跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/05 21:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王仰高
研究生(外文):Yang-Kao Wang
論文名稱:膠原蛋白凝膠於MDCK細胞調控focaladhesioncomplex蛋白表現之機轉
論文名稱(外文):Mechanisms of regulation of focal adhesion complex proteins by collagen gel in MDCK cells
指導教授:湯銘哲湯銘哲引用關係
指導教授(外文):Ming-Jer Tang
學位類別:博士
校院名稱:國立成功大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:88
中文關鍵詞:細胞凋亡膠原蛋白凝膠焦點粘著激脢基質軟硬度蛋白酵解
外文關鍵詞:collagen gelsubstratum rigidityapoptosisproteolysisfocal adhesion kinase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
適當的細胞及細胞外基質間的反應,可以促進細胞的生長、生存及分化。在本實驗室之前的研究發現,將MDCK種入膠原蛋白凝膠中會形成囊泡,而囊泡中的空腔的形成則是與細胞的凋亡有關。為了證實膠原蛋白凝膠造成細胞的凋亡是透過MDCK細胞之頂端或是基側端將訊息傳入,我們首先以膠原蛋白凝膠覆蓋MDCK細胞。在我們之前的研究發現:以膠原蛋白凝膠覆蓋可引發MDCK上皮細胞重塑(remodeling)形成管腔狀構造及細胞凋亡。在本實驗中, 我們發現以膠原蛋白凝膠覆蓋24小時所引發之細胞凋亡是開始於一些無法造成細胞重塑之區域(第一階段之凋亡), 在覆蓋48小時後會延伸到已產生重塑之區域(第二階段之凋亡)。膠原蛋白凝膠覆蓋引發之凋亡現象並伴隨有細胞在focal adhesions區FAK,talin,p130cas,及c-src選擇性蛋白酵解。然而在focal adhesions的蛋白質如paxillin,a-actinin,vinculin等在膠原蛋白凝膠覆蓋引發之凋亡現象中並無蛋白酵解現象。我們使用了各種不同的蛋白酵素抑制劑中, 只有protease inhibitor cocktail抑制了膠原蛋白凝膠覆蓋引發之蛋白酵解及第一階段細胞凋亡。但是protease inhibitor cocktail無法阻礙膠原蛋白凝膠覆蓋引發之細胞重塑及第二階段之凋亡。為了要了解再第二階段的凋亡的生化機轉,我們使用了各種不同的caspase抑制劑。我們發現:DEVD-fmk及z-VAD-fmk可抑制第二階段的FAK之酵解,但是只有z-VAD-fmk可以抑制膠原蛋白凝膠引發之第二階段凋亡。若混合protease inhibitor cocktail及z-VAD-fmk可完全的抑制膠原蛋白凝膠引發之細胞凋亡及focal adhesion complex之蛋白質酵解。綜合以上,我們發現:膠原蛋白凝膠覆蓋可引發兩個階段的細胞凋亡:第一階段的凋亡與focal adhesion complex之蛋白質酵解有關,第二階段之凋亡則與caspase的活化有關。
接下來為了測試細胞的基側端是否會接受膠原蛋白凝膠的訊息,而影響細胞的形態及功能,我們將MDCK培養在膠原蛋白凝膠上,探討細胞培養在膠原蛋白凝膠上時,膠原蛋白凝膠對細胞功能的調控,特別是focal adhesion complex蛋白質的表現。我們發現:當細胞培養在膠原蛋白凝膠上時focal adhesion complex蛋白的表現如FAK、talin、p130cas、paxillin、PYK2受到選擇性的抑制,細胞質內的蛋白質如c-src及內質網內的蛋白質如calnexin則不受影響。此種現象並不是MDCK細胞獨有,在我們觀察到的上皮細胞,腫瘤細胞以及纖維母細胞都會發生。除了膠原蛋白凝膠外,我們發現基質膠亦可造成focal adhesion complex蛋白表現下降,而膠原蛋白凝膠、基質膠鍍膜以及洋菜膠則不會。顯示基質軟硬度與focal adhesion complex蛋白表現下降有關。膠原蛋白凝膠影響focal adhesion complex蛋白表現下降主要是透過alpah2 beta1整合蛋白將訊息傳入,透過後轉錄機制,造成細胞蛋白質合成下降及蛋白酵素calpain的活性增加導致。
Proper interaction between extracellular matrix and cells offers benefit for cell growth, survival, and differentiation. Our previous studies have found that MDCK cells formed cysts structures when cultured in three-dimensional collagen gel. The formation of the cavity in cyst was caused by apoptosis. To assess whether signals of collagen gel induced cellular behavior was transduced from the apical site of the cells, we used collagen gel overlay to the apical membrane of subconfluent MDCK cells. We found that collagen gel overlay induced cell remodeling and gradually developed lumen-like formation in 24 hr. In addition, apoptosis could be observed in these cells. In this thesis, I try to elucidate the mechanisms of collagen gel controls cellular behavior. First, I found that collagen gel overlay induced apoptosis was initiated at the areas exclusive of cell remodeling within 24 h (first phase) and extended into areas of cell remodeling within 48 h (second phase). The collagen gel overlay-induced apoptosis was found to be accompanied by selective proteolysis of proteins in focal adhesion complex, i.e. focal adhesion kinase (FAK), talin, p130cas, and c-src, but not paxillin, a-actinin, and vinculin. Cycloheximide abolished collagen gel overlay-induced degradation of FAK, talin, p130cas, and c-src as well as apoptosis. To elucidate whether selective proteolysis of focal adhesion complex proteins results in apoptosis of the first phase, we employed various protease inhibitors, only protease inhibitor cocktail blocked collagen gel overlay-induced proteolysis of focal adhesion complex proteins as well as apoptosis of the first phase. The second phase proteolysis of FAK was inhibited by DEVD-fmk and z-VAD-fmk, but only z-VAD-fmk blocked collagen gel overlay-induced apoptosis of the second phase. Finally, combination of protease inhibitor cocktail and z-VAD-fmk could completely block collagen gel overlay-induced apoptosis as well as the proteolysis of focal adhesion complex proteins. Taken together, collagen gel overlay induces two phases of apoptosis: the first phase is dependent on proteolysis of focal adhesion complex proteins and the second is dependent on activation of caspases.
