(3.236.231.14) 您好!臺灣時間:2021/04/11 23:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:尤俊煌
研究生(外文):Chun-Huang Yu
論文名稱:TiO2-SiO2複合氧化薄膜作為閘極介電層之特性研究
論文名稱(外文):Characterization of TiO2-SiO2 composite oxide films as gate dielectrics
指導教授:陳貞夙陳貞夙引用關係
指導教授(外文):Jen-Sue Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:108
中文關鍵詞:複合氧化薄膜閘極介電層
外文關鍵詞:gate dielectricscomposite oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是探討利用低壓化學氣相沈積法以四異丙烷氧化鈦(TTIP)及矽酸四乙酯(TEOS)鍍製不同比例之TiO2-SiO2複合氧化薄膜退火前後的材料特性以及藉由電性量測(I-V、C-V)探討其作為閘極介電層之特性。
本論文使用拉塞福背向散射能譜進行TiO2-SiO2複合氧化薄膜的成份分析。而複合氧化薄膜的結構與結晶性則使用低掠角X光繞射以及穿透式電子顯微鏡繞射圖進行分析。各種比例之初鍍與不同條件退火後試片的表面型態由掃瞄式電子顯微鏡與穿透式電子顯微鏡進行觀察。另外也利用X光光電子能譜跟傅立葉轉換紅外線光譜對複合氧化薄膜中之化學鍵結進行分析。而對於光學性質的研究,本論文使用橢圓偏光儀量測其折射率大小,並且可同時對其薄膜的厚度進行量測。最後使用PA meter/dc voltage source(HP4140)以及LCR meter(HP4284)進行I-V以及C-V的電性量測。
實驗結果發現,TiO2-SiO2複合氧化薄膜中所含之Si/(Ti+Si)的比例隨著通過TEOS的載氣流量增加而有增加的趨勢,但整體維持(Ti+Si):O ≈ 1:2。而經由低掠角X光繞射的分析,初鍍及退火後之純TiO2皆出現anatase相的結晶。添加不同比例的SiO2後之初鍍複合氧化薄膜皆為非晶質相,而含不同比例SiO2之試片700℃與800℃退火後皆出現結晶現象(anatase相之TiO2),不過添加SiO2之試片的繞射峰強度遠低於純TiO2。加入SiO2後之氧化薄膜不論初鍍或退火後之試片表面型態明顯較為平整。經由X光光電子能譜的分析,TiO2-SiO2複合氧化薄膜之O 1s的殼層電子之束縛能介於純TiO2之O 1s殼層電子束縛能與純SiO2之O 1s殼層電子束縛能之間,並且隨著SiO2含量增加而往純SiO2之O 1s殼層電子束縛能方向偏移。而Ti 2p與Si 2p之殼層電子之束縛能不會隨著所含Si/(Ti+Si)比例改變而有所偏移。而傅立葉轉換紅外線光譜分析可以發現退火後試片之各種原子間的鍵結訊號皆明顯增強,這顯示薄膜中鍵結數量增加,薄膜中之原子排列更為整齊。光學性質方面,折射率隨薄膜中SiO2含量的增加而降低。由C-V曲線可以發現不同成份的氧化薄膜600℃、700℃退火後之試片介電常數差異不大。800℃退火後高SiO2含量的氧化薄膜則有介電常數下降的趨勢。而由各條件之I-V曲線可以發現,試片之漏電流密度明顯隨退火溫度升高而降低,而不同成份之間的漏電流密度因為影響的因素太過複雜而不會有明顯的趨勢。
The material characterizations of various TiO2-SiO2 composite oxide thin films prepared with low pressure chemical vapor deposition, using titanium tetra-iso-propoxide(TTIP) and tetraethoxysilane(TEOS) as precursors, before and after annealing were investigated. The characterizations of TiO2-SiO2 composite thin films as gate dielectrics were investigated by I-V and C-V measurement.
In this study, Rutherford backscattering spectrometry (RBS) analysis was used to determine the composition of TiO2-SiO2 thin films. The structure and crystallography of the composite oxide thin films were characterized by glancing incident angle X-ray diffraction (GIAXRD) and transmission electron microscope (TEM) diffraction patterns. The morphology of TiO2-SiO2 thin films before and after annealing were observed with scanning electron microscope (SEM) and transmission electron microscope (TEM). The chemical bonding of TiO2-SiO2 thin films were investigated with X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Spectroscopic ellipsometry was carried out to measure the refraction index and thickness of TiO2-SiO2 thin films. Finally the electrical properties (I-V, C-V) were measured by PA meter /dc voltage source(HP4140) and LCR meter(HP4284).
