(3.236.228.250) 您好!臺灣時間:2021/04/17 12:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊維仁
研究生(外文):Wei-Jen Yang
論文名稱:通道內三圓柱之大渦紊流模式及熱傳研究
論文名稱(外文):Large Eddy Simulations of Heat Transfer for Three Circular Cylinders in a Channel
指導教授:吳鴻文吳鴻文引用關係
指導教授(外文):Horng-Wen Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:造船及船舶機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:79
中文關鍵詞:紊流
外文關鍵詞:turbulence
相關次數:
  • 被引用被引用:2
  • 點閱點閱:106
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本論文係以元素疊代(Element-by-Element)為基礎的投射有限元素流體解析法(projection finite element fluid analysis)為主,對於均勻紊流流過二維混合對流通道之三圓柱的暫態流動及其熱傳現象進行分析。以EBE-PCG投射有限元素法取代以往傳統有限元素法解無因次化之Navier-Stokes Equation及能量方程式,乃是投射有限元素法具有矩陣較小,節省電腦儲存空間及減少CPU時間等優點。並且運用Large Eddy Simulation的紊流模式來模擬紊流流場,以前置處理之共軛梯度法(preconditioned conjugate gradient method)加以疊代而解出其速度場,壓力場和溫度場。
本文之三圓柱是以不同間距之三角形方式排列,考慮三圓柱壁面為等溫,平行通道壁面為絕熱條件。在某一雷諾數下,改變三圓柱的間距比,利用數值方法來討論三圓柱間彼此交互作用所引起的流場變化;並結合Gr數(Grashof number)的變化來預測對三圓柱之Nu 數(Nusselt number)的影響,進而瞭解二維垂直通道混合對流下三圓柱之紊流流場現象及熱傳效應。
摘要.......................................I
目錄.......................................II
圖目錄.....................................Ⅴ
符號說明...........................................ⅩI
第一章、前言
1-1 研究動機及目的...........................................1
1-2 文獻回顧...........................................2
第二章、EBE-PCG
2-1 利用Element-By-Element觀念...........................................8
2-2 利用Preconditioned共軛梯度法觀念...........................................9
第三章、數學模式及數值演算法
3-1 介紹...........................................12
3-2 數學方程式...........................................12
3-3 基本統御方程式之無因次化...........................................15
3-4 紊流模式...........................................21
3-5 利用FEM方法求解...........................................23
3-5 利用投射觀念(Projection method)....................................26
3-6 對於通道出口的處理...........................................28
第四章、結果與討論
4-1本文之數值解與參考文獻之比較...........................................31
4-2 在混合對流下,不同間距比 對流場的影響...........................................32
4-2-1 間距比=2對流場的影響...........................................32
(1)Gr=0、400000、4000000時阻力係數的變化...........................................33
(2)Gr=0、400000、4000000時升力係數的變化...........................................34
(3)Gr=0、400000、4000000時Nu的變化...........................................34
(4)Gr=0、400000、4000000時vortex的變化...........................................34
4-2-2 間距比=5對流場的影響...........................................35
(1)Gr=0、400000、4000000時阻力係數的變化...........................................35
(2)Gr=0、400000、4000000時升力係數的變化...........................................35
(3)Gr=0、400000、4000000時Nu的變化...........................................36
(4)Gr=0、400000、4000000時vortex的變化...........................................36
4-2-3 間距比=7對流場的影響...........................................37
(1)Gr=0、4000000時阻力係數的變化...........................................37
(2)Gr=0、4000000時阻力係數的變化...........................................37
(3)Gr=0、4000000時Nu的變化...........................................37
(4)Gr=0、4000000時vortex的變化...........................................38
4-3 在混合對流下,不同Re的值對流場的影響...........................................38
第五章、結論...........................................40
參考文獻...........................................74
[1] Chang, L.C., “Managing Temperature Distributions For LSI Packages by Flow Destabilization,” Master Thesis, NCKU, Tainan, June 1989.
[2] Chou, J.H. and Chiang, K.F., “Thermal Enhancement for Simulated LSI Packages by External Rods,” Paper prested at XXth International Symposium on Heat Transfer in Electronic and Macroelectronic Equipment Dubrdvnik,Yugoslavia. Aug.1988.
