(3.227.235.183) 您好!臺灣時間:2021/04/18 10:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王睦傑
研究生(外文):Mu-Chien Wang
論文名稱:球磨及熱處理對單成份含鈀汞齊合金性質之影響
論文名稱(外文):Effect of Ball Milling and Heat Treatment on Properties of Single Composition Pd-Containing Amalgam
指導教授:朱建平朱建平引用關係陳瑾惠
指導教授(外文):Chien-Ping JuJiin-Huey Chern Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:140
中文關鍵詞:牙科汞齊
外文關鍵詞:dental amalgam
相關次數:
  • 被引用被引用:5
  • 點閱點閱:79
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
牙科汞齊合金 (dental amalgam) 從1826年開始已被應用於牙齒填補,已有超過170年的歷史,而且目前牙科汞齊合金是牙科填補材料主要選擇之一。根據本實驗學長姊曹哲儀、陳秋寧(1997)實驗指出,未經過熱處理的單成份球形 (68.7wt﹪Ag-13.3wt﹪Cu-14.7wt﹪Sn-3.3wt﹪Pd) S4合金粉末在混汞時,需要很高的混汞比 (>2.0)。但本實驗學姊甯超群(1999)對S4合金粉末經過100℃、2天的熱處理後,發現混汞比會降低,依據此方向作更進一步的研究,根據其實驗結果發現S4合金粉末經過400℃、1天熱處理後,可大幅降低最初汞釋出量和降低混汞比( 1.3 )。其最初汞釋出量約為 30.6 pg/mm2/s,比商業產品( Tytin )的最初汞釋出量( 68.6 pg/mm2/s )還低。但是其缺點是1小時37℃水浴後抗壓強度( 83.8 Mpa )偏低和混汞性不良,所謂混汞性不良是指混汞後不能形成一個團狀可塑體。
本實驗即針對此兩方面進行改善,首先找出最佳球形汞齊合金熱處理溫度,發現其最初汞釋出量為( 20.4 pg/mm2/s )、1小時37℃水浴後抗壓強度可達( 209 MPa ),但混汞性依然不良。為了改善混汞性,則對球形汞齊合金粉末進行球磨處理以達改善混汞性。
經由各種不同比例的球形和球磨合金粉末混合改善混汞性,實驗結果顯示,球形和球磨合金粉末依不同比例混合可改善混汞性,並且仍然保有較低汞釋出、較高的抗壓及抗拉強度、經冷熱循環試驗後抗拉強度仍然高於商用汞齊合金(Tytin)、長時間37℃人工唾液浸泡試驗後抗拉強度仍然高於商用汞齊合金(Tytin)及生物毒性最高的銅離子釋出量遠低於商用含鈀汞齊合金(Valiant PhD.)。
總目錄
摘要-------------------------------------------------------III
總目錄-------------------------------------------------------V
圖目錄-------------------------------------------------------X
表目錄-----------------------------------------------------XIV
第一章 簡介--------------------------------------------------1
1-1 前言-----------------------------------------------------1
1-2 研究目的-------------------------------------------------6
第二章 理論基礎----------------------------------------------9
2-1 汞齊合金之汞齊化反應及其結構-----------------------------9
2-1-1 傳統低銅汞齊合金---------------------------------------9
2-1-2 高銅汞齊合金------------------------------------------11
2-2 汞齊合金之添加金屬元素----------------------------------12
2-2-1 鋅(Zn)的添加----------------------------------------12
2-2-2 銦(In)的添加----------------------------------------13
2-2-3 鈀(Pd)的添加----------------------------------------13
2-3 汞齊合金粉末的分類--------------------------------------14
2-3-1 不規則型汞齊合金粉末----------------------------------14
2-3-2 球型汞齊合金粉末--------------------------------------15
2-3-3 混合型汞齊合金粉末------------------------------------15
2-4 含鈀汞齊合金粉末----------------------------------------16
2-4-1單成份含鈀汞齊合金-------------------------------------16
2-4-2混合型含鈀汞齊-----------------------------------------17
2-5 汞齊合金的微觀結構--------------------------------------17
2-5-1汞齊合金的微觀結構-------------------------------------17
2-5-2含鈀汞齊合金的微觀結構---------------------------------18