The second project was to understand whether morphological and biochemical changes were presented in cells cultured on collagen gel. We found that focal adhesion complex proteins, including FAK, talin, paxillin and p130cas, but not vinculin, were decreased within 1 h when MDCK cells were cultured on collagen gel. Collagen gel-induced selective decrease of focal adhesion proteins was observed in all lines of cells examined, including epithelial, fibroblastic and cancer cells. Matrigel also induced selective down-regulation of focal adhesion proteins. However, cells cultured on collagen gel- or matrigel-coated dishes did not show any changes of focal adhesion proteins. These data suggest that the physical nature of the gel, i.e. the rigidity, is involved in the expression of focal adhesion proteins. The collagen gel-induced down-regulation of focal adhesion complex proteins was caused by reduction of protein synthesis and activation of proteases such as calpain. Over-expression of dominant negative mutant of discordin domain receptor 1 (DDR1) or FAK-related non kinase (FRNK) did not prevent, whereas anti-a2b1 integrin neutralizing antibody completely blocked collagen gel-induced down-regulation of focal adhesion complex proteins. Taken together, our results indicate that the rigidity of collagen gel controls expression of focal adhesion complex proteins, which is mediated by a2b1 integrin, but not DDR1.
Abstract----------------------------------------------------------------- i
中文摘要 ----------------------------------------------------------------iii
誌謝 -------------------------------------------------------------------- v
Chapter 1 Introduction
Extracellular matrix (ECM)----------------------------------------------- 1
Receptors for the ECM ------------------------------------------------------------------------- 3
Focal adhesion complex proteins ----------------------------------------- 4
Regulation of the expression of focal adhesion complex proteins by calpain 5
ECM and apoptosis ------------------------------------------------------- 6
Mechanical property of substratum --------------------------------------- 7
Chapter 2 Materials and methods
Animals ----------------------------------------------------------------- 9
Cells and cell culture -------------------------------------------------- 9
Preparation of collagen gel, matrigel and agarose gel ------------------- 9
Preparation of cell lysates for overlay model --------------------------- 10
Western blot analysis --------------------------------------------------- 10Flow cytometry analysis ------------------------------------------------- 11
Treatment with protease inhibitors or caspase inhibitors ---------------- 11
RNA extraction ---------------------------------------------------------- 12
RT-PCR ------------------------------------------------------------------ 12
Measurement of protein synthesis rates ---------------------------------- 13
Cloning and selection of stable clone of DDR1 in MDCK cell -------------- 13
Immunofluorescence and confocal study ----------------------------------- 13
Statistics -------------------------------------------------------------- 14
Chapter 3 Collagen gel overlay induces two phases of apoptosis in MDCK cells
Abstract ---------------------------------------------------------------- 15
Introduction ------------------------------------------------------------ 17
Results ----------------------------------------------------------------- 20
Discussion -------------------------------------------------------------- 25
Chapter 4 Rigidity of collagen fibrils controls collagen gel-induced down-regulation of focal adhesion complex proteins mediated by alpah2beta1 integrin
Abstract ---------------------------------------------------------------- 30
Introduction ------------------------------------------------------------ 31
Results ----------------------------------------------------------------- 33
Discussion -------------------------------------------------------------- 38
Chapter 5 Summary ------------------------------------------------------- 42
References -------------------------------------------------------------- 46
Table ------------------------------------------------------------------- 60
Figures ----------------------------------------------------------------- 61
作者簡歷 ----------------------------------------------------------------87
1.Aikawa R., T. Nagai, S. Kudoh, Y. Zou, M. Tanaka, M. Tamura, H. Akazawa, H. akano, R. Nagai, and I. Komuro. Integrins play a critical role in mechanical stress-induced p38 MAPK activation. Hypertension 39: 233-238, 2002.
