(3.238.240.197) 您好!臺灣時間:2021/04/12 03:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡兆宇
研究生(外文):Jau-Yu Tsai
論文名稱:鈦酸酯耦合劑對有機溶劑系統中Co2Z鐵氧磁體分散性質影響之研究
指導教授:向性一
指導教授(外文):Hsing-I Hsiang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:79
中文關鍵詞:KD1分散劑分散Co2Z鐵氧磁體鈦酸酯耦合劑
外文關鍵詞:titanate coupling agentCo2Z ferritedispersionKD1 dispersant
相關次數:
  • 被引用被引用:4
  • 點閱點閱:194
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
化學組成為3Ba0.5Sr0.5O.2CoO.12Fe2O3之Co2Z鐵氧磁體因具有磁性,而使其不易分散,導致欲將此具有優良高頻磁性質的材料實際應用到製程上有相當的困難度。本研究利用鈦酸酯耦合劑[異丙基三(二辛基焦磷醯氧基)鈦酸異丙酯]對Co2Z鐵氧磁體粉末進行預先的被覆處理,再添加分散劑KD1及PVB,觀察其沈降以及流變行為,利用FTIR光譜計算添加劑與Co2Z鐵氧磁體光譜特徵吸收峰之積分面積,得到添加劑的吸附量-添加量關係曲線並探討Co2Z鐵氧磁體粉末與耦合劑、分散劑間之吸附機構。
由FTIR光譜可觀察各添加劑與Co2Z鐵氧磁體之間的吸附機構如下:
1.鈦酸酯耦合劑之Ti-O鍵與Co2Z鐵氧磁體表面的FeOH形成Ti-O-Fe之共價鍵結,而產生化學吸附。
2.KD1透過其結構中的-OH基與Co2Z鐵氧磁體表面之-OH基以氫鍵型態進行吸附。KD1與鈦耦合劑的吸附機構亦屬於氫鍵吸附。
3.PVB以其結構中之-OH基與Co2Z鐵氧磁體表面之-OH基以氫鍵型態進行吸附。而PVB與鈦耦合劑之吸附機構亦是氫鍵吸附。
4.Co2Z鐵氧磁體經耦合劑被覆後,對分散劑親和力大幅增加,主要是因為被覆的耦合劑可提供比原始粉末表面更多的吸附位置,且具有形成立體阻隔,消除凝聚的效果。
實驗結果發現,當耦合劑添加量達0.8wt%時,經過耦合劑被覆之粉末對於後續添加之KD1有最大的親和力,且其沈降堆積密度以及黏度的表現也比較低耦合劑添加量之樣品優良。而當耦合劑添加量達1.2wt%時,則可能在Co2Z鐵氧磁體表面形成較完整的被覆層,使得後續添加之KD1對於其黏度或沈降表現沒有明顯的影響。
添加PVB之系統,當PVB添加量於0.4wt%以上時,粉末上可供吸附的位置被PVB分子佔據之後,其他未吸附的PVB分子則游離在粉末粒子之間,造成黏度不降反升,此時PVB由分散劑的角色轉變成為黏結劑。
綜觀而言,經過耦合劑被覆之Co2Z鐵氧磁體,可提高Co2Z鐵氧磁體對分散劑的親和力,增加吸附量,且其被覆層可有效抵銷粒子間之磁性交互作用力,降低凝聚程度。
The Co2Z ferrite powders with the chemical composition 3Ba0.5Sr0.5O‧2CoO‧12Fe2O3, which have superior high frequency magnetic property. However, it is difficult to be applied to the practical processing due to the agglomeration induced by the strong magnetic attraction between particles. In this study, we investigated the effect of the pretreatment of Co2Z ferrite powders using titanate coupling agent — Neopentyl(dially)oxy tri(dioctyl)pyrophosphate titanate (Lica 38) on the sedimentation and rheological behavior.
The mechanisms of the adsorption of Lica 38 and dispersants on the surface of Co2Z ferrite powders are discussed through the relationship between the amount of adsorbate and the initial amount of dispersants using the integrated intensity ratio of characteristic absorbance peak of the FTIR spectra.