2-6 汞齊合金之硬化時間--------------------------------------22
2-7 球磨對汞齊合金的影響------------------------------------22
2-8 汞齊合金汞蒸氣的釋出------------------------------------23
2-8-1汞齊合金汞蒸氣的釋出-----------------------------------23
2-8-2含鈀汞齊合金汞蒸氣的釋出-------------------------------24
2-9 汞齊合金之機械性質--------------------------------------24
2-9-1 抗壓及抗拉強度----------------------------------------24
2-9-2 潛變性質----------------------------------------------26
2-10 汞齊合金的腐蝕性質-------------------------------------27
2-10-1 汞齊合金離子釋出與生物毒性---------------------------27
2-10-2 口腔內之腐蝕情況-------------------------------------28
第三章 材料與實驗方法---------------------------------------30
3-1 實驗架構及流程------------------------------------------30
3-2 合金粉末------------------------------------------------30
3-3 合金粉末球磨加工處理------------------------------------33
3-4 合金粉末真空石英封管------------------------------------35
3-5 合金粉末熱處理------------------------------------------37
3-6 合金粉末的酸洗及烘乾------------------------------------38
3-7 汞齊合金試片的製作--------------------------------------38
3-8 Χ光繞射分析--------------------------------------------40
3-8-1 合金粉末Χ光繞射分析----------------------------------43
3-8-2 汞齊合金Χ光繞射分析----------------------------------43
3-9 SEM 觀察和EDS成份分析-----------------------------------43
3-9-1 合金粉末SEM觀察和EDS成份分析--------------------------43
3-9-2 汞齊合金SEM觀察和EDS成份分析--------------------------44
3-10 抗壓及抗拉強度測試-------------------------------------44
3-11 潛變試驗-----------------------------------------------45
3-12 汞蒸氣釋出率-------------------------------------------48
3-13 冷熱循環試驗-------------------------------------------48
3-14 浸泡試驗-----------------------------------------------51
3-14-1 人工唾液浸泡試驗-------------------------------------51
3-14-2 歐傑電子表面元素縱深分析-----------------------------51
3-14-3 金屬離子釋出量測-------------------------------------52
第四章 結果與討論-------------------------------------------53
4-1 熱處理對汞齊合金性質的影響------------------------------53
4-1-1 XRD相的分析-------------------------------------------53
4-1-2 SEM顯微組織觀察---------------------------------------53
4-1-3 抗壓強度----------------------------------------------54
4-1-4 初始汞蒸氣釋出量--------------------------------------59
4-2 球磨處理對汞齊合金性質的影響----------------------------59
4-2-1 合金粉末球磨處理之過篩率及粒徑分佈--------------------62
4-2-2 XRD相分析---------------------------------------------66
4-2-3 SEM顯微組織觀察---------------------------------------66
4-2-4 抗壓強度----------------------------------------------66
4-2-5 初始汞蒸氣釋出量--------------------------------------72
4-3 球磨粉末之添加對汞齊合金性質之影響----------------------74
4-3-1 不同球磨合金粉末添加量對汞齊合金汞齊化之影響----------74
4-3-2 汞齊合金之SEM觀察-------------------------------------77