2.Ali M. H. and P. T. Schumacker. Endothelial responses to mechanical stress: where is the mechanosensor? Crit Care Med 30: S198-S206.
3.Arthur J. S., J. S. Elce, C. Hegadorn, K. Williams, P. A. Greer. Disruption of the murine calpain small subunit gene, Capn4: calpain is essential for embryonic development but not for cell growth and division. Mol Cell Biol 20: 4474-81, 2000
4.Assoian R. A. and E. E. Marcantonio. The extracellular matrix as a cell cycle control element in atherosclerosis and restenosis. J Clin Invest 98: 2436-2439, 1996.
5.Beckerle M., K. Burridge, G. DeMartino, and D Croall. Colocalization of calcium-dependent protease II and one of its substrate at sites of cell adhesion. Cell 51: 569-577, 1987.
6.Bella J., M. Eaton, B. Brodsky, and H. M. Berman. Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science 266: 75-81, 1994.
7.Bökel C. and N. H. Brown. Integrins in development: moving on, response to, and stick to the extracellular matrix. Dev Cell 3: 311-321, 2002.
8.Boudreau N., Z. Werb, and M. J. Bissell. Suppression of apoptosis by basement membrane requires three-dimensional tissue organization and withdrawal from the cell cycle. Proc Natl Acad Sci USA 93: 3509-3513, 1996.
9.Brown N. H. Cell-cell adhesion via the ECM: integrin genetics in fly and worm. Matrix Biol. 19: 191-201, 2000.
10.Burridge K. and M. Chrzanowska-Wodnicka. Focal adhesions, contractility, and cell signaling. Ann Rev Cell Dev Biol 2: 463-519, 1996.
11.Camper L., Hellman U., and Lundgren-Akerlund E. Isolation, cloning and sequence analysis of the integrin subunit alpha10, beta1-associated collagen binding integrin expressed in chondrocytes. J. Biol. Chem. 273, 20383—20389, 1998.
12.Carragher, N. O., B. Levkau, R. Ross, and E. W. Raines. Degraded collagen fragments promote rapid disassembly of smooth muscle focal adhesions that correlates with cleavage of pp125 (FAK), paxillin, and talin. J Cell Biol 147: 619-630, 1999.
13.Cary L. A., J. F. Chang, and J. L. Guan. Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. J Cell Sci 109: 1787-1794, 1996.
14.Chan P. C., J. F Lai, C. H. Cheng, M. J. Tang, C. C. Chiu, and H. C. Chen. Supression of ultraviolet irradiation-induced apoptosis by overexpression of focal adhesion kinase in Madin-Darby cannine kidney cells. J. Biol. Chem. 274: 26901-26906, 1999.
15.Chavakis E., and S. Dimmeler. Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler Thromb Vasc Biol 22: 887-893, 2002.
16.Chen F. A., E. A. Repasky, and R. B. Bankert. Human lung tumor-associated antigen identified as an extracellular matrix adhesion molecule. J Exp Med 173: 1111-1119, 1991.
17.Chen H. C. and J. L. Guan. Association of focal adhesion kinase with its potential substrate phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 91: 10148-10152, 1994
18.Chen H. C. and J. L. Guan. Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. Proc. Natl. Acad. Sci. U S A 91: 10148-10152, 1994.
