跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 05:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳鉅昆
研究生(外文):Chu-Kun Chen
論文名稱:添加碳化矽顆粒之鎳-磷中介層對氮化鈦陶瓷面層磨潤性質之研究
論文名稱(外文):Wear Performance of PECVD TiN and Electroless Composite Ni-P-SiC Hybrid Coatings
指導教授:洪敏雄洪敏雄引用關係
指導教授(外文):Min-Hsiung Hon
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:133
中文關鍵詞:微結構複合鍍層電漿化學氣相沉積氮化鈦磨耗
外文關鍵詞:PECVDHybrid coatingMicrostructureTiNWear
相關次數:
  • 被引用被引用:3
  • 點閱點閱:338
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
  低溫電漿技術被覆陶瓷硬質鍍層(Ceramic hard coating)已廣泛應用在工具上以提昇使用壽命。氮化鈦為目前工具被覆最廣泛使用的陶瓷硬質鍍層之一。但在某些高剪力、高衝擊力的磨耗環境下,鍍層往往以非正常的磨耗被消耗掉,最嚴重的情況是剝落(Spallation)型式磨耗,這些剝落的硬質鍍層以研磨方式加速工具的磨耗,此一現象可歸因於硬質鍍層與工具之間的硬度差異過大所致。此外,磨潤過程中鍍層與基材間之附著性亦是重要的考量因素,由於電漿製程之基材溫度較低,使得鍍層之附著性差。因此,本研究以無電鍍Ni-P-SiC複合鍍層作為SKD61模具鋼與氮化鈦硬質鍍層之中間介層,希望所用SiC硬質粒子的添加可強化無電鍍Ni-P鍍層,提高工具之負荷承載的能力,延長其使用壽命。主要研究內容為無電鍍Ni-P-SiC複合鍍層,及其對氮化鈦鍍層的表面視硬度、附著性及耐磨耗性的影響。

  研究顯示藉由複合無電鍍法可成功合成Ni-P-SiC複合鍍層,鍍層之SiC含量隨鍍浴中SiC添加量增加而增加,但鍍層成長速率則隨之下降。初鍍膜及400℃以下熱處理之Ni-P-SiC複合鍍層的結構與Ni-P鍍層相同,不因SiC添加而產生結構上的變化。但經450℃以上熱處理時,SiC熱分解,並與Ni反應生成g-Ni5Si2、b1-Ni3Si和石墨相。複合鍍層在400℃時達最大硬化效果與最低磨耗係數,進一步提高熱處理溫度,則因g-Ni5Si2、b1-Ni3Si和石墨相生成,複合鍍層之硬度下降,耐磨耗性亦隨之降低。

  TiN/Ni-P-SiC複合鍍層的表面視硬度隨Ni-P-SiC中介層中SiC含量增加而增加。硬度值的提升是由於部分TiN沉積在SiC硬粒子上以及因SiC微粒的添加進一步強化無電鍍Ni-P中介層,提高其負荷承載能力來支撐TiN鍍層。與單層的氮化鈦鍍層及TiN/Ni-P複合鍍層比較,可發現TiN/Ni-P-SiC複合鍍層,無論是磨耗的寬度及深度都大幅下降。耐磨耗性的提升可歸因於SiC粒子加入Ni-P中介層,使得TiN鍍層的表面視硬度與附著強度提高,因而提升整體的耐磨耗性。
  The use of hard ceramic coatings in industry is now well established, particularly in applications where wear resistance is an important consideration. TiN deposited either by CVD or low-temperature-plasma processes (PECVD or PVD) is commonly used as coating material. But in some cases, cracking and spalling of the TiN layer may accelerate the wear rate of tools under severe conditions. This could be due to an abrupt hardness difference existing between the TiN coating and the substrate. Besides, the adhesion of coating-substrate system is another important factor in tribological processes. In PECVD or PVD process, which works at lower substrate temperatures, little interaction takes place between the coating and the substrate, resulting in a poor adhesion. Therefore, researchers proposed the hybrid processes to overcome this problem. In other words, the hardness and/or adhesion of coating-substrate system can be enhanced by introducing an appropriate interlayer between them.