4-3-3 汞齊合金之XRD相分析-----------------------------------84
4-3-4 抗壓及抗拉強度----------------------------------------87
4-3-5 潛變性質----------------------------------------------88
4-4 汞齊合金in vitro研究------------------------------------99
4-4-1 冷熱循環試驗------------------------------------------98
4-4-2 浸泡試驗---------------------------------------------104
4-4-3 金屬離子釋出-----------------------------------------104
第五章 結論------------------------------------------------115
第六章 參考文獻--------------------------------------------117
圖目錄
Fig. 2-1 Ag-Sn二元相圖--------------------------------------19
Fig. 2-2 Ag-Hg二元相圖--------------------------------------20
Fig. 2-3 Ag-Sn-Hg三元相圖-----------------------------------21
Fig. 2-4 汞齊合金與口腔交互作用圖---------------------------25
Fig. 3-1(a) 實驗前段流程圖----------------------------------31
Fig. 3-1(b) 實驗後段流程圖----------------------------------32
Fig. 3-2 乾式噴霧法設備構造示意圖---------------------------34
Fig. 3-3 粉末真空石英封管裝置圖-----------------------------36
Fig. 3-4 粉末熱處理過程示意圖-------------------------------39
Fig. 3-5 圓盤狀汞齊合金試片製作示意圖-----------------------41
Fig. 3-6 圓柱狀潛變試片製作及模具示意圖---------------------42
Fig. 3-7 抗壓強度測試示意圖---------------------------------46
Fig. 3-8 抗拉強度測試示意圖---------------------------------46
Fig. 3-9 潛變測試裝置示意圖---------------------------------47
Fig. 3-10 汞蒸氣釋出測汞機裝置圖----------------------------49
Fig. 3-11 冷熱循環測試機的裝置示意圖------------------------50
Fig. 4-1 球形合金粉末經各種溫度熱處理的X光繞射圖------------55
Fig. 4-2 球形合金粉末S4經不同溫度熱處理之SEM顯微組織照------56
Fig.4-3 球形合金粉末經各種溫度熱處理後Cu3Sn對Ag3Sn最強繞射
峯比值------------------------------------------------------58
Fig.4-4 球形合金粉末不同溫度熱處理後之汞齊合金抗壓強度------60
Fig.4-5 球形合金粉末PD4經不同溫度熱處理後之汞齊合金汞釋出---61
Fig. 4-6 合金粉末經不同球磨時間後過篩之獲得率---------------63
Fig. 4-7 不同時間球磨後粉末粒徑分析圖-----------------------64
Fig. 4-8 經不同時間球磨後之合金粉末的X光繞射圖(未經熱處理)
------------------------------------------------------------67
Fig. 4-9不同時間球磨後之合金粉末的X光繞射圖(經t2℃、1天熱處
理)---------------------------------------------------------68
Fig. 4-10 經不同時間球磨後t2℃、1天熱處理之合金粉末SEM照片
------------------------------------------------------------69
Fig. 4-11 經不同時間球磨後之汞齊合金的抗壓強度--------------73
Fig. 4-12 經不同時間球磨後之汞齊合金的初始汞蒸氣釋出率------73
Fig. 4-13 添加球磨之不規則合金粉末的汞齊合金混汞情形--------75
Fig. 4-14 添加不同比例球磨粉末之汞齊合金表面粗糙狀態--------78
Fig. 4-15 汞齊合金添加不規則形合金粉末的SEM觀察-------------79
Fig. 4-16 S4L0汞齊合金元素分佈圖(低倍率)------------------82
Fig. 4-17 S2L1汞齊合金元素分佈圖(低倍率)------------------83
Fig. 4-18 S4L0汞齊合金元素分佈圖(高倍率)------------------85
Fig. 4-19 S2L1汞齊合金元素分佈圖(高倍率)------------------86
Fig. 4-20 不同比例球形與不規則形粉末混合之汞齊合金X光繞射圖
(a)S4L0、(b)S3L1、(c)S2L1、(d)S1L1(e)S0L4--89
Fig. 4-21 汞齊合金不同相隨時效時間的相對XRD繞射峰強度變化圖
(a)γ(012) /γ1(222) (b)η’(101)/γ1(222) (c)ε/γ1(222)-94
Fig. 4-22 添加不同比例不規則形合金粉末汞齊合金的抗壓強度----95