The proposed mechanisms between additives and Co2Z ferrite powders by means of the FTIR spectra are listed as follows:
1.The Ti-O-Fe covalent bond was formed through the interaction of Ti-O bond in the Lica 38 and the FeOH on the ferrite powders surface.
2.The adsorption of KD1 onto the surface of Co2Z ferrite powders took place through the hydrogen bonding between hydroxyl groups on the surface of ferrite powders and KD1 hydroxyl side groups. The interaction between KD1 and Lica 38 was also through the hydrogen bonding.
3.The adsorption of PVB onto the surface of Co2Z ferrite powders took place through the hydrogen bonding between hydroxyl groups on the surface of ferrite powders and PVB hydroxyl side groups. The interaction between PVB and Lica 38 was also through the hydrogen bonding.
4.After coating coupling agent on the Co2Z ferrite powders, the affinity of ferrite powders and dispersants was dramatically increased. It maybe due to the coupling agent adsorbed on the surface provided more active sites that can interact with dispersants than raw material powders.
In the KD1 system, when the coupling agent addition increased to 0.8 wt%, the coated ferrite had the largest affinity with KD1, furthermore, the sedimentation density and viscosity of powders coated with 0.8 wt% Lica 38 were both better than those of the powders with less amount addition of coupling agent. When the addition increased to 1.2 wt%, the coupling agent had completely covered the ferrite surface and, correspondingly, the addition of KD1 dispersant did not affect the sedimentation and viscosity.
In the PVB system, when the addition of PVB increased above 0.4 wt%, the viscosity increased with increasing the addition of PVB. It maybe due to the monolayer surface-coverage for PVB on the ferrite powders would probably full at the addition of 0.4 wt%. Further increase in the PVB fraction result in the non-adsorbed PVB bridging between ferrite particles and changed the PVB role from dispersant to binder.
In a summary, the affinity of Co2Z ferrite and dispersants could be enhanced substantially through the coating of titanate coupling agent on the ferrite surface. The coated layer could prevent particles from agglomeration induced by the magnetic interaction.
目錄
摘要……………………………………………………………………………..I
Abstract………………………………………………………………………..III
致謝……………………………………………………………………………V
表目錄………………………………………………………………………...IX
圖目錄………………………………………………………………………....X
第一章緒論…………………………………………………………………...1
1.1 前言…………………………………………………………………..1
1.2 研究目的……………………………………………………………..2
第二章理論基礎與前人研究………………………………………………...4
2.1 懸浮系統中粒子之間的作用力……………………………………..4
2.1.1 凡得瓦爾力……………………………………………………...4
2.1.2 靜電作用力……………………………………………………...7
2.1.3 立體阻隔作用力………………………………………………...7
2.1.4 靜電-立體阻隔作用力…………………………………………10
2.1.5 耗乏作用力…………………………………………………….10
2.2 界面活性劑…………………………………………………………10
2.2.1 界面活性劑的作用…………………………………………….10
2.2.2 界面活性劑的種類…………………………………………….11
2.2.3 界面活性劑之分散機構……………………………………….11
2.2.4 評價分散程度之指標………………………………………….12
2.2.4.1 沈降試驗…………………………………………………..12
2.2.4.2 流變行為…………………………………………………..12
2.3 耦合劑的作用………………………………………………………16
2.3.1 耦合劑種類及相關應用……………………………………….16
2.3.2 耦合劑作用機構……………………………………………….19
2.4 磁性粉末的分散……………………………………………………19