  In this study, an attempt was made to further improve the mechanical properties of TiN/Ni-P hybrid coating by adding b-SiC particles into the Ni-P interlayer. A hybrid process that combines composite electroless plating and plasma-enhanced chemical vapor deposition was proposed to improve the mechanical properties of TiN coated tool steel. The hardness, adhesion, and sliding wear resistance of hybrid-coated SKD61 tools were investigated.

  Experimental results show that SiC particles were successfully incorporated in the Ni-P alloy matrix by electroless composite plating method. The content of SiC in the composite coating increases with increasing SiC concentration in the plating bath, but decreases growth rate of the Ni-P-SiC composite coatings. The SiC particle addition did not change the structure of the Ni-P alloy matrix significantly when the annealing temperature was below 400oC. However, by raising the annealing temperature up to 450oC, the SiC particles decomposed and reacted with nickel to form g-Ni5Si2, b1-Ni3Si and graphite. The hardness and wear resistance of the composite coatings can be increased to a maximum at a temperature of 400oC, over which the coating experiences the formation of g-Ni5Si2, b1-Ni3Si and graphite and the mechanical strength is decreased.

  The apparent hardness of the TiN/Ni-P-SiC hybrid coatings increases with increasing content of SiC particles in electroless Ni-P interlayer and affects the TiN hardness value. This could be due to an effect of SiC particles added on the coating growth of TiN and a high load carrying capability of Ni-P-SiC interlayer. In comparison with single TiN layer and TiN/Ni-P hybrid coating, a reduction in cracking and spalling for the TiN/Ni-P-SiC layer was observed during wear tests. Wear resistance is significantly improved due to the incorporation of SiC particles into electroless Ni-P interlayer, which increases hardness and adhesion of the coated TiN layer.
中文摘要 I
英文摘要 III
總目錄 V
表目錄 VIII
圖目錄 IX
英漢名詞與符號對照表 XIII

第一章 緒論 1
第二章 理論基礎 5
 2-1 無電鍍鎳原理 5
  2-1-1 無電鍍鎳原理 5
  2-1-2 無電鍍鎳鍍層結構與特性 7
 2-2 無電鍍複合鍍層 10
  2-2-1 複合鍍層簡介 10
  2-2-2 複合鍍層之沉積機構 12
 2-3 電漿化學氣相沉積 14
  2-3-1 低壓電漿反應 14
  2-3-2 電漿化學氣相沉積熱力學分析 17
  2-3-3 電漿化學氣相沉積動力學分析 17
 2-4 附著性測試 22
 2-5 磨耗行為 25

第三章 實驗方法與步驟 28
 3-1 實驗流程 28
 3-2 系統設計與安裝 29
  3-2-1 複合無電鍍系統 29
  3-2-2 電漿化學氣相沉積系統 31
 3-3 材料的選擇 34
 3-4 實驗參數與步驟 37
  3-4-1 無電鍍Ni-P-SiC複合析鍍 37
  3-4-2 氮化鈦之被覆條件 41
 3-5 鍍層性質分析 43
  3-5-1 鍍層本質分析 43
  3-5-2 鍍層機械性質測試 45

第四章 無電鍍Ni-P-SiC複合鍍層 49
 4-1 前人研究與實驗動機 49
 4-2 鍍層之成長特性 50
  4-2-1 鍍層之成分分析 50
  4-2-2 鍍層之成長速率 50
 4-3 鍍層之表面型態觀察 54
 4-4 添加SiC粒子對無電鍍Ni-P鍍層結構之影響 57
  4-4-1 X光繞射分析 57
  4-4-2 穿透式電子顯微鏡分析 61
 4-5 鍍層之表面視硬度 72
  4-5-1 無電鍍Ni-P鍍層之表面視硬度 72
  4-5-2 添加SiC粒子對無電鍍Ni-P鍍層表面視硬度之影響 75
  4-5-3 熱處理溫度對複合鍍層表面視硬度之影響 75
 4-6 添加SiC粒子對無電鍍Ni-P鍍層附著性之影響 78
  4-6-1 鍍層壓痕型態 78
  4-6-2 鍍層之附著性 80
 4-7 無電鍍Ni-P-SiC複合鍍層之磨耗行為 84
 4-8 結論 89

