跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 13:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳伯辰
研究生(外文):Po-Chen Chen
論文名稱:ROC曲線下面積相似性和非劣性之研究
論文名稱(外文):On the Equivalence and Non-inferiority for the Areas of Two ROC Curves
指導教授:馬瀰嘉馬瀰嘉引用關係劉仁沛劉仁沛引用關係
指導教授(外文):Mi-Chi MaJen-Pei Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:統計學系碩博士班
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:95
中文關鍵詞:模擬非劣性相似性ROC曲線診斷檢定
外文關鍵詞:equivalencenon-inferiorityROC curve indexROC curvesimulationdiagnostic of test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:1
對於ROC曲線指標,過去大部分的文獻都是在探討兩種或是兩種以上診斷方法在相等性上的檢定。然而,此種檢定方法對於我們所關心的問題並非全然適當,因此就有些學者提出了相似性及非劣性的檢定方法以解決所要面對的問題。例如:在醫學上一種新的非侵入性診斷方法與一種已被認定為標準的侵入性診斷方法做比較,也許在診斷的效率上並不一定相等,但也許可以經過此種相似性及非劣性的檢定,得到新方法與標準的診斷方法是相似的,因此在成本、使用方便性及安全性的考量之下可以以新方法來代替標準的方法。對於ROC曲線指標而言,相似性或非劣性檢定所做的研究很少,本篇論文是利用DeLong, DeLong, Clarke-Pearson (1988) 無母數的方法,以及Dorfman and Alf (1968) 和Obuchowski and McClish (1997) 所提出的最大概似法來估計ROC曲線下面積,將ROC曲線下面積視為參數提出相似性及非劣性的檢定方法,並以模擬結果比較這三種方法的優劣。
In the past, for ROC curve index, most issue has focused on the question of whether the accuracy of two diagnostic tests differs. It may not be an appropriate question of interest in all situations, however. Hence, equivalence/non-inferiority test has been proposed to solve the questions of interest, e.g. in comparing diagnostic efficacy of an non-invasive alternative diagnostic (test) procedure to an invasive (reference) method. If the non-invasive alternative procedure is equivalence to the invasive method, we may use the non-invasive alternative diagnostic procedure because of its easy administration, its better safety profile or its reduced cost. But for ROC curve index, the literature on equivalence/non-inferiority test is scarce. In this paper, we compare the equivalence/ non-inferiority tests based on three methods for estimation of the area under ROC curve by DeLong, DeLong, and Clarke-Pearson (1988), Dorfman and Alf (1968), and Obuchowski and McClish (1997). A simulation study was conducted to empirically investigate the size and power of three methods.
Chapter 1 Introduction………………………………………………..1
1.1 The ROC Curve………………………………………………………….4
1.2 The Area under the ROC Curve (AUROC)……………………………6
1.3 Tests for Equivalence or Non-inferiority……………………………......7
Chapter 2 Current Statistical Methods for Equivalence/Non-inferiority
Test of Two AUROCs.........................................................10
2.1 Interval Hypotheses for Two AUROCs………………………………10
2.2 Asymptotic Tests………………………………………………………11
2.3 Estimation of AUROC and Variance…………………………………12
2.3.1 Single ROC curve………………………………………………………………12
2.3.2 k correlated ROC curves……………………………………………………...….14
Chapter 3 Proposed Methods………………………………………..16
3.1 Analysis of AUROC under Binormal Model…………………………...16
3.1.1 AUROC under Binormal Model………………………………………………….16
3.1.2 Maximum Likelihood Estimation for Estimations of Parameters a and b……….17
3.2 Estimation of the Variance and Covariance of AUROC under
Binormal Model………………………………………………………...21
3.2.1 Variance and Covariance of AUROC under Binormal Model…………………...21
3.2.2 Variance and Covariance for Estimates of a and b................................................22
3.2.2.1 Single AUROC………..……………………………………………………………..22
3.2.2.2 Two Correlated AUROCs…………………………………………………………...23
3.3 Equivalence and Non-inferiority Tests Based on the parameters of Binormal Model and Between Two AUROCs under the Binormal
Model………………………………………………………..…………24
Chapter 4 Simulation study………………………………………….27
4.1 Simulation Process……………………………………………………..27
4.1.1 Data Generation………………………...……………………………………..…29
4.1.2 Selection of Cutoff Points and Initial Points……………………….…………….30
4.2 Simulation Results……………………………………………………..31
Chapter 5 Conclusion………………………………………………...36
Reference……………………………………………………………..38
Appendix A…………………………………………………………...41
Appendix B…………………………………………………………...54
Appendix C…………………………………………………………...56
[1] Bamber, D. (1975). The area above the ordinal dominance graph and the area below the receiver operation graph, J. Math. Psych. 12: 387-415.