19.Chen H.C., P. A. Appeddu, J. T. Parsons, J. D. Hildebrand, M. D. Schaller, and J. L. Guan. Interaction of focal adhesion kinase with cytoskeletal protein talin. J. Biol. Chem. 270: 16995-16999, 1995.
20.Chen H. C., P. C. Chan, M. J. Tang, C. H. Cheng and T. J. Chang. Tyrosine phosphorylation of focal adhesion kinase stimulated by hepatocyte growth factor leads to mitogen-activated protein kinase activation. J Biol Chem 273: 25777-82, 1998.
21.Chiu S. J., S. T. Jiang, Y. K. Wang, and M. J. Tang. Hepatocyte growth factor upregulates alpha2beta1 integrin in Madin Darby canine kidney cells: implication in tubulogenesis. J Biomed Sci 9: 261-272, 2002.
22.Chiu W.T. and M. J. Tang. Collagen gel induces apoptosis of epithelial cells: role of tensegrity. Mol Biol Cell 10 (Suppl): 445a, 1999.
23.Choquet D., D. P. Felsenfeld, and M. P. Sheetz. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88: 39-48, 1997.
24.Cooray P., Y. Yuan, S. M. Schoenwaelder, C. A. Mitchell, H. H. Salem, and S. P. Jackson. Focal adhesion kinase (pp125FAK) cleavage and regulation by calpain. Biochem J 318: 41-47, 1996.
25.Crouch D. H., V. J. Fincham, and M. C. Frame. Targeted proteolysis of the focal adhesion kinase pp125FAK during c-myc-induced apoptosis is suppressed by integrin signaling. Oncogene 12: 2689-2696, 1996.
26.Damsky C. H. and Ilić D. Integrin signaling: it’s where the action is. Curr Opin Cell Biol 14:594-602, 2002.
27.Damsky C. H. and Z. Werb. Signal transduction by integrin receptors for extracellular matrix: Cooperative processing of extracellular information. Curr Opin Cell Biol 4: 772-781, 1992
28.Davis M. J., X. Wu, T. R. Nurkiewicz, J. Kawasaki, G. E. Davis, M. A. Hill, and G. A. Meininger. Integrins and mechanotransduction of the vascular myogenic response.Am J Physiol Heart Circ Physiol 280: H1427-H1433, 2001.
29.De Arcangelis A. and E. George-Labouesse. Integrin and ECM functions: roles in vertebrate development. Trends Genet 16: 389-395, 2000.
30.Fassler R. and M. Meyer. Consequences of lack of beta 1 integrin gene expression in mice. Genes Dev 9: 1896-1908, 1995.
31.Frisch S.M. and H. Francis. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124: 619-626, 1994.
32.Frisch S. M., K. Vuori, E. Ruoslahti, and P. Y. Chan-Hui. Control of adhesion dependent cells survival by focal adhesion kinase. J Cell Biol 134L 793-799, 1996.
33.Geiger B. and A. Bershadsky. Assembly and mechanosensory function of focal contact. Curr Opin Cell Biol 13: 584-592, 2001.
34.Geiger B. and A. Bershadsky. Exploring the neighborhood: adhesion-coupled cell mechanosensors. Cell 110:139-142, 2002.
35.Giancotti F. G. Integrin signaling: specificity and control of cell survival and cell cycle progression. Curr Opin Cell Biol 9: 691-700, 1997.
36.Giancotti F. G. and E.Ruoslahti. Integrin signaling. Science 285: 1028-32, 1999.
37.Guan J. L. Focal adhesion kinase in integrin signaling. Matrix Biol. 16: 195-200, 1997.
38.Guinebault C., B. Payrastre, C. Racaud-Sultan, H. Mazarguil, M. Breton, G. Mauco, M. Plantavid, and H. Chap. Integrin-dependent translocation of phosphoinositide 3-kinase to the cytoskeleton of thrombine-activated platelets involves specific interaction of p85 alpha with actin filaments and focal ahdeiosn kinase. J Cell Biol 129:831-842, 1995.
39.Gullberg D., Gehlsen K. R., Turner D. C., Ahlen K., Zijenah L. S., Barnes M. J., and Rubin K. Analysis of a1b1, a2b1 and a3b1 integrins in cell-collagen interactions: identification of conformation dependent a1b1 binding sites in collagen type I. EMBO J. 11, 3865—3873, 1992
40.Hall A. Rho GTPases and the actin cytoskeleton. Science 279:509-514, 1998.