第五章 Ni-P-SiC中介層對TiN陶瓷面層磨潤性質之研究 91
 5-1 前人研究與實驗動機 91
 5-2 氮化鈦鍍層之微觀型態 96
 5-3 複合被覆鍍層之表面視硬度 101
 5-4 氮化鈦鍍層之附著性 104
 5-5 複合被覆鍍層之磨耗行為 109
 5-6 結論 119

第六章 總結論 120

參考文獻 123
致謝 131
自述 132
1.洪敏雄、何主亮,“陶瓷硬膜在國內工業應用之現況調查”,國科會工程科技推展中心研究報告,中華民國82年1月到6月。

2.何主亮、陳鉅昆、洪敏雄,“複合處理之技術發展及其可能之運用”,金屬熱處理,68 (2001) 40.

3.J. P. Celis, D. Drees, M. Z. Huq, P. Q. Wu and M. De Bonte, “Hybrid processes – a versatile technique to match process requirements and coating needs”, Surf. Coat. Technol. 113 (1999) 165.

4.D. S. Rickerby and S. J. Bull, “The role of titanium in the abrasive wear resistance of physically vapor deposited TiN”, Surf. Coat. Technol. 41 (1990) 63.

5.Y. I. Chen and J. G. Duh, “Deposition of TiN films with titanium interlayer on low carbon steel by reactive R. F. magnetron sputtering”, Surf. Coat. Technol. 46 (1991) 371.

6.Y. I. Chen and J. G. Duh, “TiN coatings on mild substrates with electroless nickel as an interlayer”, Surf. Coat. Technol. 48 (1991) 163.

7.J. L. He and M. H. Hon, “Sliding wear resistance of tool steel coated with electroless Ni-P and cathodic arc plasma TiN”, Surf. Coat. Technol. 53 (1992) 87.

8.K. L. Lin, W. H. Chao and C. D. Wu, “The performance and degradation behaviors of the TiAlN/interlayer coatings on drill”, Surf. Coat. Technol. 89 (1997) 279.

9.J. F. Lin and J. H. Horng, “Analysis of the tribological behavior and wear mechanisms of titanium nitride coating”, Wear 171 (1994) 59.

10.A. Leyland, M. Bin-Sudin, A. S. James, M. R. Kalantary, P. B. Wells, A. Matthews, J. Housden and B. Garside, “TiN and CrN PVD coatings on electroless nickel-coated steel substrates”, Surf. Coat. Technol. 60 (1993) 474.

11.陳大凱、陳志仁、方實、李松輝,“滲氮零件的PCVD處理”,金屬熱處理,6(1990) 39.

12.H. H. Huang, J. L. He and M. H. Hon, “Microstructure and mechanical properties of surface layer obtained by plasma nitriding and/or TiN coating on high speed steel”, Surf. Coat. Technol. 64 (1994) 41.

13.R. Zhang, Z. Lin, Z. Cui and Q. Song, “Studies on multilayer wear of CVD TiC-TiN multilayer composite coating”, Wear 147 (1991) 227.

14.H. L. Wang, J. L. He and M. H. Hon, “Comparison of sliding wear resistance of plasma enhanced CVD multilayer coated TiN and TiC on tool steel”, Surf. Eng. 10 (3) (1994) 215.

15.S. H. Lee and J. J. Lee, “Compositionally gradient (Ti1-x Alx)N coatings made by plasma enhanced chemical vapor deposition”, J. Vac. Sci. Technol. A13 (1995) 2030.

16.N. Feldstein, T. Lancsek, D. Lindsay and L. Salerno, “Electroless composite plating”, Metal Finish. 81 (8) (1983) 35.

17.M. Nishira and O. Takano, “Friction and wear characteristics of electroless Ni-P-PTFE composite coatings", Plat. Surf. Finish. 81 (1) (1994) 48.

18N. Feldstein, "Composite coatings: plating plus particles", Mat. Eng. 94 (1) (1981) 38.

19.E. Broszeit, “Mechanical, thermal and tribological properties of electro- and chemodeposited composite coating”, Thin Solid Films 95 (1982) 133.

