(3.238.174.50) 您好!臺灣時間:2021/04/17 05:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃俊傑
研究生(外文):Chun-Chieh Huang
論文名稱:旋翼葉片與渦漩交互作用噪音之數值研究
論文名稱(外文):Numerical Study of Rotor Blade and Vortex Interaction Noise
指導教授:黃啟鐘
指導教授(外文):Chii-Jong Hwang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:110
中文關鍵詞:可調有限體積上風法四面體網格葉片/渦漩交互作用噪音
外文關鍵詞:Adaptive Finite Volume Upwind MethodTetrahedral MeshBlade/Vortex Interaction Noise
相關次數:
  • 被引用被引用:1
  • 點閱點閱:79
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,旋翼飛行器例如直昇機,在國內航空運輸、救災及軍事用途方面日趨重要。然而隨著環保意識之抬頭及為達到作戰奇襲之目的,航空噪音問題逐漸受到重視。為了解渦漩與旋翼葉片交互作用,本文在整體之流場區域建立非結構性四面體網格。然後利用二步Rnuge-Kutta 時間積分、有限體積上風法及可調網格技巧求解非穩態三維尤拉方程式,以探討一指定形式之線渦漩與具NACA 0012翼剖面雙葉片之交互作用。在自由流馬赫數0.76和渦漩強度0.395下,本結果與其他文獻之計算值(渦漩中心壓力,升力係數及聲壓值)比較,來評估目前求解法之正確性。為了解不同自由流馬赫數(0.76和0.85)和渦漩強度(0.395和0.79)下之現象,不同時間和不同翼展處之等壓力線圖、等非穩態壓力反應圖、等聲壓值圖及葉片上非穩態壓力反應分佈圖被提出。
With respect to the domestic transportation, relief of disaster and military utilization, the flying vehicle with rotor blade, such as helicopter, becomes important in the recent years. However, the sense of environmental protection is on the increase, and the aero-noise problem is gradually emphasized. To understand the aeroacoustic behaviors of the rotor blade and vortex interaction, the unstructured tetrahedral meshes are created on the whole flow domain. Then the two-stage Runge-Kutta time integration, finite volume upwind method and adaptive mesh generation technique are adopted to solve the unsteady three-dimensional Euler equations, so that the interaction between a specified line vortex and two-blade rotor with NACA0012 airfoil is investigated. When the free stream Mach number and the strength of vortex are equal to 0.76 and 0.395, respectively, the present result (variation of vortex core pressure, time history of lift coefficient and sound pressure level) are compared with those in the other literature to evaluate the current solution method. To understand the phenomena under the different free-stream Mach number (0.76 and 0.85) and strength of vortex (0.395 and 0.79), the contours of pressure, unsteady pressure response, sound pressure level and the distribution of unsteady pressure response on the blade surface at the different time and span-wise location are presented.
摘要………………………………………………………Ⅰ
英文摘要…………………………………………………Ⅱ
誌謝………………………………………………………Ⅳ
目錄………………………………………………………Ⅴ
圖目錄……………………………………………………Ⅶ
符號說明…………………………………………………Ⅹ
第一章 緒論……………………………………………1
第二章 研究方法………………………………………6
2.1統御方程式………………………………… 6
2.2有限體積上風法…………………………… 8
2.2.1 通量差分分離法……………………………… 9
2.2.2 重建技巧………………………………………12
2.3邊界條件……………………………………13
2.4時間積分法…………………………………14
2.5噪音數值分析………………………………16
第三章 網格建立及可調網格技巧……………………19
3.1網格建立法…………………………………19
3.2可調網格技巧………………………………20
第四章 結果與討論……………………………………23
4.1可調非結構網格上風計算法之驗證………23
4.2線渦漩與雙葉片旋翼之交互作用…………26
第五章 結論……………………………………………29
參考文獻………………………………………………108
[1] Algermissen, G., and Wagner, S., “Computation of Helicopter BVI Noise by Coupling Free-Wake, Euler and Kirchhoff Method,” AIAA-98-2238, 1998.
[2] Arnaud, G., Falchero, D., Estival, Y., and Martin, P., “Simulation of D auphin DGV Noise in Descent Flight,” AIAA-98-2237, 1998.
