跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 16:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄧瑞彬
研究生(外文):Jui-Ping Teng
論文名稱:天然氣水合物採收技術之研究
論文名稱(外文):The Study of Gas Hydrates Recovery
指導教授:林再興林再興引用關係
指導教授(外文):Zsay-Shing Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:72
中文關鍵詞:天然氣水合物能量平衡熱採收法減壓法
外文關鍵詞:Gas hydratesEnergy balanceThermal recoveryDepressurization
相關次數:
  • 被引用被引用:3
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:1
本研究目的是利用天然氣水合物之物理及化學特性而研究其熔化機制,並估算熱採收法及減壓法之天然氣生產採收量。首先利用能量平衡法計算天然氣水合物之採收效率,並且也利用熱蒸汽注入法、Huff and Puff採收法以及減壓法分別計算地層的天然氣水合物之熔解半徑以及天然氣釋放量隨時間之變化。
在利用能量平衡法計算天然氣水合物採收效率中,本研究考慮淨採收率隨熱能注入效率及燃燒效率之影響而計算出淨採收率隨熱能注入效率及燃燒效率隨時間之變化,若熱能注入效率及燃燒效率皆為50%時,淨採收率小於10%。但在此計算中,並沒有考慮成本及採收時間。
本研究也利用修改Marx and Langenheim模式,研究以熱蒸汽注入法計算熔解面積隨時間的變化及累積甲烷氣生產量隨時間的變化。若假設儲藏層厚度為30m,儲藏層孔隙率為30%,儲藏層中水合物飽和度為20%時,使用熱蒸汽注入法(熱蒸汽注入速率介於208B/D與1040B/D之間)採收天然氣水合物,當注入熱蒸汽時間約16年時水合物熔解半徑介於23m至51m之間,釋放出的天然氣介於約2.5*106 SCM與1.3*107 SCM之間的天然氣體積。
與前述假設的地層條件下,若使用熱蒸汽注入法搭配Huff and Puff採收天然氣,則當開採時間約16年時,水合物熔解半徑約為45m,且釋放出約9.8*106 SCM的天然氣量。在使用熱採收法開採時,由於熱能在注入地層的過程和熱能在地層中流動時都容易流失,所以本研究也將研究熱能流失與採收率之關係。
在減壓採收法中,為了能達到所設定的壓力驅動力,必須大幅度的降低地層壓力。在此將研究各種壓力降對於採收量之影響。若使用與熱採收法相同的地層參數假設值,利用減壓法開採天然氣水合物,當地層滲透率為1mD,開採時間約為16年時,天然氣採收速率介於300 SCMD到1500 SCMD,熔解半徑介於41 m到93.7 m,而地層中的壓力介於42atm到49atm之間。
由本研究所得之結果顯示,利用熱採法和減壓法使天然氣水合物熔解時,熔解速率都非常緩慢,不符合目前開採經濟效益,應該更積極研究較為經濟有效之開採方法。
The purpose of this study is to investigate the dissociation mechanism in connection with its physical and/or chemical properties and then to estimate the gas production using thermal recovery and depressurization recovery. A simple energy balance method is used to calculate the recovery of gas hydrates. In additions, hot steam injection method, Huff and Puff method and depressurization method are also used to calculate the decomposition of gas hydrates, radius change with time and the quantity of natural gas released from gas hydrate.
In the study of simple energy balance method, the net gas recovery efficiency is probably below 10% in which the heat injection efficiency and the combustion efficiency are both 50% (the cost and recovery time do not take into consideration).
The modified model (Marx and Langenheim, 1959) had been used in this study to calculate the dissociation area and the cumulative methane gas production changing with time. It is assumed that the thickness of reservoir is 30m, the reservoir porosity is 30%, the saturation of gas hydrates is 20%, and the hot steam injected into the reservoir with constant rate (the hot steam injection rates are between 208B/D and 1040B/D). When the hot steam injected into the reservoir about 16 years, the dissociated radius of hydrates are between 23m and 51m, and released natural gas about 2.5*106 SCM to 1.3*107 SCM.
In using the Huff and Puff recovery technique with hot steam injection for 16 years, the dissociated radius of hydrates is about 45m and released natural gas about 2.5*106 SCM. The heat loss in the hot steam injection and in the reservoir is a large portion.
In the depressurization method, hydrates dissociate by means of decrease the reservoir pressure, and the effect on the gas production by several pressure drops is studied. By the assuming reservoir parameters and the reservoir permeability of 1mD, the radius of dissociated hydrates are between 41 m and 93.7m, for the case of producing the gas for 16 years at constant production rate (the rates are between 300SCMD and 1500SCMD). The pressures of the reservoir are between 42 atm and 49 atm.
Based on the results of this study, there is no feasibility to recovery gas hydrate by using thermal recovery and depressurization recovery under current technology. More economic and efficiency recovery methods should be studied.