20.G. O. Mallory and J. B. Hajdu, “Electroless plating: fundamentals and applications”, AESF, Orlando, Florida, 1990, p. 4.

21.L. M. Abrantes and J. P. Correia, “On the mechanism of electroless Ni-P plating”, J. Electrochem. Soc. 141 (9) (1994) 2356.

22.D. Barder, “Electroless deposition of metals”, Trans. Inst. Metal Finish. 71 (3) (1993) 121.

23.R. M. Lukes, “The mechanism for the autocatalytic reduction of nickel by hypophosphite ion”, Plating 51 (1964) 969.

24.T. B. Massalski, L. Bennett and L. H. Murray, Binary Alloy Phase Diagrams, ASM International, Metals Park, OH, 1986, p. 1739.

25.J. P. G. Farr and A. A. Noshani, “Some properties of electroless Ni-P, Co-P, and Ni-Co-P deposits”, Trans. Inst. Metal Finish. 74 (6) (1996) 221.

26.R. N. Duncan, “The metallurgical structure of electroless nickel deposits: effect of coating properties”, Plat. Surf. Finish. 83 (11) (1996) 65.

27.H. G. Schenzel and H. Kreye, “Improved corrosion resistance of electroless nickel phosphorus coating”, Plat. Surf. Finish. 77 (10) (1990) 50.

28.K. Parker, “Electroless nickel: state of the art”, Plat. Surf. Finish. 79 (3) (1992) 29.

29.H. Graham, R. W. Lindsay and H. J. Read, “The structure and mechanical properties of electroless nickel”, J. Electrochem. Soc. 112 (4) (1965) 401.

30.M. Bayes, I. Sinitskaya and R. House, “The relationship between phosphorus content and physical properties of electroless nickel deposits”, Trans. Inst. Metal Finish. 69 (4) (1991) 140.

31.M. H. Staia, E. S. Puchi, E. Castillo, D. B. Lewis and M. Jeandin, “Characterization of Ni-P electroless deposits with moderate phosphorus content”, Surf. Eng. 13 (4) (1997) 335.

32.松村宗順, “Recent trend of the composite plating”, 金屬表面技術 36 (11) (1985) 442.

33.增子 昇、虫明克彥, “Deposition kinetics of alumina particle during electro-plating of nickel-alumina composites”, 金屬表面技術 31 (10) (1980) 523.

34.B. Łosiewicz, A. Stępień, D. Gierlotka and A. Budniok, “Composite layers in Ni-P system containing TiO2 and PTFE”, Thin Solid Films 349 (1999) 43.

35.N. Feldstein, T. Lancsek, R. Barras, R. Spencer and N. Bailey, “Electroless nickel coatings-diamond containing”, Products Finish. 44 (1980) 65.

36.N. Feldstein and T. Lancsek, “Surface phenomena in composite electroless coatings containing polycrystalline diamond”, J. Electrochem. Soc. 131 (12) (1984) 3026.

37.劉俊英,“複合電鍍與高性能引擎”,材料與社會,第27期,78年3月,35.

38.劉俊英、彭裕民、王紀雯、吳浴沂、劉達全,“複合電鍍之應用實務”,中國材料科學學會民國82年年會論文集,1993,p. 96。

39.M. Izzard and J. K. Dennis, “Deposition and properties of electroless nickel-graphite coatings”, Trans. Inst. Metal Finish. 65 (3) (1987) 85.

40.左啟宏,“複合濕鍍法製備含二硫化鉬及碳化矽之耐磨性自潤鍍層”,逄甲大學材料科學研究所碩士論文,1997,p. 131。

41.H. Matsuda, Y. Kiyono, M. Nishira and O. Takano, “Effect of cationic surfactant on deposition behavior in electroless Ni-P-PTFE composite plating”, Trans. Inst. Metal Finish. 72 (2) (1994) 55.

42.J. S. Hadley and L. E. Harland, “Electroless nickel/PTFE composite coatings”, Metal Finish. 85 (12) (1987) 51.

43.H. Yano, K. Kano, H. O. Shizuoka, S. Kato and Y. Takagi, “Sliding surface of composite nickel-plated Ni-P-SiC composite coatings”, United States Patent 4666786 (1987).