[2] Blackwelder, W. C. (1982). Proving the null hypothesis in clinical trials, Controlled Clinical Trials 3: 345-353.
[3] Dorfman, D. D. and Alf, Jr., E. (1968). Maximum-likelihood estimation of parameters of signal-detection theory─a direct solution, Psychometrika 33: 117-124.
[4] Dunnett, C. W. and Gent, M. (1977). Significance testing to establish equivalence between treatments with special reference to data in the form of 2 2 tables, Biometrics 33: 593-602
[5] DeLong, E., DeLong, D., and Clarke-Pearson, D. (1988). Comparing the areas under two or more correlated receiver operation characteristic cures: A nonparameteric approach, Biometrics 44: 837-845.
[6] Farrington, C. P. and Manning, G. (1990). Test statistics and sample size formulae for comparative binomial trials with null hypothesis of non-zero risk difference of non-inferiority relative risk, Statistics in Medicine 9: 1447-1454.
[7] Feinstein, A. R. (2002). Principles of Medicial Statistics, Chapman and Hall/CPC, Boca Raton. FL.
[8] Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution. Annals of Mathematical Statistics 19: 293-325.
[9] Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area under a receiver operation characteristic (ROC) curve, Radiology 143: 29-36
[10] Lu, Ying and Bean, J. A. (1995). On the sample size for one-sided equivalence of sensitivities based upon McNemar’s test, Statistics in Medicine 14: 1831-1839.
[11] Luchenbruch, P. A. and Lynch, C. J. (1998). Assessing screening tests: extensions of McNemar’s test, Statistic in Medicine 17: 2207-2217.
[12] Liu, J. P., Hsueh, H. M., Hsieh, E., and Chen, J. J. (2002). Tests for equivalence or non-inferiority for paired binary data, Statistics in Medicine 21: 231-245.
[13] McNeil, B. J. and Adelstein, S. I. (1976). Determining the value of diagnostic and screening tests, J. Nucl. Med. 17: 439-448.
[14] Metz, C. E. (1978). Basic principles of ROC analysis. Seminars in Nuclear Medicine Ⅷ, 283-298.
[15] Metz, C. E. (1986). ROC methodology in radiologic imaging, Invest. Radiol. 21: 720-733.
[16] Metz, C. E. (1989). Some practical issues of experimental design and data analysis in radilolgic ROC studies, Invest. Radiol. 24: 234-245.
[17] Nam, J-m. (1997). Establishing equivalence of two treatments and sample size requirements in matched-pairs design, Biometrics 17: 1422-1430.
[18] Obuchowski, N. and McClish, D. (1997). Sample size determination for diagnostic accuracy studies involving binormal ROC curve indices, Statistics in Medicine 16: 1529-1542.
[19] Obuchowski, N. (1997). Testing for equivalence of diagnostic test, Am. J. Radiol. 168: 13-17
[20] Sen, P. K. (1960). On some convergence properties of U-Statistics. Calcutta Statistical Association Bulletin 10: 1-18.
[21] Sox, Jr., H. C., Blatt, M. A., Higgins, M. C., and Marton, K. I. (1989). Medical decision making, Batterworths-Heinemann, Boston.
[22] Tu, D. (1997) A comparative study of some statistical procedures in establishing therapeutic equivalence of nonsystemic drugs with binary endpoints, Drug Information Journal 31: 1291-1300.
[23] Yerushalmy, J. (1947). Statistical problems in assessing methods on medical diagnosis, with special reference to X-ray technique, Pub. Health Research 62: 1432-1449.
[24] Zhou, X. H., Obuchowski, N. A., and McClish D. K. (2002). Statistical Methods in Diagnostic Medicine, John Wiley and Sons, New York.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top