跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 03:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊哲明
研究生(外文):Zhe-Ming Yang
論文名稱:共晶組成錫基合金之電衝擊破壞特性研究
論文名稱(外文):A Study on the Characteristics of Electrical Current Induced Failure of Sn-Based Eutectic Alloy
指導教授:呂傳盛呂傳盛引用關係陳立輝陳立輝引用關係
指導教授(外文):Truan-Sheng LuiLi-Hui Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:54
中文關鍵詞:錫基合金電衝擊
外文關鍵詞:Sn-based alloyelectrical current induced failure
相關次數:
  • 被引用被引用:3
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
隨著電子產品輕薄短小的發展趨向,電子構裝元件尺寸微小化勢在必行,銲點尺寸也因此減小。而在功率要求日漸提升的同時,因而可能產生許多造成銲點失效的現象,例如因電遷移影響或熱電效應所造成的升溫現象,均可能造成斷路。此外,即使施加一較低密度的電流量時,銲點即產生應變。由此推論,此由在高荷電應用通電所生成之應變或反覆通電情況下亦可能為導致破壞斷路的機制之一。
目前為止,已有相當多關於無鉛銲錫電遷移現象的研究被報導或進行中,但高荷電或反覆電流負載所引起的溫度及應變變化並未受到注意。考慮到研究新型無鉛錫基合金於未來在高荷電應用條件下適用性,本研究以Sn-Pb、Sn-Ag及Sn-Zn共晶錫基合金薄片為實驗材料,探討的性質包括臨界電流、穩定電流、破壞 (斷路) 時間-電流曲線 (T-C 曲線)。其中臨界電流為改變直流電的電壓以控制電流的大小,直到試片發生熔斷破壞時的電流;穩定電流為通電30秒,斷電10秒,持續50次而試片不發生熔斷破壞時的電流;T-C 曲線則是描述導體材料在安全使用的範圍內,通電時間和通電電流兩者之關係。研究重點包括通電產生的變形行為,熔斷電弧觀察,破斷組織觀察等,以釐清錫基合金高荷電破壞機制。
從T-C 曲線實驗中發現,Sn-3.5Ag合金及 Sn-9Zn合金比 Sn-37Pb合金有耐長時間及高電流之趨勢。試片熔斷之臨界電流Sn-3.5Ag合金及Sn-9Zn合金高於Sn-37Pb合金,各試料顯示重量百分比添加量接近平衡共晶組成其臨界電流有相對極大值趨勢,而在反覆通電疲勞破壞試驗中,Sn-3.5Ag及Sn-9Zn合金之穩定電流皆優於Sn-37Pb合金。破斷組織大致分為兩種:(1)以電弧放電時所產生高溫高熱造成試片平行部發生熔斷,(2)高溫熱膨脹所形成壓縮應力在高溫融化之前造成凸起平行部的破壞。此外在合金的選用方面,Sn-Pb合金系統成分變動對臨界電流的影響最小;Sn-Ag共晶合金為所能承受的電流最大,相對電弧放電的效應最劇烈;Sn-Zn共晶合金其電弧放電效應小於熱膨脹效應,是實驗選用合金系統中能承受高電流且電弧效應最小之合金。
Electrical current induced fracture could occur in Sn-based alloy of chips through suddenly large current passed. In particular, when the Sn-based alloy meets the large current, the rate of failure is even higher. However, the understanding of electrical current fracture under atmosphere is very limited. The electrical current fracture characteristics of Sn-based alloys were investigated in this study. Using Sn-Pb alloy as a database is examined that could be compared with Sn-Zn and Sn-Ag lead-free alloy.
The electrical fracture resistance of Sn-based with different binary composition was investigated as a function of arc discharge and thermal effect during tests. The T-C curve (time—current) could be used to examine the features of electrical fracture resistance and closely related to the condition of good fitting. The critical current for failure that the current is larger than the magnitude, which is defined as the electrical fracture point for the purpose of quantitative comparison among different binary Sn-based alloys. On the other hand, the current capacity of the Sn-based also can be examined qualitatively using the T-C curve.