[3] Sim, B. W-C., Leishman, J.G., Strawn, R.C., and George, A.R., “Analytical and Computational Investigations of Oblique Blade-Vortex Interaction-Generated Noise,” AIAA 97-1706, 1997.
[4] Xue, Yu, and Lyrintzis, A.S., “Rotating Kirchhoff Method for Three-Dimensional Transonic Blade-Vortex Interaction Hover Noise,” AIAA Journal, Vol. 32, No. 7, 1994, pp. 1350-1359.
[5] George, A.R., and Lyrintzis, A.S., “Acoustics of Transonic Blade-Vortex Interaciton,” AIAA Journal, Vol. 26, No. 7, 1988, pp. 767-776.
[6] Lent, H.M., Meier, G.E.A., Muller, K.J., Obermeier, F., Schievelbusch, U., and Schurmann, O., “Mechanisms of Transonic Blade-Vortex Interaction Noise,” Journal of Aircraft, Vol. 30, No. 1, 1993, pp. 88-93.
[7] Lin, S.Y., and Chin, Y.S., “Numerical Study on Transonic Blade-Vortex Interaction: Noise Source Control,” CEAS/AIAA-95-049, 1995.
[8] Lin, S.Y., and Chin, Y.S., “Numerical Study of Transonic Blade-Vortex Interaction,” AIAA Journal, Vol. 33, No. 8, 1995, pp. 1377-1382.
[9] Ng, N.L., Hillier, R., “Numerical Simulation of the Transonic Blade-Vortex Interaction,” Unsteady Aerodynamics; Proceedings of the Conference, London, Royal Aeronautical Society, 1996, pp. 8.1-8.11.
[10] Epstein, R.J. Rule, J.A., and Bliss, D.B., “Novel Method for Calculating Two-Dimensional Blade Vortex Interaction,” AIAA Journal, Vol. 35, No. 5, 1997, pp. 909-912.
[11] Meadows, K.R., Kumar, A., and Hussaini, M.Y., “Computational Study on the Interaction Between a Vortex and a Shock Wave,” AIAA Journal, Vol. 29, No. 2, 1991, pp. 174-179.
[12] Casper, J., and Meadows, K.R., “Using High-Order Accurate Essentially Nonoscillatory Schemes for Aeroacoustic Applications,” AIAA Journal, Vol. 34, No. 2, 1996, pp. 244-250.
[13] Lin, S.Y., and Chin, Y.S., “Comparision of Higher Resolution Euler Schemes for Aeroacoustic Computations,” AIAA Journal, Vol. 33, No. 2, 1995, pp. 237-245
[14] Strawn, R.C., Biswas, R., and Garceau, M., “Unstructured Adaptive Mesh Computations of Rotorcraft High-Speed Impulsive Noise,” Journal of Aircraft, Vol. 32, No. 4, 1995, pp. 754-760.
[15] Hwang, C.J., and Kuo, J.Y., “Adaptive Finite Volume Upwind Approaches for Aeroacoustic Computations,” AIAA Journal, Vol. 35, No. 8, 1997, pp. 1286-1293.
[16] Frink, N.T., Parikh, P., and Pirzadeh, S., “A Fast Upwind Solver for the Euler Equations on Three-Dimensional Unstructured Meshes,” AIAA Paper 91-0102, 1991.
[17] Frink, N.T., “Upwind Scheme for Solving the Euler Equations on Unstructured Tetrahedral Meshes,” AIAA Journal, Vol. 30, No. 1, 1992, pp. 70-77.
[18] Liu, C.Y., and Hwang, C.J., “New Strategy for Unstructured Mesh Generation,” AIAA Journal, Vol. 39, No. 6, 2001, pp. 1078-1085.
[19] Lohner, R., and Baum, J.D., “Adaptive h-Refinement on 3D Unstructured Grids for Transient Problems,” International Journal for Numerical Methods in Fluids, Vol.14, 1992, pp. 1407-1419.
[20] Jameson, A., Schmidt, W., and Turkel, E., 1981, “Numerical Solutions of the Eular Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes, ” AIAA Paper 81-1259.
[21] Shu, C. W., “Total-Variation-Diminishing Time Discretizations,” SIMA Journal on Scientific and Statistical Computing, Vol. 9, No. 6, 1988, pp.1073-1084.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