Fig. 4-23 添加不同比例不規則形合金粉末之汞齊合金的抗拉強度--96
Fig. 4-24 不同比例混合之汞齊合金的潛變量--------------------98
Fig. 4-25 S4L0經冷熱循環試驗前後之XRD圖--------------------100
Fig. 4-26 S0L4經冷熱循環試驗前後之XRD圖--------------------101
Fig. 4-27 S4L0和S0L4汞齊合金經冷熱循環試驗後之SEM顯微照片
-----------------------------------------------------------102
Fig. 4-28 經冷熱循環試驗後之抗拉強度變化-------------------103
Fig. 4-29 經冷熱循環試驗後之潛變量變化---------------------103
Fig. 4-30 S4L0經浸泡試驗前後之XRD圖------------------------105
Fig. 4-31 S2L1經浸泡試驗前後之XRD圖------------------------105
Fig. 4-32 S4L0和S0L4汞齊合金經浸泡試驗後之SEM顯微照片------107
Fig. 4-33 經浸泡汞齊合金表面凸出物成分分析(EDS) (a)S4L0, (b)
S2L1-------------------------------------------------------108
Fig. 4-34 經浸泡試驗後之抗拉強度變化-----------------------110
Fig. 4-35 經浸泡試驗後之潛變量變化-------------------------110
Fig. 4-36 經不同時間浸泡之汞齊合金金屬離子釋出濃度(a)Ag, (b)
Sn, (c) Cu, (d) Pd, (e) Hg---------------------------------112
表目錄
Table 1-1 汞齊合金簡要發展歷程-------------------------------2
Table 1-2 常見商業汞齊合金的化學組成-------------------------8
Table 1-3 美國牙醫協會及商用汞齊合金之成份規定---------------8
Table 3-1 圓柱狀試片製作步驟時間表--------------------------46
Table 3-2 實驗浸泡使用人工唾液成份表------------------------50
Table 4-1 合金粉末Ag-Sn及Cu-Sn相的化學成份分析(SEM/EDS)---60
Table 4-2 經不同溫度熱處理、1天球形汞齊合金之混汞量、工作時間
及硬化時間表------------------------------------------------61
Table 4-3 經不同時間球磨及t2℃、1天熱處理汞齊合金之混汞量、工
作時間及硬化時間表------------------------------------------71
Table 4-4 各種不同比例混合之汞齊合金的代表符號--------------75
Table 4-5 不同粉末混合比例汞齊合金之混汞量、工作時間及硬化時
間表--------------------------------------------------------76
Table 4-6 添加不規則形粉末汞齊合金的γ1相化學成份(wt﹪)------------------------------------------------------------97
Anderson M.H., McCoy R.B. (1993). Dental amalgam: The state of the art and science. Dent Clin North Amer 37(3):419-431.
Asgar K.(1974)Some effects on the phasesof amalgam inducedby corrosion J. Dent. Res. 53(5):1245-54
Berlin, M.H.(1969). Maximum allowable concentration of mercury compounds, Archives of Envirinmental Health 19:891-905.
Brune, D., Gjerdet, N., Paulsen, G.(1983). Gastrointestinal and in vitro release of copper, cadmium, indium, mercury and zinc from conventional and copper-rich amalgams, Scand J. Dent. Res. 91:66-71.
Burglund, A. (1990). Estimation by a 24-hour study of the daily dose of intra-oral mercury vapor inhaled after release from dental amalgam, J. Dent. Res. 69(10):1646-1651.
Burns. Charles, F. (1976). Tabletting spherical dental amalgam alloy, United States Patent No:USRE29093.
Cahn R., Bever M. (eds). (1990) In “Encyclopedia of Materials Science and Engineering”, supplement 2, 866
Cannon M.S., Kapes E.D., Palkuti G.A. (1985). Dr Black and the “amalgam question”. J History Medicine 40:309-326.