41.Hall H. G., D. A. Farson, and M. J. Bissell. Lumen formation by epithelial cell lines in response to collagen overlay: a morphogenetic model in culture. Proc Natl Acad Sci USA 79: 4672-4676, 1982.
42.Hansen L. K. and J. H. Albrecht. Regulation of the hepatocyte cell cycle by type I collagen matrix: role of cyclin D1. J Cell Sci 112: 2971-81, 1999.
43.Hemler M. E. Integrin associated proteins. Curr Opin Cell Biol 10: 578-585, 1998.
44.Hemler M. E., M. Elices, B. M. Chan, B. Zetter, N. Matsuura, and Y. Takada. Multiple ligand binding functions for VLA-2 and VLA-3 in the integrin family. Cell Diff Dev 32: 229-238, 1990.
45.Henriet P., Z. Zhong, P. C. Brooks, K. I. Weinberg, and Y.A. DeClerck. Contact with fibrillar collagen inhibits melanoma cell proliferation by up-regulating p27KIP1. Proc Natl Acad Sci USA 97: 10026-10031, 2000.
46.Hou G, W. Vogel, MP. Bendeck. The discoidin domain receptor tyrosine kinase DDR1 in arterial wound repair. J Clin Invest 107: 727-35, 2001.
47.Howe A., A. E. Aplin, S. K. Alahari, and R. L. Juliano. 1998. Integrin signaling and cell growth control. Curr Opin Cell Biol 10: 220-231.
48.Hungerford J. E., M. T. Compton, M. L. Matter, B. G. Hoffstrom, and C. A. Otey. Inhibition of pp125FAK in cultured fibroblast results in apoptosis. J Cell Biol 135: 1383-1390, 1996.
49.Hynes, R.O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69: 11-25, 1992.
50.Hynes R. O. and Q. Zhao. The evolution of cell adhesion. J Cell Biol 150: F89-F95, 2000.
51.Ilic D., Y. Furuta, S. Kanazawa, N. Takeda, K. Sobue, N. Nakatsuji, S. Nomura, J. Fujimoto, M. Okada, T. Yamamoto, and S. Aizawa. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377: 539-544, 1995.
52.Ingber D. E. and J. Folkman. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: Role of extracellular matrix. J Cell Biol 109: 317-330, 1989.
53.Inomata M., M. Hayashi, Y. Ohno-Iwashita, S. Tsubuki, T. C. Saido, and S. Kawashima. Involvement of calpain in integrin-mediated signal transduction. Arch Biochem Biophysics. 328: 129-34, 1996.
54.Isahara K., Y. Ohsawa, S. Kanamori, M. Shibata, S. N. Waguri, Sato, T. Gotow, T. Watanabe, T. Momoi, K. Urase, E. Kominami, and Y. Uchiyama. Regulation of a novel pathway for cell death by lysosomal aspartic and cysteine proteinases. Neuroscience 91: 233-249, 1999.
55.Ivaska J. and J. Heino. Adhesion receptors and cell invasion: mechanisms of integrin-guided degradation of extracellular matrix. Cell Mol Lif Sci 57: 16-24, 2000.
56.Jacks T. and R. A. Weinberg. Taking the study of cancer cell survival to a new domension. Cell 111: 923-925, 2002.
57.Jiang, S. T., K. K. Liao, M. C. Liao, and M. J. Tang. Age effect of type I collagen on morphogenesis of Mardin-Darby canine kidney cells. Kidney Int 57: 1539-1548, 2000.
58.Jiang S. T., W. J. Chuang, and M. J. Tang. Role of fibronectin deposition in branching morphogenesis of Madin-Darby canine kidney cells. Kidney Int 57:1860-1867, 2000.
59.Juliano R. L. and S. Haskill. Signal transduction form from the extracellular matrix. J Cell Biol 120: 577-585, 1993.
60.Kamada S., A. Shimono, Y. Shinto, T. Tsujimura, T. Takahashi, T. Noda, Y. Kitamura, H. Kondoh, and Y. Tsujimoto. Bcl-2 deficiency in mice leads to pleiotropic abnormalities: Accerlated lympoid cell death in thymus and spleen, polycystic kidney, hair hypopigmentation, and distorted small intestine. Cancer Res 55: 354-359, 1995.
61.Kamohara H., S. Yamashiro, C. Galligan, and T. Yoshimura. Discoidin domain receptor 1 isoform-a (DDR1alpha) promotes migration of leukocytes in three-dimensional collagen lattices. FASEB J 15: 2724-6, 2001.
