跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 08:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳振瑞
研究生(外文):Chen-Jui Wu
論文名稱:有限翼展尾隨渦流結構抑制之實驗研究
論文名稱(外文):Experimental Study on Wake Suppression of Trailing Vortices Behind a Finite Wing
指導教授:蕭飛賓
指導教授(外文):F.B. Hsiao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:122
中文關鍵詞:尾隨渦流
外文關鍵詞:suppressiontrailing vorticesvorticity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本研究探討有限長機翼後緣加裝振動片激擾對於尾流的結構以及發展情形之抑制。實驗使用NACA0012的有限長矩形翼作為基本模型,藉由翼後緣加裝自由振動片以及由馬達控制上下擺動頻率(5Hz)之振動片對尾流作激擾,探討此類激擾對尾流結構及發展情形之影響及改變。在實驗過程中風洞的風速為20m/s,翼弦雷諾數 ,攻角維持於12度。藉由五孔皮託管量測三維速度方向後,對流場資料作分析。流場資料顯示:於翼後緣加裝自由振動片激擾,對於尾流結構及發展情形的抑制達到效果。由馬達控制上下擺動頻率(5Hz)之振動片激擾,對於尾流結構及發展情形的抑制可分成兩個區域:尾流成長區以及潰散區。在尾流成長區中,渦流強度以及側向速度的成長甚至有超越基本翼型尾流發展的趨勢。在潰散區, 發現渦流強度及側向速度相較於基本翼型和加裝自由振動片激擾而言,有明顯的衰退趨勢。實驗所得到的結果顯示:翼後緣固定頻率(5Hz)振動片激擾的確對於尾流結構及發展情形產生更明顯有效的抑制作用。
ABSTRACT
This thesis studies the suppression of the wake structure and its development behind a finite wing under flapping excitation at the trailing edge of the wing. The basic model of the finite wing in the experiments is a rectangular wing with NACA0012 airfoil. By means of both free flaping and fixed frequency flapping excitations, the suppression of the wake structure and development in the trailing vortices are investigated in details. The freestream velocity is kept at 20m/s with the corresponding Reynolds number of based on the wing chord, and the angle of attack (AOA) of 12 degrees throughout the experiments is operated. Flowfield data would be analyzed, after all three dimensional flow fields in streamwise (U), transverse (V), and spanwise (W) directional are measured by using a five-hole pitot tube. The experimental data indicates that the suppression of the wake structure is apparently under the free flapping excitation. Under 5Hz frequency flapping excitation, the downstream wake flow development can be divided into two ranges: wake-developing range and wake-decay range. Within the wake-developing range, the growth of the vorticity strength and the transverse velocity tends to overtake the natural wake flow without excitation. Within the wake-decay range, it was found that the vorticity strength and transverse velocity tend to decrease more than the other cases. The experimental result has also proved that the 5Hz frequency flapping excitation case is more effective to suppress the wake flow structure and its development of the trailing vortices behind the finite wing model.
中文摘要........................................................Ⅰ
ABSTRACT..................................................Ⅱ
CONTENTS..................................................Ⅳ
LIST OF TABLES....................................................Ⅵ
LIST OF FIGURES...................................................Ⅶ
NOMENCLATURE..............................................ⅩⅤ
CHAPTER
Ⅰ INTORDUCTION……………………………………………………1
1.1 Preface………………………………………………………………………....1
1.2 Literature Survey.……………………………………………………………...3
1.3 Motivation and Objectives...…………………………………………………...6
Ⅱ EXPERIMENTAL FACILITY………..…………………………….…….8
2.1 Wind Tunnel……………………………………………………………………8
2.2 Experimental Model……………………………………………………………8
2.3 Measurement System……………………………………………………….…..9
2.3.1 Calibration of Five-Hole Pitot Tube……………………………….….…..9
2.4 Traversing Mechanism…………………………………………………………..13
2.5 Data Acquisition System………………………………………………..…….14
Ⅲ EXPERIMENTAL PROCEDURES AND PRINCIPLES……….….15
ABSTRACT
C3.1.1 Test Conditions………………………………………………………….15
3.1.2 Measuring Range…………………………………...……………………15
3.1.3 Nondimensionalize Scale………………………………………………..16
3.1.4 Experiment Setup………………………………………………………..16
3.2 Experimental Principles……………………………………………………….17
3.2.1 Scale of Plane Wake…………………………………..…………………17
3.2.2 Scale of Vortex Radius…………………………………………………..17
3-2-3 Streamwise Vorticity………………………...…………………..………18
Ⅳ RESULTS AND DISCUSSIONS…………….……………………………..19
4.1 Basic Flow Structure………………………………………………………….19
4.1.1 Flow Development of Mean Velocity Along Downstream…….………..19
4.1.2 Mean Crossflow Velocity Vectors Along Downstream……………….…22
4.1.3 Vorticity Along Downstream……………...………………………….….23
4.2 Wake Behavior in Flapping Excitation………………………….…………….23
Ⅴ CONCLUSIONS AND SUGGESTIONS………………………………..27
5.1 Conclusions……………………………………………………………………27
5.2 Suggestions for Further Study…………………………………………………28
REFERENCES…………………………………………………………………….29
REFERENCES
[1] Patrick, R. V., “Flight Safety Digest”, Vol. 21 No. 3-4 , 2002,pp1-5.