Chen K.I., Ju C.P., Chern Lin J.H. (1999). Effect of particle size of Ag-Cu-Pd alloy on structure and properties of dispersed pd-containing dental amalgam, Biomaterials 20:1851-1866
Chern Lin J.H., Chung K.H., Marshall S.J., Greener E.H. (1987). The role of Pd in gamma 1 (Ag2Hg3) to beta 1 (Ag-Hg) transformation, J. Dent. Res. 66:Abstr 35,111.
Chern Lin J.H., Chung K.H., Marshall S.J., Greener E.H. (1987a). The role of Pd in gamma 1(Ag2Hg3) to beta 1 (Ag-Hg) transformation. J Dent Res 66:111, Abst. 35.
Chern Lin J.H., Green E.H. (1991). Microstructures of Pd-containing dispersants for admixed dental amalgams. Dent Mater 7:254-257.
Chern Lin J.H., Greener E.H. (1991). Microstructures of Pd-containing dispersants for admixed dental amalgams, Dent. Mater. 7:254-257.
Chern Lin J.H., Lee H.C., Ju C.P. (1997). Effect of addition of palladium properties of γ1 (Ag2Hg3 )phase. Biomaterials 18:1-8.
Chern Lin J.H., Marshall S.J., Chung K.H., Greener E.H. (1987b). Structural changes in blending amalgam compositions with Pd additions. (abstract). J Dent Res 66:201, Abst. 192.
Chung K.H., Chern Lin J.H., Greener E.H. (1986). Effect of Pd additions on creep and compressive strength of blended amalgams (abstract). J Dent Res 65:192, Abst. 202.
Chung K.H., Chern Lin J.H., Greener E.H. (1987). Metal release from palladium enriched high-copper amalgams (abstract). J Dent Res 66:291, Abst. 1475.
Clarkson, T.W.(1991). Principles of risk assessment in : Proceeding of the NIH Technology Assessment Conference. Effects and side effects of dental restorative materials, Bethesda, Maryland : National Institute of Health:31.
Cox S.W., Eley B.M. (1987). Further investigation of the soft tissue reaction to theγ1 Phase (Ag2Hg3) of dental amalgam, including measurement of mercury release and redistribution, Biomaterials vol 8:296-300.
Craig R.G. Restorative dental materials, 8th edn. Toronto, The C. V. Mosby Company, 1989.
Crowell W.S., Phillips R.W. (1951). Physical proportues of amalgam as influenced by variation in surface area of the alloy particles. J Dent Res 30(6):845-853.
Espevik S. (1977a). Creep of dental amalgam and its phases. Scand J Dent 85:492-495.
Espevik S. (1977b). In vitro corrosion of dental amalgams with different Cu content. Scand J Dent Res 85:631-636.
Espevik S. (1977c). Creep and phase transformation in dental amalgam. J Dent Res 56(1):36-39.
Fairhurst C.W., Cohen J.B. (1972). The crystal structure of two compounds found in dental amalgam: Ag2Hg3 and Ag3Sn. Acta Cryst B28:371-378.
Ferracane J.L. (1992). Amalgam-derived mercury. General Dentistry 223-229.
German R. M.,”Powder Metallurgy Science”, (MPIF,1984)
Goldwater, L.J. (1957). The toxicology of inorganic mercury, Annals of the New York Academy of Science 65:498-503.
Greener E., Harcourt J. and Lautenschlager E.,”Materials in Dentistry”,(Williams & Wilkens Co., Baltimore 1972)
Greener E.H., Chung K.H., Chern Lin J.H. (1988). Creep in a palladium-enriched high-copper amalgam. Biomaterials 9:213-217.