44.O. A. León, M. H. Staia and H. E. Hintermann, “Influence of the heat treatment on the tribological behavior of a Ni-P-BN(h) autocatalytic composite coating”, Surf. Coat. Technol. 120-121 (1999) 641.

45.G. Straffelini, D. Colombo and A. Molinari, “Surface durability of electroless Ni-P composite deposits”, Wear 236 (1999) 179.

46.J. C. Whithers, Prod. Fin. 26 (1962) 62.

47.田福助,“電化學:理論與應用”,高立出版社,台北,1992,p. 39。

48.R. V. Williams and P. W. Martin, Trans. Inst. Metal Finish. 42 (1964) 182.

49.E. A. Brandes and D. Goldthorpe, “Electrodeposition of cermets”, Metallurgia 76 (1967) 195.

50.N. Guglielmi, “Kinetics of the deposition of inert particles from electrolytic baths”, J. Electrochem. Soc. 119 (8) (1972) 1009.

51.本間英夫、水島信也、和久昭夫, “Composite coatings from electroless nickel plating bath”,金屬表面技術,31 (10) (1980) 536.

52.鷹野 修、西羅正芳、杉本 護, “Factors affecting the formation of electroless Ni-P-SiC composite coatings”,金屬表面技術,39 (11) (1988) 25.

53.A. Grosjean, M. Rezrazi, P. Bercot and M. Tachez, “Adaptation of a mathematical model to the incorporation of silicon carbide particles in an electroless nickel deposite”, Metal Finish. 96 (4) (1998) 14.

54.阿部東彥、家田正之、高正雄譯,“電漿化學”,復漢出版社,台南,1984,p. 16.

55.R. F. Bunshah, J. M. Blocher, Jr., T. D. Bonifield, J. G. Fish, P. B. Ghate, B. E. Jacobson, D. M. Mattox, G. E. McGuire, M. Schwartz, J. A. Thornton and R. C. Tucker, Jr., “Deposition technologies for films and coatings”, Noyes Publications, N. J., 1982, p. 365.

56.Ibid., p. 49.

57.A. Inspektor, “Principles of plasma-activated chemical vapor deposition”, Surf. Coat. Technol. 33 (1987) 31.

58.S. Veprek, “Chemical-promoted deposition of thin inorganic films”, J. Vac. Sci. Technol. 16 (1979) 420.

59.R. H. Rerry, “JANAF thermodynamical tables”, 2 ed, June, 1971.

60.R. F. Bunshah, J. M. Blocher, Jr., T. D. Bonifield, J. G. Fish, P. B. Ghate, B. E. Jacobson, D. M. Mattox, G. E. McGuire, M. Schwartz, J. A. Thornton and R. C. Tucker, Jr., “Deposition technologies for films and coatings”, Noyes Publications, N. J., 1982, p. 369.

61.H. Schlichting, “Boundary layer theory”, 6th. ed., McGraw-Hill Book Co., 1968, p. 26, 27, 89, 94.

62.B. Chapman, “Glow discharge processes”, John Wiley & Sons, N.Y., 1980, p. 51.

63.Y.L. Khait, “The dependence of coating in inductive R. F. plasma on gas flow velocity, pressure and R. F. power”, Thin Solid Films 72 (1980) 249.

64.R. Avni and U. Carmi, “Recent advance in ceramic coatings”, Mat. Sci. Eng. 71 (1985) 341.

65.T. Arai, H. Fujita and M. Watanabe, “Evaluation of adhesion strength of thin hard coatings”, Thin Solid Films 154 (1987) 387.

66.P. J. Burnett and D. S. Rickerby, “The relationship between hardness and scratch adhesion”, Thin Solid Films 154 (1980) 403.

67.K. G. Budinski, “Surface engineering for wear resistance”, Prentice Hall, New Jersey, 1988, p. 16.

68.L. X. Yang, W. T. Hou and Y. S. Wu, “Influence of ultrasound on the properties of electroless plated nickel”, Trans. Inst. Metal Finish. 75 (4) (1964) 131.