[2] Nolan, M. S., “Fundamental of Air Control,” third edition, Brooks/Cole. Wadsworth, Inc., New York, Chapter 6 , 1999, pp.215-253.
[3] Hinton, D. A., “Aircraft Vortex Spacing System (AVOSS) Conceptual Design,” NASA Tech. Memo No.110184, 1995, pp.27-31.
[4] Perry, R. B., Hinton, D. A. and Stuever, R. A., “ NASA Wake Vortex Research for Aircraft Spacing,” 35th Aerospace Sciences Meeting & Exhibit, Reno, NV, AIAA 97-0057, 1997, pp.9-15
[5] Hinton, D. A., Charnock, J. K., Bagwell, D. R. and Grigsby, D. “ NASA Aircraft Vortex Spacing System Development Status,” 37th Aerospace Sciences Meeting & Exhibit , Reno, NV, AIAA 99-0753, 1999, pp.17-22.
[6] Dacles-Mariani, Jennifer,K., Rogers, S., Kwak, D and Zilliac, G., “A Computational Study of Wingtip Vortex Flowfield”, AIAA 93-3010, 1995, 1561-1568.
[7] Batchelor, G. K., “Axial Flow in Trailing Line Vortices”, J. Fluid Mech., Vol. 20, part 4, 1964, pp. 645-658
[8] Francis, T. B. and Katz, J. “Observations on the development of a tip vortex on a rectangular hydrofoil, Trans” J. Fluids engeg 110, 1988, pp.208-215
[9] Katz, J. and Bueno Galdo, J. “Effect of roughness on rollup of tip vortices on a rectangular hydrofoil.” J. Aircraft 26, 1989, pp247-253
[10] Devenport, W. J., Rife, M. C., Liapis, S. I. and Follin, G.. J., “The structure and Development of a wing tip vortex”, J. Fluid Mech, Vol. 312, 1996, pp.67-106.
[11] Crow, S. C., “ Stability Theory for a Pair of Trailing Vortices,” AIAA Journal, Vol. 8, No. 12, Dec, 1970, pp.2172-2179.
[12] Jennifer, D. M., Zilliac, G. G., Crow, J. S. and Bradshaw, P., “ Numerical/Experimental Study of Wingtip Vortex in the Near Field,” AIAA Journal, Vol. 33, No. 9, Sep, 1995.
[13] Ramaprian, B. R. and Zheng, Y., “Measurement in Rollup Region of the Tip Vortex from a Rectangular Wing,” AIAA Journal, Vol. 35, No. 12, Dec, 1997, pp.1658-1667.
[14] Cheng, C. Z., “Experimental Studies of Unsteady Finite-Wing Wake Flow Development,” 2002, Master Thesis of NCKU.
[15] Bilaniin, A. J. and Widnall, S. E. “Aircraft Wake Dissipation by Sinusoidal Instability and Vortex Breakdown,” AIAA Paper 73-107.
[16] Sarpkaya, T. and Daly, J. J., “Effect of Ambient Turbulence on Trailing Vortices,” J. Aircraft, Vol 24, June, 1987, pp.399-404.