Greener E.H., Szurgot K. (1982). Properties of Ag-Cu-Pd dispersed phase amalgam: Compressive strength, creep, and corrosion. J Dent Res 61(10):1192-1194
Horsted-Bindslev P., Magos L., Holmstrup P. and Arenholt-Bindslev D., “Dental Amalgam-A Health Hazard?”, 1st edn(Copenhagen, Munksgaard,1991)
Isenberg B.P., Lemons J.E., Compton R.C. (1984). Comparative studies of a palladium-enriched amalgam, J Dent Res 12:80-90.
Johnson G.H., Bales D.J., Powell L.V. (1992). Effect of admixed indium on the clinical success of amalgam restorations. Oper Dent 17:196-202.
Kleinberg I. (1979). Etiology of dental cariers, J. Can. Dent. Assoc. 12:661-668.
Langan D.C., Fan P.L., Hoos A.A. (1987). The use of mercury in dentistry: a critical review of the recent literature. J Amer Dent Assoc 115:867-880.
Lee K.H., Shin M.C., Lee J.Y. (1987). Amalgamation mechanism in dental amalgam alloys. J Mat Sci 22:3949-3955.
Ling F.W., Okabe T. (1977). Diffusion of mercury in HgSn8 (γ2 phase). Biomat Med Dev Art Org 5(3):267-276.
Lutz F., Phillips R.W., Roulet J.F., Setcos J.C. (1984). In vivo and in vitro wear of potential posterior composites, J. Dent. Res. 63:914-920.
Mackert J.R., Leffell M.S., Wagner D.A., Powell B.J. (1991). Lymphocyte levels in subjects with and without amalgam restorations. J Amer Dent Assoc 122:49-53.
Mahler D.B. (1997). The high-copper dental amalgam alloys. J Dent Res 76(1):537-541.
Mahler D.B., Adey J.D. (1988). Sn in the Ag-Hg phase of dental amalgam. J Dent Res 67(10):1275-1277.
Mahler D.B., Adey J.D., Marek M. (1982). Creep and corrosion of amalgam. J Dent Res 61(1):33-35.
Mahler D.B., Adey J.D., Van Eysden J. (1975). Quantitative microprobe analysis of amalgam. J Dent Res 54:218-226
Mahler D.B., Bryant R.W. (1996). Microleakage of amalgam alloys: An update. J Amer Dent Asso 127:1351-1356.
Mahler D.B., Engle J.H., Adey J.D. (1990). Effect of Pd on the clinical performance of amalgam. J Dent Res 69(11):1759-1761.
Mahler D.B., Nelson L.W. (1994). Sensitivity answers sought in amalgam alloy microleakage study. J Amer Dent Asso 125:282-288.
Mahler D.B., Van Eysden J. (1969). Dynamic creep of dental amalgam. J Dent Res 48:501-8.
Mahler, D.B.(1976). Dental amalgam. In Dental Materials Review (Craig RG, ed.). Ann Arbor:Univ. of Michigan Press.
Mante F., Chern Lin J.H., Moser J.B., Greener E.H. (1988). Palladium Effect on thermal expansion and phase changes in dental amalgam, J. Dent. Res. 67:Abstr.1563,308.
Mante F., Greener E.H., Chern Lin J.H., Gilbert J.L. (1991). Effect of particle configuration on properties of Pd containing dental amalgam, Northwestern Dent. Res. 2:19-20.
Mante F., Greener E.H., Gilbert J., Chern Lin J.H. (1995). The effect of matrix phase morphology on the structure of Ag-Cu-Pd dispersed phase dental amalgam. J Oral Rehabil 22:711-715.
Marek M. (1990b). The release of mercury from dental amalgam: The mechanism and in vitro testing. J Dent Res 69(5):1167-1174.
Marek M. (1992). Interactions between dental amalgams and the oral environment. Adv Dent Res 6:100-109.
Marek M., Hochman, R.F.(1973a). Crevice corrosion in dental amalgam restoration(abstract), J. Dent. Res. 52(Spec Iss):107.