摘要 ------------------------------------------------------------------------Ⅰ
英文摘要 -------------------------------------------------------------------Ⅲ
誌謝 -----------------------------------------------------------------------Ⅴ
目錄 -----------------------------------------------------------------------Ⅵ
表目錄 ---------------------------------------------------------------------Ⅷ
圖目錄 ---------------------------------------------------------------------Ⅸ
第一章 緒論-------------------------------------------------------------------1
§ 1-1 前言------------------------------------------------------------------1
§ 1-2 天然氣水合物之發現----------------------------------------------------2
§ 1-3 天然氣水合物的埋藏量--------------------------------------------------4
§ 1-4 研究目的-------------------------------------------------------------10
第二章 文獻回顧與前人研究----------------------------------------------------11
第三章 熱採收法--------------------------------------------------------------23
(1) 靜態熱能量平衡法計算-----------------------------------------------------23
(2) 動態熱能量平衡法計算-----------------------------------------------------24
(3) 熱蒸汽注入法採收---------------------------------------------------------28
(4) 熱蒸汽注入法與Huff and Puff採收------------------------------------------31
第四章 減壓採收法------------------------------------------------------------32
第五章 結果與討論------------------------------------------------------------41
第六章 結論與建議------------------------------------------------------------64
§ 6-1 結論-----------------------------------------------------------------64
§ 6-2 建議-----------------------------------------------------------------66
第七章 參考文獻--------------------------------------------------------------67
附錄1------------------------------------------------------------------------70
Bryan, G. M., “In-situ Indications of Gas Hydrate,” in Natural Gases in Marine Sediments, edited by I. R. Kaplan, p. 229-308, Plenum Press, New York, 1974.
Byk, S. Sh., Formina, V. I., “Gas Hydrates,” Russian Chemical Review,37 (6), 1968, p. 340-352.
Deaton, W. M. and Frost, E. M., Jr., “Gas Hydrates and Their Relation to the Operation of Natural-Gas Pipe Lines”, U. S. Bureau of Mines Mono., No. 8, 1946.
Durgut, I. and Parlaktuna, M., “A Numerical Method for the Gas Production Process in Gas Hydrate Reservoirs,” Proceedings of the Second International Conference on Natural Gas Hydrates, Toulouse, France, June 2-6.
Evrenos, A. E., Heathman, J. and Ralston, J., “Imperation of Porous Media by In-Situ Hydrate Formation”, J. Pet. Tech., (Sept. 1971), 1059-1066.
Goel N., Wiggins M., and Shah S., “Analytical modeling of gas recovery from in situ hydrates dissociation,” Journal of Petroleum Science and Engineering 29(2001) 115-127.
Hitchon, B., “Occurrence of Natural Gas in Sedimentary Basis,” in Natural Gases in Marine Sediments, edited by 1. R. Kaplan, p. 195-225, Plenum Press, New York, 1974.
Holder, G. D., John V. T. and Yen S., “Geological Implications of Gas Production From In-Situ Gas Hydrates,”paper SPE/DOE 8929 presented at SPE/DOE Symposium on Unconventional Gas Recovery held in Pittsburgh. Pennsylvania, May, 1980.
Isuex, J-C., “Gas hydrates: occurrence, production, and economics,” paper SPE 21682 presented at the Production Operations Symposium held in Oklahoma City, Oklahoma, April 7-9, 1991.
Kamath, V. A. et al., “Experimental Study of Brine Injection and Depressurization Methods for Dissociation of Gas Hydrates,” paper SPE 19810 ,1991.
Kim, H. C. et al., “Kinetics of Methane Hydrate Decomposition,” Chem. Eng. Sci.(1987) 42, No. 7, 1645-53.
Marx, J. W. and Langenheim, R. H., “Reservoir Heating by Hot Fluid Injection,”Trans., AIME (1959), vol. 216, pp. 364-365.
Roadifer,R. D., Godbole, S. P., and Kamath, V. A., “Thermal Model for Establishing Guidelines for Drilling in Presence of Hydrates,” paper SPE 16361 presented at the 1987 SPE California Regional Meeting, Ventura, April 8-10.
Selim, M. S. and Sloan, E. D., “Modeling of the Dissociation of an In-Situ Hydrate,”paper SPE 13597 presented at the 1985 SPE California Regional Meeting,
Bakersfield, March 27-29.
Shyu, C.T., Hsu, S.K., and Liu, C.S., “Heat flows off southwest Taiwan: measurements over mud diapers and estimated from bottom simulating reflectors,” TAO, vol. 9, no. 4, 1998, p795-812.
Sloan, E.D.Jr., (1998a) “Clathrate hydrates of natural gases,” 2nd edition, New York, Marcel Dekker, 730p.
Swinkels, W. J. A. M. and Drenth, R. J. J., “Thermal Reservoir Simulation Model of Production from Naturally Occuring Gas Hydrate Accumulations,” Proceedings 1999 SPE Annual Technical Conference, Houston, TX, October 1999, SPE Paper 56550.
Trofimuk, A. A., Chersky, N. V. and Tsaryov, V. P.,“The Role of Continental Glaciation and Hydrate Formation on Petroleum Occurrences,” in The Future Supply-of Natural-Made Petroleum and Gas, p. 919-926,UNITAR Conference on Energy and the Future, 1976.
Ullerich, J. N., Selim, M. S., and Sloan, E. D., “Theory and Measurement of Hydrate Dissociation,” AIChE J. (1987) 33, No. 5, 747-52.
Yousif, M. H. et al., “Experimental and Theoretical Investigation of Methane-Gas Hydrate Dissociation in Porous Media,” SPERE (Feb. 1991) 69-76.
劉家瑄,徐春田,史菲力,傅式齊,及宣大衡,〝台灣西南海域甲
烷水合物潛存之分析〞海域新資源探勘開發專題研討會,1999年
12月2日。
鐘三雄,張碩芳,〝海域新資源─甲烷氣水包合物,〞經濟部中央
地質調查所彙刊。
鍾三雄、張碩芳(2001),〝甲烷氣水包合物的回顧與展望〞,中央
地質調查所彙刊。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top