From RBS results, the composition ratios of Si/(Ti+Si) in the oxide thin films increased with the increasing carrier flow rates through TEOS. However, the stoichiometry of (Ti+Si):O maintained 1:2 for all films. Pure TiO2 thin film revealed the anatase phase before and after annealing. The as-deposited composite oxide thin films with altering SiO2 ratios were amorphous. The composite oxide thin films with altering SiO2 ratios crystallized after annealing at 600, 700, and 800℃, but the diffraction intensities were much smaller compared with pure TiO2. The morphology of TiO2-SiO2 composite thin films were much smoother than pure TiO2 thin films before and after annealing. The binding energy of O 1s core level electron of TiO2-SiO2 composite thin films were shifted to lower energy as the SiO2 ratio in the composite thin films increased. The binding energy of Ti 2p and Si 2p of TiO2-SiO2 composite thin films remains constant with different SiO2 ratio. The intensity of FTIR signal were much stronger after annealing, indicating that the atoms in the annealed thin films were arranged much uniformly than those as-deposited. The refractive indexes decreased by increasing SiO2 ratio in the thin films. The relative dielectric constants were almost the same with various SiO2 ratios after 600 and 700 ℃ annealing. The relative dielectric constants of high SiO2 composition were smaller than the pure TiO2 films after 800℃ annealing. The leakage current densities decreased as annealing temperature increased. The leakage current densities of various TiO2-SiO2 composite thin films did not exhibit an obvious tendency with the ratio of SiO2 in the thin films.
中文摘要........................................................................I
Abstract......................................................................III
總目錄..........................................................................V
圖目錄........................................................................VII
表目錄.........................................................................XI
第一章 前言.....................................................................1
1-1閘極氧化層...................................................................1
1-2研究目的.....................................................................2
第二章 理論基礎.................................................................4
2-1 TiO2性質介紹................................................................4
2-2混合氧化物之特性.............................................................7
2-3 TiO2-SiO2文獻回顧..........................................................12
2-4氧化薄膜中之缺陷對電性之影響................................................22
2-4-1 氧化薄膜中之缺陷簡介.....................................................22
2-4-2 氧化薄膜中之缺陷之量測方法...............................................23
第三章 實驗方法與步驟..........................................................30
3-1 實驗材料...................................................................30
3-2 實驗設備...................................................................31
3-2-1 化學氣相沉積系統.........................................................31
3-2-2 退火系統.................................................................31
3-3 實驗流程...................................................................34
3-4 鍍層性質分析...............................................................37
3-4-1 拉塞福背向散射(Rutherford backscattering spectrometry, RBS)成分分析.....37
3-4-2 低掠角X光繞射(Glancing incident angle XRD,GIAXRD)結構分析...............39
3-4-3 X光光電子能譜(X-ray photoelectron spectroscopy,XPS)化學鍵結分析.........40
3-4-4傅立葉轉換紅外線光譜分子(Fourier transform infrared spectroscopy,FTIR)鍵結分析...........................................................................41
3-4-5橢圓偏光儀(Ellipsometry)折射率量測........................................42
3-4-6穿透式電子顯微鏡(Transmission electron microscope,TEM)微結構分析.........43
3-4-7電性量測..................................................................46
第四章 結果與討論..............................................................48
4-1 氧化薄膜成分及密度分析.....................................................48
4-1-1 成分分析定量.............................................................48
4-1-2 質量密度與原子密度計算分析...............................................49
4-2氧化薄膜微結構分析..........................................................57
4-2-1 氧化薄膜表面型態.........................................................57
4-2-2 氧化薄膜結晶性與結晶結構.................................................60
4-2-3 氧化薄膜之化學鍵結分析...................................................70
4-3光性分析....................................................................86
4-4電性分析....................................................................90
4-4-1 C-V量測..................................................................90
4-4-2 I-V量測..................................................................92
第五章 結論...................................................................103
第六章 參考文獻...............................................................104
1. The International Technology Roadmap for Semiconductors : 2001 Edition.
2. G. D. Wilk, R. M. Wallace, J. M. Anthony, “High-k gate dielectrics : Current status and materials properties considerations” , Journal of Applied Physics 89, 5243 (2001).
3. H. Fukuda, S. Namioka, M. Miur, ”Structure and electrical properties of crystalline TiO2 thin films formed by metalorganic decomposition” , Japanese Journal of Applied Physics 38, 6034 (1999).
4. B. H. Lee, L. Kang, R. Nieh, W.-J. Qi, J. C. Lee, ” Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing”, Applied Physics Letter 76, 1926 (2000).
