(3.227.208.0) 您好!臺灣時間:2021/04/18 12:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖奇璋
研究生(外文):Chi-Chang Liao
論文名稱:摻雜染料液晶及液晶與高分子混合薄膜之光折現象及光儲存應用研究
論文名稱(外文):Studies of Photorefractive Effect and Optical Storage Applications in Dye-Doped Liquid-Crystal and Polymer-Dispersed Liquid-Crystal Films
指導教授:傅永貴
指導教授(外文):Andy Ying-Guey
學位類別:博士
校院名稱:國立成功大學
系所名稱:物理學系碩博士班
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:92
中文關鍵詞:液晶光折光儲存
外文關鍵詞:photorefractiveoptical storageliquid-crystal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
  在本論文中,我們針對摻雜染料液晶(DDLC)及液晶與高分子混合薄膜之光折現象及光儲存應用進行探討。一開始我們研究了垂直排列之DDLC 樣本中之動態全相光柵過程,受光激發之azo 型Methyl Red (MR)染料分子在一外加直流電壓下將先形成一光折光柵,之後染料分子將擴散並吸附在基板上,進而形成一表面排列光柵;前者光柵相對於紀錄光束的干涉圖樣有90 度之相位偏移,後者與干涉圖樣為同相,由前者光柵轉變至後者時將伴隨著兩道紀錄光束之動態能量耦合。
  其次我們針對擁有快速光學記憶之摻雜染料液晶及高分子混合(DDPDL)薄膜進行研究。由結果顯示使用單一Q 開關Nd:YAG 6 ns脈衝即可紀錄全相光柵,此光柵乃因液晶分子與受光激發而吸附之azo 型染料分子交互作用而形成,此光柵為永久型但可藉由外加電壓控制開關,此樣本之製備很簡單,其高靈敏及快速記憶之特性將使光柵之實際應用成為可行。
  最後我們藉由全相光柵實驗研究垂直排列之DDLC 樣本中受光感應而重新排列之效應。受光激發之MR 染料分子擴散並吸附於基板上形成一波紋結構,那些吸附之染料分子與雷射引致波紋結構將造成液晶分子之重新排列,並且形成一全相光柵。當使用S 極化偏振光源紀錄光柵時,吸附之染料分子方向將垂直於波紋方向,起初液晶分子將受吸附的染料分子影響而旋轉,然而當波紋溝槽之振幅足夠大時,此時由波紋溝槽所造成之力矩將克服吸附染料所造成之影響,進而使液晶分子順著溝槽方向重新排列。
  In this thesis, we study the photorefractive effect and optical storage in the dye-doped liquid-crystal (DDLC) and polymer-dispersed liquid-crystal films. The dynamic behavior of a holographic grating induced in a homeotropically aligned DDLC film is firstly investigated.In the presence of an applied dc voltage, photoexcited azo dyes, Methyl Red (MR), induce a photorefractive grating and then diffuse and are adsorbed onto cell substrates, generating a surface-alignment grating. The former is 90o phase shifted with respect to the light-interference pattern set up by the writing beams. The latter is in phase with the interference pattern. The transition from the former to the latter grating effect induces a dynamic change in from two-beam coupling (TBC) of the two writing beams.
  Next we investigate a fast optical recording material based on dye-doped polymer-dispersed liquid-crystal (DDPDLC) film. The result shows that a holographic grating is written in this film with a single Q-switched Nd:YAG laser pulse that has a duration of ~ 6 ns. Such a grating is due to the reorientation effect of the liquid-crystal molecules through interaction with the photoinduced adsorption of the azo dyes. The grating thus formed is permanent but electrically switchable. Fabrication of the sample is simple, but the sensitivity and the speed of the storage are high and fast, respectively. These properties make practive uses of the grating possible.
  Finally we study the light-induced reorientation effects on a homeotropical DDLC cell using the holographic grating setup. The photo-excited MR dyes diffuse and adsorb onto the substrate, thus forming a ripple structure. The adsorbed dyes and laser-induced ripple structure then reorient the liquid crystal molecules and induce a holographic grating. In the case of the grating written with two s-polarized beams, the direction of the adsorbed dyes is orthogonal to the ripple direction. Initially, the LC directors are reoriented primarily by the adsorbed dyes. However, given sufficiently large ripple groove amplitude,the torque imposed by the ripple grooves overcomes that owing to the adsorbed dyes, and the LCs are realigned along the groove direction.