62.Khwaja A, P. Rodriguez-Viciana,. S. Wennstrom, P. H. Warne, and J. Downward. Matrix adhesion and Ras transformation both activate phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J 16: 2783-2793, 1997.
63.Koyama H., E. W. Raines, K. E. Bornfeldt, J. M. Roberts, and R. Ross. Fibrillar Collagen Inhibits Arterial Smooth Muscle Proliferation through Regulation of Cdk2 Inhibitors. Cell 87: 1069-1078, 1996.
64.Kramer R. Z., J. Bella, B. Brodsky, and H. M. Berman. The crystal and molecular structure of a collagen-like peptide with a biologically relevant sequence. J Mol Biol 311: 131-47, 2001.
65.Kreidberg J. A. Functions of a3b1 integrin. Curr. Opin. Cell Biol 12:548-553, 2000.
66.Kulkarni S., D. E. Goll, and J. E. Fox. Calpain cleaves RhoA generating a dominant-negative form that inhibits integrin-induced actin filament assembly and cell spreading. J Biol Chem 277: 24435-24441.
67.Lai J. F., S. C. Kao, S. T. Jiang, M. J. Tang, P. C. Chan, and H. C. Chen. Involvement of focal adhesion kinase in hepatocyte growth factor-induced scatter of Madin-Darby canine kidney cells. J Biol Chem 275: 7474-7480, 2000.
68.Lee J., A. Ishihara, G. Oxford, B. Johnson, and K. Jacobson. Regulation of cell movement is mediated by stretch-activated calcium channels. Nature 400: 382-6, 1999.
69.Levkau B., B. Herren, H. Koyama, R. Ross, and E. W. Rains. Caspase-mediated cleavage of focal adhesion kinase pp125FAK and disassembly of Focal adhesion in human endothelial cell apoptosis. J Exp Med 187: 579-586, 1998.
70.Lin C. Q. and M. J. Bissel. Multi-faceted regulation of cell differentiation by extracellular matrix. FASEB J 7: 375-379, 1993.
71.Lin H. H., T. P. Yang, S. T. Jiang, H. Y. Yang, and M. J. Tang. Bcl-2 overexpression prevents apoptosis-induced Madin-Darby canine kidney simple epithelial cyst formation. Kidney Int 55: 168-178, 1999.
72.Lowry O. H., N. J. Rosebrough, A. L. Farr and R. J. Randall. Protein measurement with Folin phenol reagent. J Biol Chem 251: 165-175, 1951.
73.McAteer J. A., A. P. Even, and K. D. Gardner. Morphologenetic clonal growth of kidney epithelial cell line MDCK. Ana Rec 217: 229-239, 1987.
74.McAteer J. A. and T. J. Cavanagh. Medium hydrated collagen gel as an explant support in organ culture. J Tissue Cult Methods. 7: 117-122, 1982.
75.McKenna D. A., F. Dolfi, K. Vuori, and E. Ruoslahti. Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrix-specific in rat cardiac fibroblasts. J Clin Invest 101:301-310, 1998.
76.Mel L. and Zachary I. Nuclear localization and apoptotic regulation of an amino-terminal domain focal adhesion kinase fragment in endothelial cells. Biochem Biophys Res Comm 276: 1068-1074, 2000.
77.Meredith J, Z. Mu, T. Saido, and X. Du. Cleavage of the cytoplasmic domain of the integrin b3 subunit during endothelial apoptosis. J Biol Chem 273: 19525-19531, 1998.
78.Mosher D. F., J. Sottile, C. Wu, and J. A. McDonald. Assembly of extracellular matrix. Curr Opin Cell Biol 4: 810-818, 1992.
79.Mochitate K., P. Pawelek, and F. Grinnell. Stress relaxation of contracted collagen gels: disruption of actin filament bundles, release of cell surface fibronectin, and down-regulation of DNA and protein synthesis. Exp Cell Res 193: 198-207, 1991.
80.Nagase H. and J. F. Woessner, Jr. Matrix metalloproteinases. J Biol Chem 274: 21491-21494, 1999.
81.Nakayama K., I. Negishi, K. Kuida, H. Sawa, and D.Y. Loh. Targeted disruption of bcl-2ab in mice: occurrence of gray hair, polycystic kidney disease, and lymphocystopenia. Proc Natl Acad Sci USA 91: 3700-3704, 1994.