From experimental results, in traditional Sn-Pb alloy, the near eutectic composition possesses lower current resistance but excellent stability in composition changed. Comparing traditional Sn-Pb alloy and two lead-free alloy systems, the electrical fracture resistance of the Sn-Ag eutectic alloy, which possesses a higher T-C curve, was higher current resistance and capacity than Sn-Pb alloy. Sn-Zn alloy would be worth considering replacing the traditional alloy with eutectic composition (Zn content 9 wt%) in high current environment. However, the current capacity and arc discharge of Sn-Zn eutectic alloy is better than traditional Sn-Pb alloy. This would be advantageous in certain replacement application.
中文摘要………………………………………………………………I
英文摘要………………………………………………………………III
總目錄…………………………………………………………………V
表目錄…………………………………………………………………VII
圖目錄……………………………………………..…………………VIII
第一章 前言………………………………………………………1
第二章 文獻回顧…………………………………………………3
2-1 銲錫與錫基材料介紹………………………………………3
2-2 電弧放電特性………………………………………………6
2-3 常見的二元銲錫合金系統…………………………………7
第三章 實驗方法………………………………………………12
3-1 合金熔煉及試片製備………………………………………12
3-2硬度、電阻係數量測和金相觀察及定量解析………………13
3-3 錫基合金電流破壞試驗……………………………………13
3-3-1電流破壞試驗機裝置……………………………………13
3-3-2臨界電流的量測…………………………………………14
3-3-3穩定電流的量測…………………………………………14
3-3-4 T-C曲線的量測………………………………………15
3-4 研究架構……………………………………………………15
第四章 實驗結果…………………………………………………23
4-1 二元錫基合金之探討………………………………………23
4-1-1 二元錫基合金的微觀組織………………………………23
4-1-2 共晶錫基合金的硬度性質………………………………23
4-1-3 共晶錫基合金的電阻係數………………………………24
4-2 錫基合金臨界電流破壞特性………………………………24
4-2-1錫基合金成分對臨界電流的影響…………………………24
4-2-2共晶錫基合金熔斷破壞微觀組織…………………………25
4-2-3 共晶錫基合金臨界電流破壞特性………………………26
4-3 共晶錫基合金穩定電流破壞特性…………………………27
4-4 T-C 曲線評估應用…………………………………………27
第五章 討論………………………………………………………42
5-1共晶錫基系統破壞特徵………………………………………42
5-2微觀組織對電衝擊之影響……………………………………43
5-3 錫基系統合金的選用…………………………………………44
第六章 結論………………………………………………………50
參考資料…………………………………………………………51
表2-1常見銲錫和金屬材料的電阻値…………………9
表3-1Sn-Pb合金試片之Pb添加量(wt%)及澆鑄條件…16
表3-2Sn-Ag合金試片之Ag添加量(wt%)及澆鑄條件…16
表3-3Sn-Zn合金試片之Zn添加量(wt%)及澆鑄條件…16
表4-1各組共晶錫基合金成分的電阻係數 …………28
圖2-1Sn-Pb二元相圖…………………………………10
圖2-2Sn-Zn二元相圖……………………………………10
圖2-3Sn-Ag部分二元相圖………………………………11
圖3-1澆鑄錫基合金用的Y型模之尺寸…………………17
圖3-2電流破壞試驗試片之尺寸……………………………17
圖3-3Sn-3.5Ag不同時效時間試片的抗拉強度變化………18
圖3-4電流試驗試片基座圖…………………………19
圖3-5臨界電流實驗流程圖……………………………20
圖3-6T-C 曲線 (材料通電時間與電流關係)……………21
圖3-7共晶錫基合金之電衝擊破壞特性之研究架構………22
圖4-1三組 Sn-Pb 試片安定化後之合金的金相觀察(a)Sn-30Pb;(b)Sn-37Pb;(c)Sn-50Pb…………………29
圖4-2三組 Sn-Ag 試片安定化後之合金的金相觀察(a)Sn-2.0Ag;(b)Sn-3.5Ag;(c)Sn-5.5Ag………………30
圖4-3三組 Sn-Zn 試片安定化後之合金的金相觀察(a)Sn-7Zn;(b)Sn-9Zn;(c)Sn-11Zn.……………………31
圖4-4共晶錫基基合金之橫截面硬度值……………………32
圖4-5錫基合金系統之臨界電流比較……………………33
