跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 21:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊士緯
研究生(外文):Shi-Wei Chuang
論文名稱:聚亞醯胺/黏土奈米複合材料之合成及性質之研究
論文名稱(外文):Synthesis and Properties of Polyimide-Clay Nanocomposites
指導教授:許聯崇
指導教授(外文):Lien-Chung Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:95
中文關鍵詞:黏土奈米複合材料聚亞醯胺
外文關鍵詞:nanocompositesclaypolyimide
相關次數:
  • 被引用被引用:3
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:0
本研究首先經由有機胺dodecylamine(DOA)及4-phenoxyaniline (POA)和鈉蒙特納石(Na+-mentmorillonite)進行離子交換反應,製成膨潤化的有機黏土(organ clay)。再利用二酸酐(dianhydride)單體和二胺(diamine)單體,製成聚醯胺酸/clay薄膜,最後將聚醯胺酸/clay薄膜在高溫(300℃)環化以形成聚亞醯胺/clay薄膜。經由X-ray繞射分析顯示,DOA-clay和POA-clay添加至5%時,呈脫層型分散,當添加量超過7%時,黏土開始出現聚集或插層分散。TEM分析也顯示添加3%及5% 黏土時,呈奈米分散,但添加7%黏土時,開始呈現聚集的情形。熱機械分析(TMA)指出,聚亞醯胺/clay奈米複合材料的熱膨脹係數隨clay添加量的增加而降低,添加7% DOA-clay時,聚亞醯胺的熱膨脹係數可以降低32%,而添加7% POA-clay時,聚亞醯胺的熱膨脹係數可降低18%,此外,其玻璃轉移溫度則隨clay添加量的增加而上升,添加5% clay時可達到最大值。由熱重量分析(TGA)可以看出添加有機黏土,可以增加聚亞醯胺的熱裂解溫度,添加5% clay時可達到最大值。由聚亞醯胺/clay薄膜試片的機械性質分析可以看出,有機黏土可以增加聚亞醯胺的彈性模數,添加7% DOA-clay的聚亞醯胺其彈性模數增加168%,而添加7% POA clay之聚亞醯胺,其彈性模數增加51%,顯示有機黏土有很好的補強效果,但其伸長率則隨黏土添加量的增加而降低。由介電常數分析顯示,黏土對聚亞醯胺介電常數影響不大,僅略為增加其介電常數。由吸水性實驗可看出添加黏土可降低聚亞醯胺的吸水率,添加5% clay時吸水率可達到最低值。從可見度分析可以看出,添加黏土會降低聚亞醯胺的可見度,但由熱安定性較好的POA-clay所製成的聚亞醯胺/clay薄膜,具有較佳的透光率。另外,由尺寸安定性實驗中可以瞭解,添加黏土可降低聚亞醯胺經熱處理後的尺寸變化。
Polyimide(PI)/clay nanocomposites have been prepared from a PI precursor-poly(amic acid) (PAA) and two different organoclays. The PI precursor was made by a polycondensation reaction between 4,4’-oxydianiline (ODA) and Pyromellitic dianhydride (PMDA). The organoclays were formed by a cation exchange reaction between a Na+-montorillonite clay and an ammonium salt of dodecylamine(DOA) or 4-phenoxyaniline (POA). Both X-ray diffraction (XRD) and transmission electron microscope (TEM) analyses showed that the organoclay was dispersed in PI matrix in a nanosacle. The in-plane coefficient of thermal expansion (CTE) of PI/clay film was decreased with the increasing amounts of organoclay. The CTE of PI/clay film which contained 7 wt % DOA-clay was decreased 32% compared to the pure film and the PI/clay film contained 7 wt % POA-clay was decreased 18% . Both of the glass transition temperatures (Tgs) and the thermal decomposition temperatures of PI/clay films increased with increasing amounts of organoclay. The tensile moduli of PI/clay films were increasing with the increasing amounts of organoclay. The tensile modulus of PI/clay film which contained 7 wt % DOA-clay was increased 168% compared to the pure PI film and the PI/clay film contained 7 wt % POA-clay was increased 51%. The dielectric constants of PI/clay films were slightly increased with the increasing amounts of organoclay. The water absorption of PI/clay film was decreased with the increasing amounts of organoclay. From UV-visible spectra, the PI/POA-clay film showed a batter transparency than the PI/DOA-clay film which could be due to the fact that the POA has a higher thermal stability than DOA. The size stability of PI/clay films after heat treatment was batter than the pure PI film.