82.Ono Y., H. Sorimachi, and K. Susuki. Structure and physiology of calpain, an enigmatic protease. Biochem Biophys Res Commun 245: 289-294 1998
83.Pap M. and G. M Cooper. Role of glycogen synthase kinase-3 in the phosphotidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem 273: 19929-19932, 1998.
84.Palecek S. P., J. C. Loftus, M. H. Ginsberg, D. A. Lauffenburger, and A. F. Horwitz. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385: 537-40, 1997.
85.Pelham R. J. and Y.L. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94: 13661-13665, 1997.
86.Persikov A. V. and B. Brodsky. Unstable molecules form stable tissues. Proc Natl Acad Sci USA 99: 1101-1103, 2002.
87.Pfaff M., X. Du, and M. H. Ginsberg. Calpain cleavage of integrin b cytoplasmic domain. FEBS Lett 460: 17-22, 1999.
88.Polte T. and S. Hanks. Interaction between focal adhesion kinase and crk-associated tyrosine kinase substrate p130cas. Proc Natl Acad Sci USA 92: 10678-10682, 1992.
89.Potter D. A., J. S. Tirnauer, R. Janssen, D. E. Croall, C. N. Hughes, K. A. Fiacco, J. W. Mier, M. Maki, and I. M. Merman. Calpain regulates actin remodeling during cell spreading. J Cell Biol 141: 647-662, 1998.
90.Prockop D. J. and K. I. Kivirikko. Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64: 403-34, 1995
91.Pupa S. M., S. Menard, S. Forti, and E. Tagliabue. New insights into the role of extracellular matrix during tumor onset and progression. J Cell Physiol 192: 259-267, 2002.
92.Ray S. K., G. G. Wilford, C. V. Crosby, E. L. Hogan, and N. L. Banik. Diverse stimuli-induce calpain overexpression and apoptosis in C6 glioma cells. Brain Res 829: 18-27, 1999.
93.Richardson A. and J. T. Parsons. A mechanism for regulation of the adhesion associated protein tyrosine kinase pp125FAK. Nature (Lond.) 380: 538-540, 1996.
94.Rizzo V., A. Sung, and P. Oh. Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. J Biol Chem 273: 26323-26329, 1998.
95.Ruoslahti E. Integrin signaling and matrix assembly. Tumor Biol 17: 17-24, 1996.
96.Sastry S. K. and A. F. Howitz. Integrin cytoplasmic domains: mediators of cytoskeletal linkage and extra- and intracellular initiated transmembrane signaling. Curr Opin Cell Biol 5: 819-831, 1993.
97.Sato K. and S. Kawashima. Calpain function in the modulation of signal transduction molecules. Biol Chem 382: 743-51, 2001.
98.Sawada Y. and M. P. Sheetz. Force transduction by Triton cytoskeletons.J Cell Biol 156: 609-15, 2002.
99.Schlaepfer D. D., S. K. Hanks, T. Hunter, and P. Van de Geer. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372: 786-791, 1994.
100.Schlaepfer D. D. and T. Hunter. Focal adhesion kinase over-expression enhances ras-dependent integrin signaling to ERK2/mitogen-activated protein kinase through interactions with activated c-src. J Biol Chem 272:13189-13195, 1997.
101.Schlaepfer D. D., and T. Hunter. Integrin signaling and tyrosine phosphorylation: Just the FAK? Trends Cell Biol 8: 151-157, 1998.
102.Schlessinger, J. Direct binding and activation of receptor tyrosine kinase by collagen. Cell 91: 869-872, 1997.
103.Schmidt C., H. Pommerenke, F. Dürr, B. Nebe, and J. Rychly. Mechanical stressing of integrin receptors induces enhanced tyrosine phosphorylation of cytoskeletally anchored proteins. J Biol Chem 273: 5081—5085. 1998.
104.Schoenwaelder S. M. and K. Burridge. Bidirectional signaling between the cytoskeleton and integrins. Curr Opin Cell Biol 11: 274-286, 1999.
105.Schoenwaelder S. M., Y. Yuan, P. Cooray, H. H. Salem, and S. P. Jackson. Calpain cleavage of focal adhesion proteins regulates the cystoskeletal attachment of integrin aIIbb3 (platelet glycoprotein IIb/IIIa) and the cellular retraction of fibrin clots. J Biol Chem 272: 1694-1702, 1997.
106.Schwimmer R. and G. K. Ojakian. The a2b1 integrin regulates collagen-mediated MDCK epithelial membrane remodeling and tubule formation. J Cell Sci 108: 2487-2498, 1995.