69.N. S. Qu, K. C. Chan and D. Zhu, “Surface roughening in pulse current and pulse reverse current electroforming of nickel”, Surf. Coat. Technol. 91 (1997) 220.

70.G. W. Marshall, D. B. Lewis and B. E. Dodds, “Electroless deposition of Ni-P alloys with and without the use of superimposed pulsed current”, Surf. Coat. Technol. 53 (1992) 223.

71.M. R. Kalantary, K. A. Holbrook and P. B. Wells, “Optimisation of a bath for electroless plating and its use for the production of nickel-phosphorus-silicon carbide coatings", Trans. Inst. Metal Finish. 71 (1993) 55.

72.E. A. Brandes, “Smithell’s metals reference book”, Butterworth, Cornwall, 1983, p. 8.

73.ASTM G99-90el in 1990 Annual Book of ASTM Standards, Section 3, Volume 03.02-Erosion and Wear, Metal Corrosion. Philadelphia, PA, 1990, p. 387.

74.K. Holmberg, A. Matthews, “Coatings tribology: properties, techniques and applications in surface engineering, Elsevier, Amsterdam, 1994, p. 53.

75.H. Xinmin and D. Zongang, “The wear characteristics of Ni-P-SiC composite coatings”, Trans. Inst. Metal Finish. 70 (1992) 84.

76.Y. Pan and J. L. Baptista, “Chemical instability of silicon carbide in the prensence of transition metals”, J. Am. Ceram. Soc. 79 (8) (1996) 2017.

77.O. Berkh, A. Bodnevas and J. Zahavi, “Electrodeposited Ni-P-SiC composite coatings”, Plat. Surf. Finish. 82 (11) (1995) 62.

78.A. Grosjean, M. Rezrazi, J. Takadoum and P.Berçot, “Hardness, friction and wear characteristics of nickel-SiC electroless composite deposits”, Surf. Coat. Technol. 137 (2001) 92.

79.V. P. Greco and W. Baldauf, Plating 55 (1968) 250.

80.謝淑惠、林修毅、林依萍、楊聰仁,“碳化矽粒子對碳化矽無電鍍鎳複合析鍍速率的影響”,中華民國材料科學年會88年年會論文集,1999,p. 231.

81.C. K. Chen, H. M. Feng, H. C. Lin and M. H. Hon, “The effect of heat treatment on the microstructure of electroless Ni-P coatings containing SiC particles”, Thin Solid Films 416 (2002) 31-37.

82.N. Backović, M. Jančić and L. Radonjić, “Study of electroless Ni-P deposition on aluminium”, Thin Solid Films 59 (1979) 1.

83.S. H. Park and D. N. Lee, “A study on the microstructure and phase trans-formation of electroless nickel deposits”, J. Mater. Sci. 23 (1988) 1643.

84.A. H. Graham, R. W. Lindsay and H. J. Read, “The structure and mechanical properties of electroless nickel”, J. Electrochem. Soc. 112 (1965) 401.

85.Powder Diffraction File, International Center for Diffraction Data, Newtown Square, PA, 1999, Card 06-0690.

86.T. B. Massalski, L. Bennett, L. H. Murray, Binary Alloy Phase Diagrams, ASM International, Metals Park, OH, 1986, p. 1756.

87.日本電氣鍍金研究會編、賴耿陽譯,“機能膜鍍著及物性”,復漢出版社,台南,1986,p. 124.

88.C. Canali, G. Majni, G. Ottaviani and G. Celotti, “Phase diagrams and metal-rich silicide formation”, J. Appl. Phys. 50 (1) (1979) 255.

89.J. H. Gülpen, A. A. Kodentsov and F. J. J. van Loo, “The growth of silicides in Ni-Si and Ni-SiC diffusion couples”, Materials Science Forum 155/156 (1994) 561.

90.R. C. Evans, “An introduction to crystal chemistry”, 2nd edition, Cambridge University Press, New York, 1964, p. 36.

91.D. S. Rickerby, A. Matthews, “Advanced surface coatings: a handbook of surface engineering”, Chapman and Hall, New York, (1992) 322.

92.A. Hovestad and L. J. J. Janssen, “Electrochemical codeposition of inert particles in a metallic matrix”, J. Appl. Electrochem. 25 (1995) 519.