Marek M., Okabe T. (1978). Corrosion behavior of structural phases in high copper dental amalgam. J. Biomed Mater Res 12:857-866
Marshall S.J., Marshall G.W. (1979). Time-dependent phase changes in Cu-rich amalgams. J Biomed Mater Res 13:395-406.
Marshall S.J., Marshall G.W. (1980). Sn4(OH)6Cl2 and SnO corrosion products of amalgams. J Dent Res 59:820-823.
Marshall S.J., Marshall G.W. (1992). Dental amalgam: The Materials. Adv Dent Res 6:94-99.
McGehee W., True H., and Insskip E., “A Textbook of Operative Dentistry”,(McGraw-Hill Book Co. Inc.,New York.1958)
Morena R., Beaudreau G.M., Lockwood P.E., Evans A.L., and Fairhurst C.W. (1986). Fatigue of dental ceramics in a simulated oral environment. J Dent Res 65(7):993-997.
Mumford J.M. (1957). Electrolytic action in the mouth and its relationship to pain, J. Dent. Res. 36:632-640.
Newman S. (1984). Mercury toxicity Workshop on Biocompatibility of Metal in dentistry, ADA NIDR NIH 93-103.
Obrien W.,”Dental Materials:Properties and Selection”,(Quintessence Co.,Chicago,1989)
Okabe T., Butts M.B., Mitchell R.J. (1983). Changes in the microstructures of silver-tin and admixed high-copper amalgams during creep. J Dent Res 62(1):37-43.
Okabe T., Mitchell R., Butts M.B., Bosely J.R., Fairhurst C.W. (1977). J. Dent. Res. 56:1037-1043.
Okabe T., Yamashita T., Nakajima I., Berglund A., Zhao L., Guo, I., Ferracane J.L. (1994):Reduced mercury vapor release from dental amalgam prepared with binary Hg-In liquid alloys, J. Dent. Res. 73(11):1711-1716.
Omar I.M., Chern Lin J.H., Greener E.H., Marshall S.J. (1989). Solubility of Pd in γ1 and its effect on the γ1 to β1 transformation in dental amalgam, Northwestern Dental Research 1:10-15.
Paffenberger G.C., Rupp N.W., Patel P.R. (1979). Dimensional change of dental amalgam and a suggested correlation between marginal interity and creep, JADA 99:31-37.
Phillips W.R. (1973). Skinner’s science of dental materials, 7th ed. Philadelphia(PA):W.B. Saunders,298-299.
Powell L.V., Johnson G.H., Bales D.J. (1989). Effect of admixed indium on mercury vapor release from dental amalgam. J Dent Res 68(8):1231-1233.
Reisbick, M.H. (1977). Second generation dispersant type amalgam, Oral Health 67:18-20.
Reynold C.L., Barker R.E. (1973). Comparison of phase stability in Ag2Hg3 and Sn7-8Hg as reflected in the caculation of potential energy. J Chem Phy 58(4):1774-1775.
Ring M.E. (1985).Dentistry. An Illustrated History. New York, Harry N Abrams, Inc.
Roggenkamp C. (1986)A history of copperin amalgam and an overview of setting reaction phase, Quintessence Int.17(2):129-33
Sarkar N.K., Greener E.H. (1972). Absence of the γ2 phase in amalgams with high copper concentrations. J Dent Res 51(5):1511
Sarkar N.K., Marshall G.W., Moser J.B., Greener E.H. (1975). In vivo and in vitro corrosion products of dental amalgam. J Dent Res 54(5):1031-1038.
Schoonover I.C., Souder W. (1941). Corrosion of dental alloys. J Amer Dent Assoc 28:1278-1291.
Smith F.E., Williams D.F., Pond R. (1987). Backscattered electron imaging of dental amalgam. J Mater Sci 22:2382-2386.
Sutow E.J., Jones D.W., Hall G.C., and Milne E.L. (1985). The respones of dental amalgam to Dynamic Loading. J Dent Res 64(1):62-66.