圖4-6(a)Sn-37Pb熔斷處理後之OM微觀組織,(b)Sn-37Pb經軋延安定化後之OM微觀組織(同圖4-1(b))…………………34
圖4-7(a)Sn-3.5Ag熔斷處理後OM微觀組織,(b)Sn-3.5Ag經軋延安定化後OM微觀組織(同圖4-2(b))………………………35
圖4-8(a)Sn-9Zn熔斷處理後之OM微觀組織,(b)Sn-9Zn試料經軋延安定化後之OM微觀組織(同圖4-3(b))…………………36
圖4-9(a)Sn-3.5Ag SEM熔斷金相組織、(b)Sn-37Pb SEM熔斷金相組織、(c)Sn-9Zn SEM熔斷金相組織……………………37
圖4-10 Sn-3.5Ag(a)試片通電時中間膨脹(b)試片中間電弧放電(c)試片經熔斷情形………………………………………38
圖4-11(a)、(b)、(c)電弧放電在Sn-3.5Ag熔斷面附近產生孔洞之SEM…………………………………………………………39
圖4-12共晶錫基合金系統之循環電流比較……………40
圖4-13共晶錫基合金系統之電疲勞劣化率比較…………40
圖4-14共晶錫基合金T-C 曲線圖……………………41
圖5-1接近破斷面OM觀察:(a)Sn-37Pb系統;(b)Sn-3.5Ag系統 ;(c)Sn-9Zn系統………………………………………45
圖5-2試片熔斷面的觀察:(a)Sn-37Pb;(b)Sn-3.5Ag;(c)Sn-9Zn…………………………………………………46
圖5-3錫基合金熔斷之共晶面積和臨界電流比較………47
圖5-4Sn-Pb試料不同溫度下持溫處理後之OM微觀組織:(a)170℃;(b)150℃;(c)130℃;(d)110℃…………48
1.張淑如,「鉛對人體的危害」,勞工安全衛生簡訊,第12期,17-18頁,民國84 年。
2.B. Trumble, “Get the LEAD out”, IEEE Spectrum, May 1998, pp.55-60.
3.S.-W. Chen and C.-M. Chen, “Electromigration Effects upon Interfacial Reactions”, J. Met. Mater., 2003, Vol. 55(2), pp.62-67.
4.P. G. Newbery and A. Wright, “Electric fuses”, 1984, P. Peregrinus on behalf of the Institution of Electrical Engineers.
5.W. J. Plumbridge, “Review Solders in Electronic”, J. Mater. Sci.,1996,Vol. 31, pp. 2501-2514.
6.J. Glazer, “Metallurgy of Low Temperature Pb-Free Solders for Electronic Assembly”, International Mater. Rev., 1995, Vol. 40,pp.65-93.
7.Metals Handbook, A. W. Worcester and J. T. O’Reilly, ASM, 10th Edition,1990, Vol. 2, pp. 543-556.
8.S. Jin, “Developing Lead-Free Solders: A Challenge and Opportunity”,J. Met. Mater.,July 1993, p.13.
9.S. S. Kang and A. K. Sarkhel, “Lead Free Solders for Electronic Packaging”, J. Elec. Mater., 1994, Vol. 23, pp. 701-707.
10.M. McCormack, S. Jin, H. S. Chen and D. A. Machusak, “New Lead-Free Sn-Zn-In Solder Alloys”, J. Elec. Mater., 1994, Vol. 23, pp. 687-690.
11.Glarzer, “Microstructure and Mechanical Properties of Pb-Free Solder Alloys for Low-Cost Electronic Assembly: A Rewiew”, J. Elec. Mater., 1994, Vol. 23, pp. 693-700.
12.張樹人,「無鉛銲錫之凝固組織與機械性質間關係研究」,國立台灣師範大學工業教育研究所,碩士論文,民國85年。
13.B. T. Lampe, “Room Temperature Aging Properties of Some Solder Alloys”, Welding Res., Oct. 1976, pp. 331s-339s.
14.賴玄金,「從IPC Work’99 會議中看無鉛銲錫電子構裝之應用現況與發展趨勢」,工業材料,第158期,99-107頁,民國90年。
15.須賀維知,「鉛技術」,日刊工業新聞社,1-11頁,1999(日文)。
16.G. T. Meaden, “Electrical Resistance of Metal”, 1965, Plenum, New York.
17.阪本光雄,「電子用金屬材料實務」,復漢出版社,48-60頁,民國77年。
18.俞國平,「電工材料」,大中國圖書公司印行,89-95頁,民國69年。
19.林振華,「電子材料」,全華科技,14-16頁,民國90年。
20.S. Kagoshima, H. Nagasawa and T. Sambongi, “One—dimensional Conductors”, 1988, Springer-Verlag.