93.賴伯仁,“無電鍍鎳層組織的探討”,國立成功大學礦冶及材料科學研究所碩士論文,1988,p. 65.

94.L. F. Spencer, “Electroless nickel plating- a review”, Metal Finish. 73 (12) (1987) 58.

95.L. G. Yu and X. S. Zhang, “ Study of the friction and wear behaviour of electroless Ni-P coatings”, Thin Solid Films 229 (1993) 76.

96.G. X. Lu, G. F. Li, and F. C. Yu, “The effect of phosphorus content and heat treatment on the wear resistance of electroless deposited Ni-P alloys”, Wear 103 (1985) 269.

97.D. B. Marshall and B. R. Lawn, “Residual stress effects in sharp contact cracking, part 1. indentation fracture mechanics”, J. Mater. Sci. 14 (1979) 2001.

98.G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness", ibid. 64 (1981) 533.

99.G. W. Wei and P. F. Becher, “Improvement in mechanical properties in SiC by addition of TiC particles”, J. Am. Ceram. Soc. 67 (8) (19984) 65.

100.K. L. Lin and P. J. Lai, “Interdiffusion of the electroless Ni-P deposit with the steel substrate”, J. Electrochem. Soc. 137 (5) (1990) 1509.

101.J. Vogel and E. Bergmann, “Problem encountered with the introduction of ion plating to large-scale coating of tools”, J. Vac. Sci. Technol. A4 (6) (1986) 2731.

102.L. Shizhi, Z. Cheng, X. Xiang, S. Yulong, Y. H. Shun, X. Yan and H. Wu, “The application of hard coatings produced by plasma-assisted chemical vapor deposition”, Surf. Coat. Technol. 43/44 (1990) 1007.

103.W. D. Sproul and R. Rothstein, “High rate reactively sputtered TiN coatings on high speed steel drills”, Thin Solid Films 126 (1985) 257.

104.K. G. Budinski, “Surface engineering for wear resistance”, Prentice Hall, Englewood Cliffs, New Jersey, 1985, p. 39.

105.何主亮,“被覆氮化鈦鋼材之腐蝕與耐磨耗性質改良之研究”,國立成功大學材料科學與工程研究所博士論文,1993,p. 25

106.B. Matthes, E. Broszeit and K. H. Kloos, “Wear behavior of R. F. –sputtered TiN, TiB2 and Ti(B,N) coatings on metal forming tools in a model wear test”, Surf. Coat. Technol. 43/44 (1990) 721.

107.Powder Diffraction File, International Center for Diffraction Data, Newtown Square, PA, 1999, Card 29-1129.

108.Powder Diffraction File, International Center for Diffraction Data, Newtown Square, PA, 1999, Card 38-1420.

109.J. L. He, C. K. Chen and M. H. Hon, “Microstructure and property of Ti-Si-N films prepared by plasma-enhanced chemical vapor deposition”, Mater. Chem. Phy. 44 (1996) 9.

110.Y. J. Liu, H. J. Kim, T. Takeuchi, Y. Egashira, H. M. Kimura and H. Komiyama, “Suppressing the formation of cone structure in chemical-vapor-deposition aluminum nitride/titanium nitride films”, J. Am. Ceram. Soc. 74 (4) (1996) 1109.

111.J. G. Duh and J. C. Doong, “Structure, hardness and adhesion in electroless nickel interlayer modified TiN coating on mild steel”, Surf. Coat. Technol. 56(1993) 257.

112M. Bin-Sudin, A. Leyland, A. S. James, A. Matthews, J. Housden and B. Garside, “Substrate surface finish effects in duplex coatings of PAPVD TiN and CrN with electroless nickel-phosphorus interlayers”, Surf. Coat. Technol. 81(1996) 215.

113C. K. Chen and M. H. Hon, “The morphology and mechanical properties of TiN/Ni-P-SiC hybrid coatings”, Surf. Coat. Technol. 155 (2002) 214.

114陳鉅昆、洪敏雄、林天財,“被覆陶瓷硬質膜鋼材之耐磨耗性質改良之方法”,中華民國專利,發明第124570號,(2000)。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top