5. S. Harasek, H. D. Wanzenboeck, E. Bertagnolli, “Compositional and electrical properties of zirconium dioxide thin films chemically deposited on silicon”, Journal of Vaccum Science and Technology A 21, 653 (2003).
6. R. J. H. Clark, “The chemistry of titanium and vanadium”, Elsevier, Amsterdam (1968).
7. P. Villars and L.D. Calvert, “Pearson''s handbook of crystallographic data for intermetallic phases”, ASM International, Materials Park (1991)
8. A. J. Moulson, J. M. Herbert, “Electroceramics”, Chapman & Hall, London (1990).
9. W. G. Lee, S. I. Woo, J. C. Kim, S. H. Choi, K. H. Oh, “Preparation and properties of amorphous TiO2 thin films by plasma enhanced chemical vapor deposition”, Thin Solid Films 237, 105-111 (1994).
10. Z.-X. Chen, A. Derking, “TiO2 films by chemicalvapordeposition : Control of the deposition process and film characterization”, Journal of Materials Chemistry 3, 1137(1993).
11. N. Martin, D. Baretti, C. Rousselot, J.-Y. Rauch, “The effect of bias power on some properties of titanium and titanium oxide films prepared by r. f. magnetron sputtering”, Surface and Coatings Technology 107, 172(1998).
12. V. Mikhelashvili, G. Eisenstein, “Optical and electrical characterization of the electron beam gun evaporated TiO2 film”, Microelectronics Reliability 41, 1057 (2001).
13. H.-Y. Lee, H.-G. Kim, “The role of gas-phase nucleation in the preparation of TiO2 films by chemical vapor deposition”, Thin Solid Films 229, 187 (1993).
14. A. Ohmori, K.-C. Park, “Electrical conductivity of plasma-sprayed titanium oxide (Rutile) coating”, Thin Solid Films 201, 1 (1991)
15. W. D. Kingery, H. K. Bowen, D. R. Uhlmann, ”Introduction to ceramics”, Wiley, New York (1976).
16. Y.-M. Chiang, D. P. Birnie III, W. D. Kingery, “Physical ceramics”, Wiley, New York (1997).
17. R. S. Roth, J. R. Dennis, H. F. McMurdie, “Phase diagrams for ceramists”, The american ceramic society, Ohio (1987).
18. D. L. Evans, “Solid Solution of TiO2 in SiO2”, Journal of the American Ceramic Society 53, 418 (1970).
19. I. P. Nikitina, Izv. Akad. Nauk SSSR, Neorg. Mater. ,11 2094 (1975).
20. R. N. Viswanath, S. Ramasamy, “Study of TiO2 nanocrystallites in TiO2-SiO2 composites”, Colloids and Surfaces A: Physicochemical and Engineering Aspects 133, 49 (1998).
21. R. N. Viswanath, A. C. Bose, S. Ramasamy, “Preparations and characterizations of nanostructured TiO2 and TiO2-Si(Ti)O2 composite systems”, Journal of Physics and Chemistry of Solids 62, 1991 (2001).
22. H. Sankur, W. Gunning, “Crystallization and diffusion in composite TiO2-SiO2 thin films”, Journal of Applied Physics 66, 4747 (1989).
23. B. Pal, M. Sharon, G. Nogami, “Preparation and characterization of TiO2/Fe2O3 binary mixed oxides and its photocatalytic properties”, Materials Chemistry and Physics 59, 254(1999).
24. T. Kamada, M. Kitagawa, M. Shibuya, T. Hirao, “Structure and properties of silicon titanium oxide films prepared by plasma-enhanced vapor deposition method”, Japanese Journal of Applied Physics B 30, 3594 (1991).
25. D. C. M. Dutoit, M. Schneider, A. Baiker, “Titania-silica mixed oxides”, Jounal of Catalysis 153, 165 (1995).
26. X. Orignac, R. M. Almeda, “Silica-based sol-gel optical waveguides on silicon”, IEE Proceedings-Optoelectronics 143, 287 (1996).
27. C. F. Song, M. K. Lu, P. Yang, D. Xu, D. R. Yuan, “Structure and photoluminescence properties of sol-gel TiO2-SiO2 films”, Thin Solid Films 413, 155 (2002).
28. R. P. Netterfield, P. J. Martin, C. G. Pacey, W. G. Sainty, “Ion-assisted deposition of mixed TiO2-SiO2 films”, Journal of Applied Physics 66, 1805(1989).
29. C. C. Fulton, G. Lucovsky, R. J. Nemanich, “Electronic states at the interface of Ti-Si oxide on Si(100)”, Journal of Vaccum Science and Technology B 20, 1726 (2002).