摘要..................................................Ⅰ
Abstract .............................................Ⅲ
誌謝..................................................Ⅴ
目錄..................................................Ⅵ
表目錄................................................Ⅹ
圖目錄................................................XI
第一章 緒論............................................1
1-1 前言...............................................1
1-2 研究動機與目的.....................................2
1-3 研究架構...........................................3
第二章 文獻回顧........................................5
2-1 引言...............................................5
2-2 黏土之介紹.........................................7
2-3 聚亞醯胺之介紹....................................10
2-4 黏土/高分子奈米複合材料之介紹.....................14
2-4-1 黏土/高分子奈米複合材料之製備方法...............14
2-4-2 黏土/高分子奈米複合材料之型態...................15
2-4-3 奈米高分子複合材料之特性........................16
2-4-4 奈米高分子複合材料之應用........................17
第三章 實驗方法與步驟.................................22
3-1 實驗材料..........................................22
3-2 實驗儀器..........................................23
3-3 實驗步驟..........................................24
3-3-1 黏土改質........................................24
3-3-2 聚醯胺酸/黏土複合高分子前驅物之合成.............25
3-3-3 聚亞醯胺/黏土奈米複合材料薄膜之製備.............26
3-4 性質測試與分析....................................27
3-4-1聚醯胺酸固有黏度測定.............................27
3-4-2紅外線光譜儀分析(FT-IR)..........................27
3-4-3聚亞醯胺/黏土奈米複合材料之型態分析..............28
3-4-3-1 X-ray繞射分析(XRD)............................28
3-4-3-2 穿透式電子顯微鏡觀察(TEM).....................28
3-4-4熱性質分析.......................................29
3-4-4-1 熱重損失分析(TGA).............................29
3-4-4-2 熱機械分析(TMA)...............................29
3-4-5 可見度測試......................................29
3-4-6 薄膜機械性質分析................................30
3-4-7 尺寸安定性實驗..................................30
3-4-8 吸水性實驗......................................30
3-4-9 介電常數值量測..................................31
第四章 結果與討論.....................................36
4-1 聚醯胺酸及聚亞醯胺之分析..........................36
4-1-1 聚醯胺酸固有黏度測定............................36
4-1-2 傅立葉紅外線光譜之分析..........................36
4-2 有機黏土之分析....................................37
4-2-1 傅立葉紅外線光譜分析............................37
4-2-2 X光繞射分析.....................................37
4-2-3 熱重損失分析....................................39
4-3 聚亞醯胺/黏土奈米複合材料之分析...................40
4-3-1 X光繞射分析.....................................40
4-3-2 穿透式電子顯微鏡之分析..........................41
4-3-3 熱膨脹係數之分析................................42
4-3-4 玻璃轉移溫度之分析..............................43
4-3-5 熱重損失分析....................................44
4-3-6 機械性質分析....................................46
4-3-7 介電常數分析....................................47
4-3-8 吸水性實驗......................................48
4-3-9 可見度分析......................................49
4-3-10尺寸安定性實驗..................................49
第五章 結論...........................................88
參考文獻..............................................91