第三章實驗材料與步驟…………………………………………………….22
3.1 材料…………………………………………………………………22
3.1.1 粉末性質……………………………………………………….22
3.1.2 粉末比表面積粒徑…………………………………………….24
3.1.3 溶劑系統……………………………………………………….24
3.1.4 耦合劑與分散劑……………………………………………….24
3.2 步驟…………………………………………………………………25
3.2.1 粉末前處理…………………………………………………….25
3.2.2 沈降試驗……………………………………………………….25
3.2.3 黏度測試……………………………………………………….26
3.3 特性分析……………………………………………………………26
3.3.1 傅利葉轉換紅外線光譜分析儀(FT-IR)……………………….26
3.3.2 核磁共振光譜分析儀(NMR)…………………………………..26
第四章結果與討論………………………………………………………….30
4.1 紅外線光譜分析……………………………………………………30
4.1.1 耦合劑Lica 38之光譜分析……………………………………33
4.1.1.1 Lica 38之吸附機構及吸附量-添加量關係曲線………….35
4.1.2 KD1系統之光譜分析…………………………………………..42
4.1.2.1 KD1之吸附機構及吸附量-添加量關係曲線……………..44
4.1.2.1.1 KD1與Co2Z鐵氧磁體之吸附機構…………………...44
4.1.2.1.2 KD1與Lica 38之吸附機構…………………………..44
4.1.2.1.3 KD1之吸附量-添加量關係曲線……………………...46
4.1.3 PVB系統之光譜分析…………………………………………..56
4.1.3.1 PVB之吸附機構及吸附量-添加量關係曲線……………..58
4.1.3.1.1 PVB與Co2Z鐵氧磁體之吸附機構…………………...58
4.1.3.1.2 PVB與Lica 38之吸附機構…………………………...62
4.1.3.1.3 PVB之吸附量-添加量關係曲線……………………...65
4.2 沈降及黏度測試結果………………………………………………67
4.2.1 KD1系統之沈降及黏度分析…………………………………..67
4.2.2 PVB系統之沈降及黏度分析…………………………………..71
4.3 綜合討論……………………………………………………………74
第五章結論………………………………………………………………….75
參考文獻……………………………………………………………………...76
1.Reed J. S., Principles of Ceramics Processing, Second Edition, p.397-401, WILEY INTERSCIENCE, Alfred, New York, (1995).
2.Sacks M. D., C. S. Khadilkar, G. W. Scheiffele, A. V. Shenoy, H. H. Dow, and R. S. Sheu, “Dispersion and Rheology in Ceramic Processing,” Advances in Ceramics, Vol. 21: Ceramic Powder Science. p.495-515 ,The American Ceramic Society, Inc. (1987).
3.Mistler R. E., and E. R. Twiname, Tape Casting: theory and practice, p.1-6, American Ceramic Society, Westerville, OH, (2000).
4.Jonker G. H., H. P. J. Wijn and P. B. Braun, “Ferroxplana, Hexagonal Ferromagnetic Iron-Oxide Compounds for very high frequencies,” Philips Technical Review. 18 [6] 145-180 (1956).
5.Lewis J. A., “Colloidal Processing of Ceramics,” J. Am. Ceram. Soc., 83 [10] 2341-59 (2000).
6.Ackler H. D., R. H. French, and Y. M. Chiang, “Comparisons of Hamaker Constants for Ceramic Systems with Intervening Vacuum or Water: From Force Laws and Physical Properties,” J. Colloid Interface Sci., 179, 460-69 (1996).
7.Napper D. H., Polymeric Stabilization of Colloidal Dispersions; pp.1-17. Academic Press, London, U.K., (1983).
8.Biggs S. and T. W. Healy, “Electrosteric Stabilization of Colloidal Zirconia with Low Molecular Weight Polyacrylic Acid,” J. Chem. Soc. Faraday Trans., 90 [22] 3415-21 (1994).
9.Walz J. Y. and A. Sharma, “Effect of Long-Rang Interactions on the Depletion Force Between Colloidal Particles,” J. Colloid Interface Sci., 168, 485 (1994).
10.Song J. H. and J. R. G. Evans, “The Effect of Undispersed Agglomerates on the Relative Viscosity of Ceramic Injection Molding Suspensions,” J. Mater. Sci. Lett., 13, 1642-44 (1994).
11.Evans J. R. G. and M. J. Edirisinghe, “Interface Factors Affecting the Incidence of Defects in Ceramic Molding,” J. Mater. Sci., 26, 2081-88 (1991).
12.Rosen M. J., Surfactants and Interfacial Phenomena, p.3-5, Wily, 1978.
13.Shanefield D. J., Organic Additives and Ceramic Processing, Kluwer Academic Publishers, p.211-217 (1995).