30. N. S. Gluck, H. Sankur, J. Heuer, J. DeNatale, W. J. Gunning, “Microstructure and composition of composite SiO2/TiO2 thin films”, Journal of Applied Physics 69, 3037 (1991).
31. S. Chao, W.-H. Wang, “Characteristics of ion-beam-sputtered high-refractive-index TiO2-SiO2 mixed films”, Journal of the Optical Society of America A 16, 1477(1999).
32. A. Nishiyama, A. Kaneko, M. Koyama, Y. Kamata, I. Fujiwara, M. Koike, M. Yoshiki, M. Koike, “Investigation on thermal and electrical properties of Ti-Si-O Film Formed by the Composite Sputtering Deposition”, Material Research Society Symposium 670, K4.8.1 (2001).
33. L. Wicikowski, B. Kusz, L. Murawski, K. Szaniawska, B. Susla, “AFM and XPS study of nitrided TiO2 and SiO2-TiO2 sol-gel derived films”, Vaccum 54, 221 (1999).
34. X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Microstructure and optical properties of amorphous TiO2-SiO2 composite films synthesized by helicon plasma sputtering”, Thin Solid Films 388, 105 (1999).
35. R. Laird, A. Belkind, “Cosputtered films of mixed TiO2/SiO2”, Journal of Vaccum Science and Technology A 10, 1908 (1992).
36. J.-S. Chen, S. Chao, J.-S. Kao, H. Niu, C.-H. Chen, “Mixed films of TiO2-SiO2 deposited by double electron-beam coevaporation”, Applied Optics 35, 90 (1996).
37. B. D. Fabes, D. P. Birnie III, B. J. J. Zelinski, “Prosity and composition effects in sol-gel derived interference filters”, Thin Solid Films 254, 175 (1995).
38. S.-M. Lee, J.-H. Park, K.-S. Hong, “The deposition behavior of SiO2-TiO2 thin film by metalorganic chemical vapor deposition method”, Journal of Vaccum Science and Technology A 18, 2384 (2000).
39. B. E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon”, IEEE Transactions on Electron Devices ED-27, 606 (1980).
40. A. Goetzberger, E. Klausmann, and M. J. Schulz, “Interface states on semiconductor/insulator interface”, CRC Critical Reviews in Solid State and Materials Sciences 6, 1 (1976).
41. G. DeClerck, “Characterization of surface states at the Si-SiO2 interface”, in Nondestructive Evaluation of Semiconductor Materials and Devices (J. N. Zemel, ed), Plenum Press, New York, 105-148 (1979).
42. G. Greeuw, J. F. Verwey, “The mobility of Na+, Li+ and K+ions in thermal grown SiO2 films”, Journal of Applied Physics 56, 2218 (1984).
43. Y. Shacham-Diamand, A. Dedhia, D. Hoffstetter, W.G. Oldham, “Copper transport in thermally SiO2”, Journal of the Electrochemical Society 140, 2427 (1993).
44. D. K. Schroder. “Semiconductor material and device characterization 2nd edition”, Wiley, New York (1998).
45. W. M. Warner, “The work function difference of the MOS-System with aluminum field plates and polycrystalline silicon field plates”, Solid-States Electronics 17, 769 (1974).
46. E. H. Nicollian, J. R. Brews, “MOS physics and technology”, Wiley, Singapore (1982).
47. T. M. Buck, F. G. Allen, J. V. Dalton, J. D. Struthers, “Studies of Sodium in SiO2 films by neutron activation and radiotracer techniques”, Journal of the Electrochemical Society 114, 862 (1967).
48. E. Yon, W. H. Ko, A. B. Kuper, “Sodium distribution in thermal oxide on silicon by radiochemical and MOS analysis”, IEEE Transactions on Electron Devices ED-13, 276 (1966).
49. B. Yurash, B. E. Deal, “A method for determining sodium content of semiconductor processing materials”, Journal of the Electrochemical Society 115, 1191 (1968).
50. H. L. Hughes, R. D. Baxter, B. Philips, “Dependence of MOS device radiation-sensitivity on oxide impurities”, IEEE Transactions on Nuclear Science NS-19, 256 (1972).
51. D. Leinen, A. Fernandez, J. P. Espinos, J. P. Holgado, A. R. Gonzalezelipe, “An XPS study of the mixing effects induced by ion bombardment in composite oxides”, Applied Surface Science 68, 453 (1993)
52. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G.. E. Muilenberg, “Handbook of X-ray photoelectron spectroscopy”, Physical Electronic Division Perkin-Elmer Corporation, Minnesota (1979).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