21.王其平,「電器電弧理論」,西安交通大學,9-11頁,西元1989年。
22.P. G. Slade and E. D. Taylor, “Electrical Breakdown in Atmospheric Air Between Closely Spaced (0.2ìm-40ìm) Electrical Contacts”, 2001 Proc. 47th IEEE Holm Conf. Electrical Contacts, pp.245-250.
23.L. H. Germer, “Electrical Breakdown between Close Electrode in Air”, J. Appl. Phys., 1959, Vol. 30, No. 1 pp. 46-51.
24.C. M. Hurd, “Electrons in Metals”, 1975, Wiley.
25.N.-C. Lee, “Getting Ready for Lead-Free Solders”, Soldering and Surface Mount Tech., July 1997, No. 26, pp. 65-68.
26.陳信文,「無鉛銲料簡介」,電子與材料,第一期,74-77頁,民國88年。
27.I. Karakaya and W. T. Thompson, “The Pb-Sn System”, Bulletion of Alloy Phase Diagrams, 1998, Vol. 9, pp. 144-152.
28.B. T. Lampe, “Room Temperature Aging Properties of Some Solder Alloys”, Welding Res., Oct., 1976, pp. 331s-339s.
29.M. McCormack and S.Jin,“New Lead-Free Solders”, J. Elec. Mater.,1994, Vol. 23, pp. 635-640.
30.T. G. Langdon, D. Simpson and R. C. Gifkins, “Cyclic Grain Boundary Migration during High Temperature Fatigue-II. Measurement of Grain Boundary Sliding”, Acta Metall., 1983, Vol. 31, pp. 739-946.
31.L. Wen, G. R. Mon and R. G. Ross, “Inconsistencies in the Understanding of Solder Joint Reliability Physics”, Design & Reliability of Solders and Solder Interconnections, 1997, TMS Annual Meeting.
32.Z. Moser, J. Dutkiewicz, W. Gasior and J. Salawa, “The Sn-Zn System”, Bull. Alloy Phase Diagrams, 1985, Vol. 6, pp. 330-334.
33.Z. Moser, J. Dutkiewicz, W. Gasior and J. Salawa, “The Sn-Zn System”, Bull. Alloy Phase Diagrams, 1985, Vol. 6, pp. 335-340.
34.J. Glarzer, “Microstructure and Mechanical Properties of Pb-Free Solder Alloys for Low-Cost Electronic Assembly: A Rewiew”, J. Elec. Mater., 1994, Vol. 23, pp. 693-700.
35.P. T. Vianco and D. R. Frear, “Issues in the Replacement of Lead-Bearing Soldering”, J. Met. Mater., July 1993, Vol. 45, No. 7, pp.36-40.
36.E. P. Wood and K. L. Nimmo, “In Search of New Lead-Free Electronic solders”, 1994, Vol. 23, No. 8, pp. 709-713.
37.F. Hua and J. Glazer, “Lead-Free for Electronic Assembly”, Design & Meeting, pp. 65-73.
38.I. Karakaya and W. T. Thompson, “The Ag-Sn System”, Bulletion of Alloy Phase Diagrams, 1987, Vol. 8, pp. 340-347.
39.K. Suganuma and Y. Nakamura, “Microstructure and Streng of Interface Between Sn-Ag Eutectic Solder and Cu”, J. Japan Inst. Metals, 1995,Vol. 59, pp. 1299-1305 (日文).
40.K. Suganuma, S. H. Huh, K. Kim, H. Nakase and Y. Nakamura, “Effect of Ag Content on Properties of Sn-Ag Binary Alloy Solder”, Mater.Trans, JIM, 2001, Vol. 42, pp. 286-291.
41.W. Yang, R. W. Messler, Jr and L. E. Felton, “Microstructure Evolution of Eutectic Sn-Ag Solder Joints”, J. Elec. Mater., 1994,Vol. 23, pp. 765-772.
42.I. Karakaya and W. T. Thompson, “The Ag-Sn System”, Bulletion of Alloy Phase Diagrams, 1987, Vol. 8, pp. 340-347.
43.W. Yang, L. E. Feltion and R. W. Messler, “The Effect of Soldering Process Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints”, J. Elec. Mater., 1995, Vol. 24, pp. 1465-1472.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top