14.盧壽慈,粉體加工技術,p.228-235,北京:中國輕工業出版社,1999。
15.Rothon R. N., “Surface modification and surface modifiers,” Particulate-Filled Polymer Composites, Polymer Science and Technology Series. Chapter 4, p.152-159.
16.王其祥,宋寶珍,李洪鍾,“α-Fe金屬磁記錄粉表面化學改性,”無機材料學報,第17卷 第5期,p.954-958,2002。
17.Wah C. A., L. Y. Choong, G. S. Neon, “Effects of titanate coupling agent in rheological behavior, dispersion characteristics and mechanical properties of tals filled polypropylene,” Europ. Polymer. J. 36, 789-801 (2000).
18.顏雅侖,“錳鋅鐵氧化物磁性流體之製備及分散研究,”國立成功大學資源工程研究所碩士論文,2002。
19.Adair J. H., J. A. Casey and S. Venigalla, Handbook on Characterization Techniques for the Solid-Solution Interface, p.19-21, The American Ceramic Society, Westerville. Ohio, (1993).
20.Ishada H. and J. L. Koenig, “Fourier Transform Infrared Spectroscopic Study of theStructure of Silane Coupling agent on E-Glass Fiber,” J. Colloid Interface Sci., 64 [3] 565-576 May (1978).
21.Chiang C. H. and J. L. Koenig, “Fourier Transform Infrared Spectroscopic Study of the Adsorption of Multiple Amino Silane Coupling Agent on Glass Surface,” J. Colloid Interface Sci., 83 [2] 361-370 (1981).
22.Ashton D. P. and D. Briggs, “Analytical techniques for characterizing fillersurfaces,” Particulate-Filled Polymer Composites, Polymer Science and Technology Series. Chapter 3, p.115-121.
23.Derosa R. L. and J. A. Trapasso, “Poly(ethylene glycol) interactions with alumina and silica powders determined via DRIFT,” J. Mater. Sci. 37, 1079-82 (2002).
24.Singh B., A. Verma and M. Gupta, “Studies on Adsorptive Interaction Between Natural Fiber and Coupling Agents,” J. Appl. Polymer. Sci., 70, 1847-1858 (1998).
25.White Robert G., Handbook of Industrial Infrared Analysis, Plenum Press, New York, p.208 (1964).
26.Golander C. G. and B. A. Sultan, “Surface Modification of Polyethylene to Improve its Adhesion to Aluminum,” J. Adhes. Sci. Tech. 2 [2] 125-135 (1988).
27.Sung N. H., A. Kaul and S. Ni, “Structure and Effects of Organosilane or Organotitanate Adhesion Promoters on Al2O3/Polyethylene Joints,” Adhesion aspects of polymeric coatings edited by K.L. Mittal, p.379-394 (1983).
28.Krysztafkiewicz A., B. Rager and T. Jesionowski, “The Effects of Surface Modification on Physicochemical Properties of Precipitated Silica,” J. Mater. Sci., 32, 1333-1339 (1997).
29.Monte S. J. and G. Sugerman, “Adhesion Promotion and Polymer Composite Performance with Titanate Coupling Agents,” Adhesion aspects of polymeric coatings edited by K.L. Mittal, p.421-441 (1983).
30.邱志民,“高含量磁粉之高分子複合材料的流變性質及機械性質之探討,” 國立成功大學化學工程研究所碩士論文,1990。
31.Jean J. H. and S. F. Yeh, “Adsorption of poly(vinyl butyral) in nonaqueous ferrite suspensions,” J. Mater. Res., 12 [4] 1062-1068 (1997).
32.Landham R. R., M. V. Parish, H. K. Bowen, P. D. Calvert, “Organotitanate dispersants for BaTiO3 and Al2O3,” J. Mater. Sci., 22, 1677-81 (1987).
33.Shanefield D J., Organic Additives and Ceramic Processing, Kluwer Academic Publishers, p.19-20, (1995).
34.Tseng W. J. and C. L. Lin, “Effedt of polyvinyl butyral on the rheological properties of BaTiO3 powder in ethanol-isopropanol mixtures,” Materials Letters, 57 ,223-28 (2002).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