[3] Ratts, E., Anon, C.H., Mikic, B.B., and Patera, A.T., “Cooling Enhancement of Forced Convection Air Cooled Chip Array Through Flow Modulation Induced By Vortex-Shedding Cylinders in Cross-Flow,” Proc.of the International Symposium Cooling Technology for Electronic Equipment, Honolulu, U.S.A March 1987,pp 651-662.
[4] Paidoussis, M.P., “ Flow-Induced Vibrations in Nuclear Reactors and Heat Exchanger,” In Pratical Experiences with Flow Induced Vibrations(Ed. Naudaschar, E. and Rockwell,D.),pp 1-80 Springer.
[5] Bearman, P.W. and Wadcock,A.J., “The interaction Between a Pair of Circular Cylinders Normal to a Stream,” J.Fluid Mechanics, Vol.61,1973,pp 499-511.
[6] Bokaian, A. and Geoola, F., “Vortex Shedding From Two Interfering Circular Cylinders,” J.Engineering Mechanics, ASCE. Vol.110,1984,pp 628-632.
[7] Ignrashi, t., “Characteristic of Flow Around Two Circular Cylinders Arranged in Tandem,” ASME,Vol.24,1981, pp 323-331.
[8] Kiya, M., Arie, M., Tamura, H. and Mori, H., “Vortex Shedding From Two Circular Cylinders in Stagered Arrangement,” Transactions of ASME J.Fluid Engineering, Vol.102,1980,pp 487-502.
[9] Bierman, D. and Herrnstein, W.H., “The Interference Between Structs in Various Combinations,” National Advisory Committee for Aeronautics Tech.Rep.486.1933
[10] Hori, E., “Experiments on Flow Around a Pair of Parallel Circular Cylinders,” Proc.9th Japan congress or Applied Mechanics, Tokyo,1959,pp 231-234.
[11] King, R. and Johns, D.J., “Wake interaction Experiments with Two Flexible Circular Cylinders in Flow Water,” J. Sound Vibration, Vol.45,1976,pp 259-283.
[12] Thomas, D.G. and Craus , K.A., “Interaction of Vortes Streets,” J.Application Physics,Vol.35,1964,pp 3458-3459.
[13] Zdravkovich, M .M. “Flow Induced Oscillation of two Interfering Circular Cylinders,” J.Sound Vibration,Vol.101,1985,pp 511-521.
[14] Baendale, A.J., Grant, I and Barnes, F.H., “The Flow Paaast Two Cylinders Having Different Diameters,” Aeronautical Journal, 1985,Aprill,pp 125-134.
[15] Williamson, C.H.K., “Evolution of a Single Wake Behind a Pair of Bluff Bodies,” J.Fluid Mechanics,Vol.159,1985,pp 1-18.
[16] Ishigai, S., Nishikawa, E., Nishimura,K. and Cho, K., “Experimental Study on Structure of Gas Flow in Tube Banks with Tube Axes Normal to Flow(Part 1 Karman Vortex Flow Around Two Tubes at Various Spacing),” Bullet of The Japan Society Mechanical Engineers, Vol.15,No.86,1972,pp 949-956.
[17] Chorin, A.J., “Numerical Study of Slightly Viscous Flow,” J.Fluid Mechanics,Vol.57,1973,pp 785-796.
[18] Lewis, R.I., “Surface Vorticity Modeling of Separated Flow from two dimensional Bluff Bodies of Arbitray Shape,” J. Mechanical engineering Science,Vol.23,1981,pp 1-12.
[19] Sarpkaya, T. and Schoaff, R.L., “Inviscid Model of Two-dimension vortex Shedding by a Circular cylinder,” AIAA J,Vol.17,1979,pp 1193-1200.
[20] Chen, J.H., “ Wall Effects on Emergence of Vortex Shedding In Flowa Past a Circular Cylinder,” J. of the Chinese Institute of Engineers,Vol.17,No.3,1994,pp 305-315.
[21] Standby, P.K., “A Numerical Study of Vortex Shedding from One and Two Circular Cylinders,” Aeronautical Quarterly,Vol.32, 1980,pp 48-71.
[22] Slaouti, A., and Standby, P.K., ”Flow Around Two Circular Cylinders by the Random-Vortex Method,” J.Fluids and Structures,6,1992,641-670.