自述..................................................95
表目錄
表(一) 黏土/聚亞醯胺薄膜之熱膨脹係數..................51
表(二) 黏土/聚亞醯胺薄膜之玻璃轉移溫度................52
表(三) 黏土/聚亞醯胺薄膜之熱裂解溫度..................53
表(四) 黏土/聚亞醯胺薄膜之熱裂解溫度..................54
表(五) 黏土/聚亞醯胺薄膜之機械性質....................55
表(六) 黏土/聚亞醯胺薄膜之介電常數....................56
表(七) 黏土/聚亞醯胺薄膜之吸水率......................57
表(八) 黏土/聚亞醯胺薄膜之透光度......................58
表(九) 黏土/聚亞醯胺薄膜之尺寸安定性..................59
圖目錄
圖2-1 層狀矽酸鹽礦物基本結構單元......................20
圖2-2 黏土/高分子複合材料之分散型態示意圖.............21
圖3-1 實驗步驟流程圖..................................32
圖3-2 黏土改質之流程圖................................33
圖3-3 合成聚亞醯胺/黏土奈米複合材料之流程圖...........34
圖3-4 膨脹型探針及拉伸型探針之示意圖..................35
圖4-1 聚醯胺酸之FTIR 光譜圖...........................60
圖4-2 聚亞醯胺之FTIR 光譜圖...........................61
圖4-3 DOA 改質劑、DOA-Clay、未改質黏土之FTIR 光譜圖...62
圖4-4 POA 改質劑、POA-Clay、未改質黏土之FTIR 光譜圖...63
圖4-5 未改質黏土、DOA-Clay、DOA-Clay 經300℃熱處理、
POA-Clay、POA-Clay 經300℃熱處理後之XRD分析圖.........64
圖4-6 改質劑DOA、POA之熱重損失曲線(in N2) ............65
圖4-7 改質劑DOA、POA之熱重損失曲線(in Air) ...........66
圖4-8 未改質黏土與DOA- Clay、POA-Clay 之熱重損失曲線(in N2)
......................................................67
圖4-9 未改質黏土與DOA- Clay、POA-Clay 之熱重損失曲線(in Air)
......................................................68
圖4-10 不同含量DOA-Clay/聚醯胺酸薄膜之XRD分析圖.......69
圖4-11 不同含量DOA-Clay/聚亞醯胺薄膜之XRD分析圖.......70
圖4-12 不同含量POA-Clay/聚醯胺酸薄膜之XRD分析圖.......71
圖4-13 不同含量POA-Clay/聚亞醯胺薄膜之XRD分析圖.......72
圖4-14 3wt% DOA-Clay/聚亞醯胺薄膜之TEM 圖.............73
圖4-15 3wt% POA-Clay/聚亞醯胺薄膜之TEM 圖.............74
圖4-16 5wt% DOA-Clay/聚亞醯胺薄膜之TEM 圖.............75
圖4-17 5wt% POA-Clay/聚亞醯胺薄膜之TEM 圖.............76
圖4-18 7wt% DOA-Clay/聚亞醯胺薄膜之TEM 圖.............77
圖4-19 7wt% POA-Clay/聚亞醯胺薄膜之TEM 圖.............78
圖4-20 不同含量DOA-Clay/聚亞醯胺薄膜之熱重損失曲線(in N2)
......................................................79
圖4-21 不同含量POA- Clay/聚亞醯胺薄膜之熱重損失曲線(in N2)
......................................................80
圖4-22 不同含量DOA- Clay/聚亞醯胺薄膜之熱重損失曲線(in Air)
......................................................81
圖4-23 不同含量POA- Clay/聚亞醯胺薄膜之熱重損失曲線(in Air)
......................................................82
圖4-24 不同含量DOA-Clay/聚亞醯胺薄膜之UV 光譜分析.....83
圖4-25 不同含量DOA-Clay/聚亞醯胺薄膜之UV 光譜分析.....84
圖4-26 3wt%黏土含量之聚亞醯胺薄膜照片.................85
圖4-27 5wt%黏土含量之聚亞醯胺薄膜照片.................86
圖4-28 7wt%黏土含量之聚亞醯胺薄膜照片.................87
1.官振豐,塑膠簡訊,第十七期(2003).
2.蔡中燕,化工資訊,pp.28(1998).
3.吳元馮、周森,“熱可塑型聚醯胺醯亞胺薄膜之合成與銅箔基板之接著應用”,第26屆高分子研討會論文專輯(2003).
4.S. Numata et.al., in“Rccent Advanced in Polyimide Science and Technology”, W. D. Weber ; M. R. Gupta Eds., Scoiety of Plastics Engineers, New York, pp.164(1987).
5.B. C. Auman, in“Advance in Polyimide Science and Technology”, F. Feger et.al. Eds., Scoiety of Plastics Engineers, New York, pp.15 (1993).
6.F.E. Arnold et.al., Polymer, Vol.33, pp.5179(1992).

7.K. Yano ; A. Usuki ; A. Okada ; T. Kurauchi ; O. J. Kamigato, Journal of Polymer Science Part A: Polymer Chemistry, Vol.31, pp.2493 (1993).
8.H. L. Tyan ; Y. C. Liu ; K. H. Wei, Chemistry of Materials, Vol.11, pp.1942 (1999).
