based Superalloys and Metal Matrix Composites Using Electro-discharge Machining”, Key Engineering Materials, 118-119, pp. 85-92, 1996.

11.Y. Fukuzawa, Y. Kojima, T. Tani, E. Sekiguti and N. Mohri, “Fabrication of Surface Modification Layer on Stainless Steel by Electrical Discharge Machining”, Materials and Manufacturing Process, Vol. 10, No. 2, pp. 195-203, 1995.

12.T. Miyazaki, S. Yoshioko, T. Kimura, A. Komatsu, and N. Kinoshita, “Surface Modification of Steel by a Small-Diameter Plasma Arc”, Annals of the CIRP, Vol. 44/1, pp. 161-164, 1995.

13.Y. Tsunekawa, M. Okumiya and N. Mohri, “Surface Modification of Aluminum by Electrical Discharge Alloying”, Materials Science and Engineering, A174, pp. 193-198, 1994.

14.N. Mohri, N. Saito and Y. Tsunekawa, “Metal Surface Modification by Electrical Discharge Machining with Composite Electrode”, Annals of the CIRP, Vol. 42/1, pp. 219-222, 1993.

15.K. Masui, T. Sone and K. Demizu, “The Microhardness on Wire-EDM’d Surface”, J. Japan Society for Precision Engineering, Vol.57, No.6, pp. 138-143, 1991.

16.黃錦鐘,放電加工,高立圖書有限公司,台北,第一冊,1-15頁, 1998。

17.J. H. Zhang, T. C. Lee and W. S. Lau, “Study on the Electro-Discharge Machining of a Hot Pressed Aluminum Oxide Based Ceramic”, J. Materials Processing Technology, Vol. 63, pp. 908-912, 1997.

18.張渭川,放電加工的結構與實用技術,全華圖書有限公司,台北,50-52頁,1990。

19.W. J. Tomlinson and J. R. Adkin, “Microstructure and Properties of Electrodischarge Machined Surface”, Surface Engineering, Vol. 8, No. 4, pp. 283-288, 1992.

20.P. F. Thomson “Surface Damage in Electrodischarge Machining”, Materials Science and Technology, Vol. 5, pp. 1153-1157, 1989.

21.J. C. Rebelo, A. Morao Dias, D. Kremer and J. L. Lebrun, “Influence of EDM Pulse Energy on the Surface Integrity of Martensitic Steels”, J. Materials Processing Technology, Vol. 84, pp. 90-96, 1998.

22.Y. Fukuzawa, Y. Kojima, T. Tani, E. Sekiguti and N. Mohri, “Fabrication of Surface Modification Layer on Stainless Steel by Electrical Discharge Machining”, Materials and Manufacturing Process, Vol. 10, No. 2, pp. 195-203, 1995.

23.Lin Yan Chernga, Yan Biing Hwaa, and Chang Yong Songa, “Machining characteristics of titanium alloy (Ti–6Al–4V) using a combination process of EDM with USM”, J. Materials Processing Technology, Vol.104, pp171-177, 2000.

24.S. L. Chen, F. Y. Huang, Y. Suzuki and B. H. Yan, “Improvement of Materials Removal Rate of Ti–6Al–4V Alloy by Electrical Discharge Machining with Multiple Ultrasonic Vibration”, J. Inst. Light Metals, Vol.47, pp220-225, 1997.

25.B. H. Yan and S. L. Chen, “Characteristics of SKD11 by Complex Process of Electrical Discharge Machining Using Liquid Suspended with Aluminum Powder”, J. Japan Institute of Metals, Vol. 58, No. 9, pp 1067-1072, 1994.

26.J. H. Zhang, T. C. Lee and W. S. Lau, “Study on the Electro-Discharge Machining of a Hot Pressed Aluminum Oxide Based Ceramic”, J. Materials Processing Technology, Vol. 63, pp. 908-912, 1997.

27.J. P. Kruth, L. Stevens, L. Froyen, B. Lauwers and K. U. Leuven, “Study of the White Layer of a Surface Machined by Die-Sinking Electro-Discharge Machining”, Annals of the CIRP, Vol. 44/1, pp. 169-172, 1995.

28.L. C. Lee, L. C. Lim, Y. S. Wong and H. H. Lu, “Toward a Better Understanding of the Surface Feature of Electro-Discharge Machined Tool Steels”, J. Materials Processing Technology, Vol. 24, pp. 513-523, 1990.

29.L. C. Lim, L. C. Lee, Y. S. Wong and H. H. Lu, “Solidification Microstructure of Electro-discharge Machined Surfaces of Tool Steels”, Materials Science and Technology, Vol. 7, No. 3, pp. 239-248, 1991.

30.L. C. Lee, L. C. Lim, V. Narayanan and V. C. Venkatesh, “Quantification of Surface Damage of Tool Steels After EDM”, Int. J. Mach. Tools Manufacture, Vol. 28, No. 4, pp. 359-372, 1988.

31.C. C. Wang, B. H. Yan, H. M. Chow and Y. Suzuki: “Cutting Austempered Ductile Iron Using EDM Sinker”, J. Materials Processing Technology, Vol. 88, pp83-89, 1999.

32.C. P. Tabrett, “The Electro-Discharge Machining Surfaces of High-Chromium White Irons”, J. Materials Science Letters, Vol. 15, pp. 1792-1794, 1996.

33.W. J. Tomlinson and J. R. Adkin, “Microstructure and Properties of Electrodischarge Machined Surface”, Surface Engineering, Vol. 8, No. 4, pp. 283-288, 1992.