CHAPTER 1 INTRODUCTION …………………………………………………1
  1.1 Historical Review of Photoinduced Changes of Refractive Indices
    in Liquid Crystal Films ………………………………………………1
  1.2 Statement of Objective …………………………………………………2
  1.3 Liquid Crystals …………………………………………………………4
CHAPTER 2 BASIC RELATED THEORIES ……………………………………13
  2.1 Laser-induced Gratings ………………………………………………13
    2.1.1 Superposition of Two Plane Waves ……………………………13
    2.1.2 Photorefractive Effect …………………………………………15
  2.2 Photodye-assisted Molecular Reorientation ……………………………20
    2.2.1 Photoalignment Effects …………………………………………20
    2.2.2 Photo-induced Positive Toque …………………………………21
    2.2.3 Photo-induced Negative Toque …………………………………21
    2.2.4 Photo-induced Space Charge Field ………………………………22
CHAPTER 3 EXPERIMENTAL SETUP …………………………………………28
  3.1 Experimental Arrangement ……………………………………………28
    3.2 Liquid Crystal Samples ……………………………………………28
    3.2.1 Nematic Liquid Crystal Cells ……………………………………28
    3.2.2 Polymer-Dispersed Liquid Crystal Cells …………………………30
  3.3 Sample Preparation ….……………………………………………………32
    3.3.1 Composition of DDLC and DDPDLC Cells ………………………32
    3.3.2 Fabrication Process ………………………………………………33
CHAPTER 4 DYNAMIC STUDIES OF HOLOGRAPHIC GRATING IN DYE-DOPED
      LIQUID CRYSTAL FILMS ………………………………………39
CHAPTER 5 FAST OPTICAL RECORDING DYE-DOPED POLYMER-DISPERSED
      LIQUID CRYSTAL FILMS ……………………………………52
CHAPTER 6 LASER-INDUCED REORIENTATION EFFECT AND RIPPLE
      STRUCTURE IN DYE-DOPED LIQUID CRYSTAL FILMS ……64
CHAPTER 7 CONCULSIONS …………………………………………………75
  7.1 Summary of The Thesis ………………………………………………75
  7.2 Future Studies …………………………………………………………76
APPENDIX A LASER-INDUCED PERIODIC SURFACE STRUCTURE …………82
APPENDIX B THE ALIGNMENT OF NEMATIC LIQUIDS
      ON MICRO-GROOVE PATTERNS ………………………………83
REFERENCES ……………………………………………………………………86
1. R. A. Bartolini, A. Bloom, and J. S. Escher, Appl. Phys. Lett. 28, 506 (1976).
2. W. Dreimeier and A. Brockmeyer, Appl. Optics 25, 2960 (1986).
3. E. Voit and P. Gunter, Opt. Lett. 12, 769 (1987).
4. P. Gunter, Phys. Reports 93, 199 (1982).
5. W. J. Tomlinson, E. A. Chandross, R. L. Fork, C. A. Pryde, and A. A.Lamola, Appl. Optics 11, 533 (1972).
6. M. Ottelenghi and D. S. McClure, J. Chem. Phys. 46, 4613 (1967).
7. H. J. Eichler, P Gunter, and D. Pohl, in Laser Induced Dynamic Gratings, Springer, Heidelberg (1986).
8. G. K. L. Wong and Y. R. Shen, Phys. Rev. A 10, 1277 (1974).
9. T. J. Hall, R. Jaura, L. M. Connors, and P. D. Foote, Progress Quantum Electron. 10, 77 (1985).
10. H. Fujiwara and K. Nakagawa, Opt. Comm. 66, 307 (1988).
11. S. Ducharme, J. C. Scott, R. J. Tweig, and W. E. Moerner, Phys. Rev.Lett. 66, 1846 (1991).
12. W. F. Moerner and S. M. Silence, Chem. Rev. 94, 127 (1994).
13. W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, Nature 351, 49 (1991).
14. I. C. Khoo, H. Li, and Y. Liang, Opt. Lett. 19, 1723 (1994).
15. F. Simoni, O. Francescangeli, Y. Reznikov, and S. Slussarenko, Opt.Lett. 22, 549 (1997).
16. H. Ono and N. Kawatsuki, Opt. Lett. 22, 1144 (1997).
17. G. Cipparrone, A. Mazzulla, and Simoni, Opt. Lett. 23, 1505 (1998).
18. H. Hervet, W. Urbach, and F. Rondelez, J. Chem. Phys. 68, 2725 (1978).
19. I. Janossy, and A. D. Lloyd, and B. S. Wherrett, Mol. Cryst. Liq.Cryst., 179, 1 (1990).
20. D. Voloschenko, A. Khizhnyak, Yu. Reznikov, and V. Reshetnyak,Jan. J Appl. Phys. 34, 566 (1995).
21. O. Francescangeli, S. Slussarenko, F. Simoni, D. Andrienko, V.Reshetnyak, and Y. Reznikov, Phys. Rev. Lett. 82, 1855 (1999).
22. D. Voloschenko and O. D. Lavrentovich, J. Appl. Phys. 86, 4843 (1999).
23. S. Serak and A. Antolykovalev, Mol. Cryst. Liq. Cryst. 320, 417 (1998).
24. L. Lucchetti, F. Simoni, and Y. Reznikov, Opt. Lett. 24, 1062 (1999).
25. E. Ouskova, D. Fedorenko, Yu. Reznikov, S. V. Shiyanovskii, L. Su,J. L. West, O. V. Kuksenok, O. Francescangeli, and F. Simoni, Phys.Rev. E 63, 021701 (2001).