9.吳仁傑,工業材料,125期,pp.115(1997).
10.A. Usuki ; M. Kawasumi ; Y. Kojima, Journal of Materials Research, Vol.7, pp.856 (1991).
11.P. B. Messersmith ; E. P. Giannelis, Journal of Polymer Science Part A: polymer Chemistry, Vol.33, pp.1047(1995).
12.H. Ishida ; S. Campbell ; J. Blackwell, Chemistry of Materials, Vol.12, pp.1260(2000).
13.S. D. Burnside ; E. P.Giannelis, Chemistry of Materials, Vol.7, No.9, pp.1597(1995).
14.樂文禮,“聚醯亞胺奈米矽氧複合材料選擇性封裝之研究”,國立成功大學化學工程研究所碩士論文(2002).
15.A. B. Morgan ; J. W. Gilman ; C. L. Jackson, Macromolecules, Vol34, pp.2735(2001).
16.H. L. Tyan ; K. H. Wei ; T. E. Hsieh, Journal of Polymer Science Part B: Polymer Physics, Vol.38, pp.2873(2000).
17.A. Gu, F. C. Chang, Journal of Applied Polymer Science, Vol.79, pp.289(2001).
18.T. Agag ; T. Koga ; T. Takeichi, Polymer, Vol.42, pp.3399(2001).
19.K. A. Carrado ; L. Xu, Chemistry of Materials, Vol.10, pp.1440 (1998).
20.趙杏媛、張有瑜,黏土礦物與黏土礦物分析,海洋出版社(1990).
21.蘇佳琪,“氧化鋁及氧化鐵插層蒙脫石吸附水中天然有機物之研究”,國立成功大學資源工程研究所碩士論文(2002).
22.A. C. Kathleen, Applied Clay Science, Vol.17, pp.1(2000).
23.M. Franchi ; E. Bramanti ; L.M. Bonzi ; P.L. Orioli ; C. Vettori, Origins of Life and Evolution of the Biosphere, Vol.29, No.3, pp.297 (1999).
24.G. Ertem ; J.P. Ferris, Origins of Life and Evolution of the Biosphere, Vol.28, pp.485(1998).
25.G. M. Bower ; L. W. Frost, Journal of Polymer Science Part A1, pp.3135(1963).
26.S. Takeda ; H. Akiyama ; H. Kakiuchi, Journal of Applied Polymer Science, Vol.35, pp.1341(1988).
27.郭正熙,“聚醯亞胺-聚醯胺系複合材料之研究”, 國立成功大學化學工程研究所碩士論文(1997).
28.金進興,工業材料,107期,pp.128(1995).
29.廖建勛,工業材料,125期,pp.108(1997).
30.A. Micheal ; D. Philippe, Materials Science and Engineering, Vol.28, pp.1(2000).
31.劉慧玲,“台東樟原黏土資源之有機黏土備製研究”,國立成功大學資源工程研究所碩士論文(2001).
32.D.M. Delozier ; R.A. Orwoll ; J.F. Cahoon, Polymer, Vol.43, pp.813 (2002).
33.Z. M. Liang ; J. Yin ; H. J. Xu, Polymer, Vol.44, pp.1391(2003).
34.J. H. Chang ; M. P. Kwang ; D. Cho, Polymer Engineering and Science, Vol.41, No.9, pp.1514(2001).
35.J. H. Chang ; M. P. Kwang, Polymer Engineering and Science, Vol.41, No.12, pp.2226(2001).
36.S. H. Hsiao ; G. S. Liou ; L. M. Chang, Journal of Applied Polymer Science, Vol.80, pp.2067(2001).
37.A. Gu ; S. W. Kuo ; F. C. Chang, Journal of Applied Polymer Science, Vo1.79, pp.1902(2001).
38.郭文法,工業材料,125期,pp.129(1997).
39.蔡中燕,工業材料,125期,pp.120(1997).
40.T. Lan ; P. D. Kaviratna ;T. J. Pannavaia, Chemistry of Materials, Vol.6, pp.573(1994).

41.D. A. Skoog ; J. J. Leary, Saunders College Publishing, US, pp.252 (1992).
42.A. Morikawa ; Y. Iyoku ; M. Kakimoto ; Y. Imai, Journal of Materials Chemistry, Vol.2, pp.679(1992).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top