[17] Liu, H. T., “Effect of Ambient Turbulence on Trailing Vortex Wake,” J. Aircraft, Vol. 29, No. 2, March-April , 1992, pp.255-263.
[18] Sarpkaya, T., “Decay of Wake Vortices of Large Aircraft,” AIAA Journal, Vol. 36, No. 9, Sep, 1998, pp.1671-1679.
[19] Harvey, J. K. and Perry, F. J., “Flowfield Produced by Trailing Vortices in the Ground,” AIAA Journal, Vol. 9, No. 8, Aug, 1971, pp.1659-1660.
[20] Dee, F. S. and Nicholas, O. P., “Flight Measurement of Wing Tip Vortex Motion Near the Ground,” CP 1605, British Aeronautical Research Council, London, Jan.1968.
[21] Ciffone, D. L. and Pedley, B., “Measured Wake-Vortex Characteristics of Aircraft in Ground Effect,” J. Aircraft, Vol. 16. No. 2, Feb, 1979, pp.102-109.
[22] Orlandi, P., “Vortex Dipole Rebound from the Wall,” Phys. Fluids A, Vol. 2, No. 8, Aug, 1990, pp.1429-1436.
[23] Crouch, J. D., “Instability and Transient growth for Two Trailing-Vortex pairs,” J. Fluid Mech. Vol. 350, 1997, pp.311-330.
[24] Rennich, S. C. and Lele, S. K., “A Method for Accelerating the Destruction of Aircraft Wake Vortices,” AIAA Paper 98-0667.
[25] Spalart, P. R., “Airplane Trailing Vortices,” Ann. Rev. Fluid Mech. Vol. 31,1998, pp.107-138.
[26] Liu, H. T., Hwang, P. A. and Snaky, R. A., “Physical Modeling of Ground Effect on Vortex Wakes,” J. Aircraft, Vol. 29, No. 6, Nov.-Dec, 1992, pp.1027-1034.
[27] Condit, P. M. and Tracy, P. W., “Results of the Boeing Company Wake Turbulence Test Program,” Aircraft Wake Turbulence and It’s Detection, Plenm Press, New York, 1971, pp.489-492.
[28] Hallock, J. N., Sigona, J. J. and Burnham, D. C., “Measurements of Vortices Stalled Near Extended Runway Centerline on Final Approach,” AIAA paper 98-0591, Jan. 1998.
[29] Hallock, J. N. and Burnham, D. C., “Measurements of Wake Vortices Interacting with the Ground,” AIAA Paper 98-0593, Jan. 1998.
[30] Jacob, J. D. and Savas, O. “Vortex Dynamics in Trailing Wakes of Flapped Rectangular Wings,” AIAA 35th Aerospace Sciences Meeting & Exhibit, Jan. 6-10, Reno NV, 1997, AIAA 97-0048.
[31] Jacob, J. D., Liepmann, D. and Savas, O. “Experimental Investigation of Forced Wakes Vortices of Rectangular Wing,” AIAA Paper No.96-2497, 1996.
[32] Gad-el-Hak K., “Flow Control: The Future,” J. of Aircraft, Vol. 38, No.3, 2001, pp.402-417.
[33] Hsiao, F.B., Liang, P.F. and Huang, C.Y., “ High-induced Airfoil Improvement by Leading-edge Oscillating Flap Control,” J. of Aircraft, Vol. 35, No. 3, 1998, pp. 508-510.
[34] Hsiao, F.B., Lee, Tzu-Wei and Hsu, C.C., “The Trailing Vortex Development Under Ground Effect by Experimental Approaches,” Proceedings of the 5th International Conference on Hydrodynamics, Taiwan, Oct. 31-Nov. 2, 2002, pp. 321-326.
[35] Lee, C. S. and Wood, N. J., “Calibration and Data Reduction for A Five-Hole Probe”, JIAA TR-73, Stanford University, June, 1986.
[36] Lugt, H. J., “Vortex Flow in Nature and Technology”, John Wiley & Sons, Inc., U.S.A, 1983, pp. 30-31.
[37] Chigier, N.A. and Corsiglia, V.R. “ Wind Tunnel Studies of Wing Wake Turbulence”, AIAA Paper, No72, 1972, pp.41-43.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文