26. D. C. Flanders, D. C. Shaver, and H. I. Smith, Appl. Phys. Lett. 32,597 (1978).
27. Y. Kawata, K. Takatoh, M. Hasegawa and M. Sakamoto, Liq. Cryst.16, 1027 (1994).
28. H. Niino, Y. Kawabata, and A.Yabe, Jan. J. Appl. Phys. Part 2 28,L2225 (1989).
29. D. W. Berreman, Phys. Rev. Lett. 28, 1683 (1972).
30. I. Janossy, Phys. Rev. E, 49, 2957 (1994).
31. See for example, Jacques Cognard, “Algnment of nematic Liquid Cystals and Their Mixtures” Gordon and Breach, New York, (1982).
32. M. Nakamura, J. Appl. Phys. 52, 4561 (1981).
33. T. Uchida and H. Seki, Vol. 3 “Liquid Crystals (application and uses)” World Scientific Publishing Co., Inc.
34. G. N. Taylor, F. J. Kahn and H. Schonhorn; Proceeding of IEEE 61,823 (1973).
35. G. P. Montgomery, Jr., G. W. Smith, and N. A. Vaz.“Polymer-dispersed liquid crystal films”. In V. P> Shibaev and L.Lam, editors, Liquid Crystalline and Mesomorphic Polymers.Springer-Verlag, New York, 1994.
36. J. W. Doane. “Polymer dispersed liquid crystal displays”. In B.Bahadur, editor, Liquid Crystals Applications and Uses, Vol. 1.World Scientific, Singapore, 1990.
37. A. Y.-G. Fuh, C.-C. Liao, K.-C. Hsu, C.-L. Lu, and C.-Y. Tsai, Opt.Lett. 26, 1767 (2001).
38. I. C. Khoo, Opt. Lett. 20, 2137 (1995).
39. A. Y.-G. Fuh, C.-C. Liao, C.-Y. Tsai, C.-L. Lu, and D.-M. Hsieh, Opt.Lett. 26, 447 (2001).
40. A. Y.-G. Fuh, C.-C. Liao, K.-C. Hsu, C.-L. Lu and T.-S. Mo, Non.Opt. Phys. & Mater. 11, 57 (2002).
41. A. Y.-G. Fuh, C.-C. Liao, K.-C. Hsu, and C.-L. Lu, Opt. Lett.(submitted).
42. O. V. Kuksenok and S. V. Shiyanovskii, Mol. Cryst. Liq. Cryst. 359,107 (2001).
43. A. E. Siegman and P. M. Fauchet, IEEE J. Quantum Electron. QE-22,1384 (1986).
44. S. Lugomer, Laser Technology: Laser Driven Process (Prentice Hall,New Jersey, 1990).
45. V. P. Vorflusev, H.-S. Kitzerow and V. G. Chigrinov, Appl. Phys. A 64, 615 (1997).
46. W. M. Gibbons and S.-T. Sun, Appl. Phys. Lett. 65, 2542 (1994).
47. M. Buchel, B. Weichart, C. Minx, H. Menzel and D. Johannsmann,Phys. Rev. E. 55, 455 (1996).
48. Y. Narutaki, et al., Euro Display’99 late-news papers, 121 (1999).
49. Apply for US patent.
50. J. West, V. Bodnar, Y. Kim, and H. Wonderly, Proceedings of 6th IDW (Sendai, Japan), 355 (1999).
51. M. W. Milos, SID 97 Symposium Digest XXVIII, 71 (1997).
52. P. Drzaic, B. Comiskey, J. D. Albert, L. Zhang, A. Loxley and R.Feeney, SID 98 Symposium Digest XXIX, 1131 (1998).
53. B. Preas, F. Vest, E. Richley, N. Sheridon and R. Sprague, SID 98 Symposium Digest XXIX, 211 (1998).
54. J. W. Doane, MRS Bulletin, 22 (1991).
55. S. J. Thomas, R. F. Harrison, J. F. Figueira, Appl. Phys. Lett. 40, 200 (1982).
56. S. R. J. Brueck and D. J. Ehrlish, Phy. Rev. Lett. 48, 1678 (1982).
57. J. M. Young, J. E. Sipe, J. S. Preston, and H. M. van Driel, Appl.Phys. Lett. 41, 261 (1981).
58. P. M. Fauchet and A. E. Siegman, Appl. Phys. Lett. 40, 824 (1982).
59. C. T. Walters, Appl. Phys. Lett. 25, 696 (1974).
60. M. J. Soileau and E. W. Van Stryland, J. Opt. Soc. Amer. 72, 1756 (1982).
61. J. F. Yong, J. E. Sipe, J. S. Preston, and H. M. Driel, Appl. Phys. Lett.41, 261 (1982).
62. Z. Guosheng, P. M. Fauchet, and A. E. Siegman, Phys. Rev. B 26,5366 (1982).
63. D. W. Berreman, Phys. Rev. Lett. 28,1683 (1972).
64. D. C. Flanders, D. C. Shaver, and H. I. Smith, Appl. Phys. Lett. 32,597 (1978).
65. Y. Kawata, K. Takatoh, M. Hasegawa and M. Sakamoto, Liq. Cryst.16, 1027 (1994).
66. H. Niino, Y. Kawabata, and A.Yabe, Jan. J. Appl. Phys., Part 2 28,L2225 (1989).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