107.Shaller M. D. Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim Biophys Acta 1540: 1-21, 2001.
108.Shaller M. and J. T. Parsons. pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol Cell Biol 15: 2635-2645, 1995.
109.Shrivastava A, C. Radziejewski, E. Campbell, L. Kovac, M. McGlynn, T. E. Ryan, S. Davis, M. P. Goldfarb, D. J. Glass, G. Lemke, and Yancopoulos G.D., 1997. An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol Cell 1: 25-34.
110.Sieg D. J., C. R. Hauck, D. Ilic, C. K. Klingbeil, E. Schaefer, C. H. Damsky, and D. D. Schlaepfer. FAK integrates growth-factor and integrin signals to promote cell migration. Nature Cell Biol 2: 249-256, 2000.
111.Suzuki K. and H. Sorimachi. A novel aspect of calpain activation. FEBS Lett 433: 1-4, 1998.
112.Tang M. J., J. J. Hu, H. H. Lin, W. T. Chiu, and S. T. Jiang. Collagen gel overlay induces apoptosis of polarized cells in cultures: disoriented cell death. Am J Physiol 275: C921-C931, 1998.
113.Venter J. G. et al. The sequence of human genome. Science. 291:1304-1351, 2001.
114.Vogel, W. Discoidin domain receptors: structural relations andfunctional implications. FASEB J. 13 (suppl.): S77-S82, 1999.
115.Vogel WF, A. Aszodi, F. Alves, and T. Pawson. Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol 21: 2906-17, 2001.
116.Vogel, W., G. D. Gish, F. Alves, and T. Pawson. The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1: 13-23, 1997.
117.Wallner E. I., Q. Yang, D. R. Peterson, J. Wada, and Y. S. Kanwar. Relevance of extracellular matrix, its receptors, and cell adhesion molecules in mammalian nephrogenesis. Am J Physiol Cell Physiol 275: F467-F477, 1998.
118.Wang, H. B., M. Dembo, S. K. Hanks, and Y. L. Wang. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci USA 98: 11295-11300, 2001.
119.Wang N. and D. E. Ingber. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys J 66: 2181-9, 1994
120.Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260: 1124-1127, 1993.
121.Wang Y.K., H. H. Lin, and M. J. Tang. Collagen gel overlay induces two phases of apoptosis in MDCK cells. Am J Physiol Cell Physiol 280: C1440-C1448, 2001.
122.Wei L, Y. Yang, X. Zhang, and Q. Yu. Anchorage-independent phosphorylation of p130Cas protects lung adenocarcinoma cells from anoikis. J Cell Biochem 87: 439-449, 2002.
123.Wen L. P., J. A. Fahrni, S. Troie, J. L. Guan, K. Orth, and G. D. Rosen. Cleavage of focal adhesion kinase by caspases during apoptosis. J Biol Chem 272: 26056-61, 1997.
124.Wolf B. B., J. C. Goldstein, H. R. Stennicke, H. Beere, G. P. Amarante-Mendes, G. S. Salvesen, and D. R. Green. Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation. Blood. 94: 1683-92, 1999.
125.Woo D. Apoptosis and the lost of kidney tissue in polycystic kidney disease. New Engl J Med 333: 18-25, 1995.
126.Wood D. E. and E. W. Newcomb. Caspase-dependent activation of calpain during drug-induced apoptosis. J Biol Chem 274: 8309-8315, 1999.
127.Xu L.H., X. Yang, C. A. Cynthia, D. A. Brenner, A. S. Baldwin, R. J. Craven Jr., and W. Gance. The focal adhesion kinase suppresses transformation-associated anchorage-independent apoptosis in human breast cancer cells. J Biol Chem 275: 30597-30604, 2000.
128.Yan B., D. A. Calderwood, B. Yaspan, and M. H. Ginsberg. Calpain cleavage promotes talin binding to the beta 3 integrin cytoplasmic domain. J Biol Chem 276: 28164-70, 2001.
129.Yurchenco P. D. and J. C. Schittny. Molecular architecture of basement membrane. FASEB J 4: 1577-1590, 1990.
130.Zachary I. and E. Rozengurt. Focal adhesion kinase: a point of convergence in the action of neuropeptides, integrins and oncogenes. Cell 71: 891-894, 1992.
131.Zao A. H., H. Reiske, and J. L. Guan. Regulation of the cell cycle by focal adhesion kinase. J Cell Biol 143: 1997-2008, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top