[23] Wu, J.C., and Hu, Y.C., “Flow Characteristics of Tandem Circular Cylinders:Effects of Diameter Ratio and Longitudinal Spacing,” AIAA 24th fluid Dy-namics Conf., AIAA Paper 1993,pp 93-3088.
[24] Wu, J.C., and Hu, Y.C., “Numerical Simulation of Asymmetrical Gap Flow of a pair of Circular Cylinders,” 2nd International Conference of Fluid Mechanics, Bejing,China,July,1993,pp 7-10.
[25] Wu, J.C., and Hu, Y.C., “A Numerical Study of Wake Interference Behind Two Side-by-Side and Tandem Circular Cylinders,” J.of the Chinese Society of Mechanical Engineers, Vol.16,1995,pp 109-122.
[26] Zdravkovich, M.M., “The Effects of Interference Between Circular Cylinders In Cross Flow,” J. Fluids Structures, Vol.1, 1987,pp 235-261.
[27] Zdravkovich, M.M., “ review of Flow Interference Between Two Circular Cylinders in Various Arrangement,” Transactions of ASME,J.Fluids Engineering,Vol.99,1977,pp 618-633.
[28] Zdravkovich, M.M., “Interference Between Two Circular Cylinders, Series of Unexpected Discontinuities,” J.Industry Aerodynamic,Vol.2,1977,pp 255-270.
[29] Igarashi, T. and Suzuki,K., “Characteristics of The Flow Around Three Circular Cylinders Arranged In-Line,” JSME, Vol.27, 1984, pp 2397-2404.
[30] Zdravkoich, M.M., “Smoke Observation of The Wake of a Group of Cylinders at Low Reynolds Number,” J. Fluid Mechanics, Vol.32,1986,pp 339-351.
[31] Sayers, A.T., “Flow Interference Between Three Equispaced When Subjected to a Cross Flow,” J.Winds Engineering Industry Aeronautics,Vol.26,1987,pp 1-19.
[32] Lam, K. and Cheung, W.C., “Phenomena of Vortex Shedding and Flow Interference of Three Cylinders in Different Equilateral Arrangements,” J.Fluid Mechanics,Vol.196,1988,pp 1-26.
[33] Chou, H.J. and Chao, S.Y., “The Flow Interaction Among Three Circular Cylinders”, The Chinese Journal of Mechanics,Vol 7,No.3,September,1991,pp 163-169.
[34] Thomas J.R. Hughes, M. ASCE Itzhak Levit, and James Winget, “Element-By-Element Implicit Algorithms for Heat Conduction,” Journal of Engineering Mechanics,Vol 109,n2,Apr 1983,pp 576-585.
[35] Thomas J.R. Hughes, Itzhak Levit and James Winget, “An Element-By-Element Solution Algorithm For Problems of Structural and Solid Mechanics,” Computer Methods in Applied Mechanics and Engineering,Vol 36,n2,Feb 1983,pp 241-254.
[36] Miguel Ortiz, Peter M. Pinsky and Robert L. Taylor, “Unconditionally Stable Element-By-Element Algorithms for Dynamic Problem,” Computer Methods in Applied Mechanics and Engineering,Vol 36,n2,Feb 1983,pp 223-239.
[37] Thomas J.R. Hughes, James Winget, Itzhak Levit and T.E. Tezduyar, “New Alternate Directions Procedure in Finite Element Analysis Based Upon EBE Approximate Factorization,” Proceedings of the Symposium on Recent Developments in Computer Methods for Nonlinear Solid and Structural Mechanics, Proceedings of the ASME Joint Meeting of Fluid Engineering, Applied Mechanics and Bioengineering, University of Houston, Texas, June 1983.
[38] Thomas J.R. Hughes, A. Raefsky, A. Muller, J. Winget and I. Levit, “A Progress Report on EBE Solution Proceedings in Solid Mechanics,” Proceedings of the Second International Conference on Nonlinear Problems, Barcelona, Spain, April 1984.
[39] Winget, J.M., “Element by Element Solution Procedures for Nonlinear transient heat condition analysis,” Ph.D. Thesis, California Institute of Technology,1983.