34.Y. Suzuki, B. H. Yan and H. O. Hsu, “Effects of Cooling Dielectric on Electrical Discharge Machining Characteristics of 7075 Aluminum Alloy”, J. Japan Institute of Light Metal, Vol. 45, No. 10, pp 543-548, 2000.

35.Poon, S. K and Lee. T. C, “Electrical Discharge Machining of Particulate Metal-Matrix Composites,” ASM, pp. 43-50, 1993.

36.N. P. Hung, L. J. Yang and K. W. Leong, “Electrical Discharge Machining of Cast Metal Matrix Composites,” J. Materials Processing Technology, Vol. 44, 229-236, 1999.

37.M. Ramulu and M. Taya, “EDM Machinability of SiCw/Al Composites”, J. Materials Science, Vol. 24, pp. 1103-1108, 1989.

38.B. H. Yan and C. C. Wang, “Machining Characteristics of Al2O3/6061Al composite Using Rotary Electro-Discharge Machining with Tube Electrode”, J. Materials Processing Technology, Vol.195, pp. 222-231, 1999.

39.A. H. Rauch, Source Book on Ductile Iron: Section I: A New Engineering Material, New Land Book Company, Taipei, pp. 1948-1950, 1977.

40.S. I. Karsay, “Ductile Iron: Product Practices”, AFS Inc., USA, pp. 2-5, 1985.

41.J. R. Davis, ASM Specialty Handbook-Cast Irons, ASM, Metals Park, OH, pp. 16-31, 1996.

42.L. Eiselstein, O. Ruand and O. Sherby: J. Materials Science, Vol. 18 pp. 483-492, 1983.

43.J. W. Mattews and D. L. Allinson: Phil. Mag. Vol. 8, pp.1283-1303, 1963.

44.T. T. Wong and G. Y. Liang, “Formation and Crystallization of Amorphous Structure in the Laser-Cladding Plasma-Sprayed Coating of Al-Si Alloy”, Materials Characterization, Vol. 38, pp. 85-89, 1997.

45.關勝立,異徑雙輪式連續鑄造Al-Si合金薄片微觀組織控制與拉伸性質之間關係探討,成功大學,博士論文,第四~五章,2000。

46.H. T. Angus, “Cast Iron: Physical and Engineering Properties”, British Cast Iron Research Association, London, Chapt.1, 1976.

47.“Metals Handbook”, Vol.16, American Society for Metals, Metals Park, Ohio, pp. 557, 1989.

48.S. Nakamura, N.Sakamoto, K. Inoue, K. Ogi and K. Matsuda, “As-Cast Heavy Section Ferritic Spheroidal Graphite Cast Irons,” AFS Transactions, Vol.97, pp. 539-543, 1989.

49.R. Weber, J. C. Sturm and P. R. Sahm, “The Status in Cast Iron Microstructure Engineering and Interactions with Computer Aided Modeling,” Physical Metallurgy of Cast Irons V, Proceedings of the 5th International Symposium on the Physical Metallurgy of Cast Iron, France, pp. 105-128, 1994.

50.J. L. Gal, “Trends and Metallurgical Factors Involved in Automotive Cast Iron Parts,” Physical Metallurgy of Cast Irons V, Proceedings of the 5th International Symposium on the Physical Metallurgy of Cast Iron, France, pp.129-136, 1994.

51.J. L. Jorstad, “The Hypereurectic Aluminum-Silicon Alloy Used to Cast the Vega Engine Block”, AFS Transactions, Vol. 79, pp. 85-90, 1971.

52.A. D. Sakada and J. Clarke, “Wear Characteristics and Surface Topography Observed in the Dry Sliding of Aluminum-Silicon Alloy”, Proceedings International Conference on Wear of Materials, pp. 31-39, 1981.

53.J. R. Davis, Metals Handbook, 10th edition, ASM, Metals Park, OH, Vol. 1, pp. 33-35, 1990.

54.J. E. Hatch, “Aluminum Properties and Physical Metallurgy”, ASM, Metals Park, Ohio, pp.200-247, 1984.

55.T. Takase, “Die Casting of Hyper-Eutectic Al-Si Al-Si Alloy”, Imono, Vol. 8, pp.35-42, 1995.

56.M. Nakamura and E. Kato, “The Properties of Al-Si Alloys”, J. Japan Inst. Light Metal, Vol. 38, No. 7, pp. 426-446, 1988.

57.E. L. Rooy, “Summary of Technical Information on Hypereutectic Al-Si Alloys”, AFS Trans., Vol. 80, pp. 421-426, 1972.

58.D. L. Zalensas, Aluminum Casting Technology, AFS, Inc., Des Plaines, Illinois, U.S.A., 1st ed., 1993.

59.J. E. Gruzleski and B. M. Closset, “The Treatment of Liquid Aluminum-Silicon Alloy”, AFS, Inc., Des Plaines, Illinois, U.S.A., 1st ed., 1990.

60.C. B. Kim and R. W. Heine, “Fundamentals of Modification in the Aluminum-Silicon System”, J. Institute Metals, Vol. 92, pp. 367-376, 1963.

61.M. R. Patel, M. A. Barrufet, P. T. Eubank and D. D. Dibitonto, “Theoretical Models of the Electrical Discharges Machining, PartⅡ: A Simple Anode Erosion Model”, Apply Physical, Vol. 66, No.9, pp. 4104-4111, 1989.

62.C. Wu, V. Sahajwalla and R. D. Pehlke, “Wettability of Graphite Mold Coating by Iron and Steel: Mold-Metal Interfacial Phenomena”, AFS Transactions, Vol. 105, pp. 739-744, 1997.

63.R. C. Ruhl and M. Cohen: “A New Metastable h.c.p Phase in the Iron-Carbon System”, Acta Metall., No. 15, pp. 159-160, 1967.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