Tremblay , David L., Asgar , Kamal(1987). Method for producing amalgamable alloy. United States Patent No:US4664855.vapor release from dental amalgam. J Dent Res 68(8):1231-1233.
Von Fraunhofer J.A., Stahel P.J. (1971). Corrosion of amalgam restorations:a new explanation, Br. Dent. J. 130:522-524.
Vrijhoef M.M.A., Gubbels G.H.M., and Driessens F.C.M. (1974). Creep of dental amalgam versus composition and prolonged homogenization of amalgam alloy. Scripta Metallurgica vol. 9: 85-90.
Waterstrat R.M., Okabe T. (1994). Intermetallic Compounds. Dental Amalgam Vol.2: 575-590.
Youdelis W.V., Windsor Ont. (1979). Effect of indium on residual mercury content and compressive strength of amalgam, J. Canad. Dent. Assn. No2: 60-62.
李河清,1995,含鈀銀-汞相性質之研究,國立成功大學材料科學及工程研究所碩士論文
袁振亞,1996,鈀對Ag2Hg3相之性質及相變態之影響研究,國立成功大學材料科學及工程研究所碩士論文
曹哲儀,1997,時效處理對含鈀汞齊合金機械性質影響之研究,國立成功大學材料科學及工程研究所碩士論文
陳秋寧,1997,時效處理對含鈀汞齊合金汞蒸氣釋出及腐蝕性質影響之研究,國立成功大學材料科學及工程研究所碩士論文
陳剛毅,1999,含鈀牙科汞齊合金之性質即為結構研究,國立成功大學材料科學及工程學系博士論文
黃宣宜,1999,顆粒大小對混合型含鈀汞齊合金性質的影響研究, 國立成功大學材料科學及工程學系碩士論文
甯超群,1999,熱處理對單成份球型汞齊合金微結構及性質的影響研究,國立成功大學材料科學及工程學系學士論文
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 47.楊叔卿,2000,”迎接廿一世紀的「艾麗絲」:網際網路輔助教育的理念”,教學科技與媒體,50,2000年4月,p. 2-11
2. 26.顏春煌,1998,資訊科技導入終身教育的多重管道與模式,隔空教育論叢,10,p. 229-253
3. 39.楊家興,虛擬學校:資訊網路下整合性的教學環境,教學科技與媒體,47,p. 12-23
4. 35.岳修平,1999,”網路教學於學校教育之應用”,課程與教學季刋,2(4),p. 61-76
5. 34.洪明洲、蔡碧鳳,1999,”學習創造的網路課程設計-以「企業管理」為例”,隔空教育論叢,第十一輯
6. 25.楊艾俐,1998,”全球自提升熱:智慧的歡愉”,天下雜誌,第201期
7. 23.莊淑閔、洪世家,1998,”WWW上家居學習模式之建構-以中小學教師在職進修為例”,遠距教育,第六期,p. 53-58
8. 20.林奇賢,1998,網路學習環境的設計與應用,資訊與教育,第67期,p. 34-49
9. 19.張基成,1997,”開發思考與創之知識建構工具與認知學習環境之探討:電腦的革新與應用”,教學科技與媒體,33,p. 36-45
10. 17.林奇賢,1997,”網住改革-電腦網路與教育改革”,國教之友,49(1),p. 5-12
11. 14.王正芬,1997,網路大學開啓學習的方便之門,通訊雜誌,42,p. 102-105
12. 12.張靜嚳,1996,”傳統教學有何不妥?”,建構與教學,4(1)
13. 7.楊家興,1995,”隔空教育下的傳播科技:新舊教育媒體的省思”,教學科技與媒體,第二十一期,p. 5-12
14. 3.呂翠夏,1993,”方案教學與傳統教學之比較”,國教之友,3(45),p. 18-21
 
系統版面圖檔 系統版面圖檔