[40] Itzhak Levit, “Element-By-Element Solvers of Order N,” Computers and Structures,Vol 27,n3,1987,pp357-360.
[41] Graham F.Carey and Bo-nan Jiang, “Element-By-Element Linear and Nonlinear Solution Schemes,” Communications in Applied Numerical Methods,Vol.2,1986,pp145-153.
[42] Wathen, A.j. “An Analysis of Some Element-By-Element Techniques,” Computer Methods in Applied Mechanics and Engineering,Vol 74,1989,pp271-287.
[43] Jocelyne Erhel, Alice Traynard and Marina Vidrascu, “An Element-By-Element Preconditioned Conjugate Gradient Method Implemented on Vector Computer,” Parallel Computing,Vol 17, 1991,pp 1051-1065.
[44] Manolis Papadrakakis and Michael C. Dracopoulos, “A Global Preconditioner for the Element-By-Element Solution Methods,” Computer Methods in Applied Mechanics and Engineering,Vol 88,1991,pp275-286.
[45] Reedy, M.P. and Reddy, J.N., “Penalty Finit Element Analysis of Incompressible Flows Using Element by Element Solution Algorithms,” Computer Methods in Applied Mechanics and Engineering,Vol 100,1992,pp169-205.
[46] Akira Mizukami, “Element-by-Element Penalty/Uzawa Formulation for Large Scale Flow Problems,” Computer Methods In Applied Mechanics and Engineering,v112,1994, pp 283-289.
[47] Zhiping Li and Reed, M.B. , “Convergence Analysis for An Element-by-Element Finite Element Method,” Computer Methods in Applied Mechanics and Engineering,Vol 123,1995, pp 33-42.
[48] Adefemi Sunmonu, “Implementation of A Novel Element-BY-Element Finite Element Method on the Hypercube,” Computer Methods in Applied Mechanics and Engineering,Vol 123,1995,pp43-51.
[49] Reddy, M.P. and Reddy, J.N., “Multigrid Methods to Accelerate Convergence of Element-By-Element Solution Algorithms for Viscous Incompressible Flows,” Computer Methods in Applied Mechanics and Engineering,Vol 132,1996,pp 179-193.
[50] Nakabayashi, Y., Okuda, H. and Yagawa, G.., “Parallel Finite Element Fluid Analysis on An Element-By-Element Basis,” Computational Mechanics,Vol 18,1996,pp 377-382.
[51] Chorin, A.J, “Numerical Solution of Navier-Stokes Equations,” Math. Comp.,Vol.22,1968,pp 745-762.
[52] Ramaswamy, B., Jue, T.C. and Akin, J.E., “Semi-implicit and Explicit Finite Element Schemes for Coupled Fluid/Thermal Problems,” Int. J. Numer. Methods Eng,Vol 34,1992,pp 675-696.
[53] Lee. Sungsu. “Lager Eddy Simulation of Flow past a Square
Cylinder Using Finite Element Method,” 博士論文,1997.
[54] 黃勝元,二維通道混合對流下三圓柱之暫態流動及其熱傳研究,國立成功大學造船及船舶機械工程研究所碩士論文,1998.
[55] 莊和達,運用EBE-PCG及投射有限元素法計算不可壓縮流體之熱傳現象,國立成功大學造船及船舶機械工程研究所碩士論文,2000.
[56] 劉彩吉,應用大渦紊流模擬(LES)模式於二維與三維之通道內紊流流場及其熱傳研究,國立成功大學造船及船舶機械工程研究所碩士論文,2002.
[57] Hughes, T.J.R., Levit, I. and Winget, J.M., “Implicit, Unconditionally Stable Algorithms for Heat Conduction Analysis,” J. Eng. Mechanics Division ASCE 109,1983,pp 576-585.
[58] Hughes, T.J.R. and Winget, J.M., “Solution Algorithms for Nonlinear Transient Heat Conduction Analysis Employing Element by Element Iteratives Strategies,” Comput. Meth. Appl. Mechanics Eng,Vol 52,1985,pp 711-815.
[59] Sun Xiaohua, “Large Eddy Simulation of Unsteady Flow Past a Circular Cylinder, ” A Dissertation Presented to the Faculty of the Department of Mechanical Engineering University of Houston, August 1994,pp 43-53.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