跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/14 19:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陸俊岑
研究生(外文):Chun-Tsem Lu
論文名稱:高靈敏度砷化鋁鎵系列蕭特基式氫氣感測器之研製
論文名稱(外文):Fabrication and Study of High-Sensitivity AlGaAs-Based Schottky Type Hydrogen Sensors
指導教授:劉文超劉文超引用關係
指導教授(外文):W. C. Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:76
中文關鍵詞:砷化鋁鎵感測器氫氣
外文關鍵詞:sensorhydrogenAlGaAs
相關次數:
  • 被引用被引用:2
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
數十年來,各種不同類型的氫氣感測器被廣泛的研究與開發,而隨
著半導體製程的進步,體積小,靈敏度高,可大量生產的半導體式氫氣感測器逐漸成為研究的主流。在本文中,我們研製了多種以砷化鋁鎵材料為主的肖特基接觸二極體式氫氣感測器,並討論不同的觸媒金屬如鈀和鉑在不同溫度及外加偏壓下對不同濃度的氫氣感測靈敏度及暫態響應能力,並研究氫氣吸附反應動力學及相關之熱力學。
首先,我們製作了以砷化鋁鎵為主動層,觸媒金屬為鈀的金屬-氧化層-半導體肖特基二極體式氫氣感測器。本元件具有極佳的二極體特性,擁有極低的逆向飽和電流和高溫承受能力。在氫氣的感測能力方面,本元件表現出快速而明顯的暫態響應;而由室溫到高溫的氫氣感測能力,則有逐漸縮小的趨勢。相較於之前以磷化銦和砷化鎵為基底的氫氣感測器,本元件除了保持了高氫氣感測靈敏度之外,也提升了操作溫度範圍。
為了討論元件結構中氧化層的作用,我們製作了觸媒金屬為鈀的金
屬-半導體肖特基二極體式氫氣感測器作為比較。由實驗得知,去除氧化層的元件,其肖特基特性因為受到了費米能階釘住效應的影響,而無法自由的根據介面上所吸附的氫氣原子來改變肖特基能障,因此造成氫氣感測能力的降低。
根據文獻,除了鈀金屬之外,其他的白金族金屬如鉑、釕、銥、銠
等等也表現出對氫氣的選擇性,其中鉑金屬由於對氫氣選擇性佳,且較其他白金族金屬容易取得而使用最為廣泛。我們製作了以鉑為觸媒金屬的金屬-氧化層-半導體肖特基二極體式氫氣感測器和觸媒金屬為鈀的元件作為比較,發現以鈀為觸媒金屬的元件擁有較高的氫氣感測靈敏度和暫態響應,而以鉑為觸媒金屬的元件對於較高氫氣濃度的感測能力較優良且具有不易因高溫而起泡的優點。
Many types of hydrogen sensors have been investigated and studied comprehensively in several decades. Among them, the semiconductor type hydrogen sensors have attracted great attention due to the advantages of high hydrogen detection sensitivity, low cost and matured techniques. Three hydrogen sensors based on AlGaAs material were fabricated and studied systematically in this thesis. The transient response and hydrogen detection sensitivity of the studied devices under different hydrogen concentrations, temperature and applied voltages were measured. In addition, the kinetic and thermodynamic properties of hydrogen adsorption were discussed.
The Metal-Oxide-Semiconductor (MOS) Schottky-barrier diode hydrogen sensor based on Pd catalytic metal and Al0.3Ga0.7As material were studied in chapter 2. The studied device exhibits excellent diode characteristic including low reverse saturation current and high operating temperature. Comparing to the InP and GaAs based devices, the studied device demonstrated higher operation temperature regime while keeping high hydrogen detection sensitivity.
The influence of oxide layer on hydrogen detection ability has been studied. It has been observed that the oxide can restrain the Fermi-level pinning effect effectively by preventing the reaction of Pd catalytic metal and AlGaAs material.
The influence of different catalytic metals has been studied, too. Except the Pd metal, the Pt also shows high sensitivity and selectivity to hydrogen gas. A Pt/oxide /Al0.3Ga0.7As metal-oxide-semiconductor (MOS) Schottky diode hydrogen sensor was fabricated. The hydrogen detection performance, thermodynamic property was studied.
Chapter 1
Introduction
1.1. A brief introduction of hydrogen sensors(1)
1.2. Advantages of AlGaAs material in sensor application(2)
1.3. Organization of this thesis(3)
Chapter 2
A new Pd/oxide/Al0.3Ga0.7As metal-oxide-semiconductor (MOS)
Schottky diode hydrogen sensor
2.1. Introduction(4)
2.2. Experiment(5)
2.2.1Hydrogen detection mechanism(5)
2.2.2Device structure and fabrication(6)
2.2.3System setup and measurement(7)
2.3. Experimental results and discussion(8)
2.3.1Equilibrium current-voltage characteristics(8)
2.3.2Reaction kinetics and thermodynamic properties(10)
2.3.3Transient-state response characteristics(12)
2.4. Summary(13)
Chapter 3
The Pd/Al0.3Ga0.7As metal- semiconductor (MS) Schottky diode
hydrogen sensor
3.1. Introduction(15)
3.2. Device structure and fabrication(15)
3.3. Experimental results and discussion(16)
3.3.1Equilibrium current-voltage characteristics(16)
3.3.2Thermodynamic properties(18)
3.3.3Transient-state response characteristics(19)
3.4. Summary(19)

Chapter 4
The Pt/oxide/Al0.3Ga0.7As metal-oxide-semiconductor (MOS)
Schottky diode hydrogen sensor
4.1. Introduction(21)
4.2. Device structure and fabrication(21)
4.3. Experimental results and discussion(22)
4.3.1Equilibrium current-voltage characteristics(22)
4.3.2Thermodynamic properties(24)
4.3.3Transient-state response characteristics(24)
4.4. Summary(25)
Chapter 5
Conclusions and Prospects
5.1. Conclusions(26)
5.2. Prospects(27)
References
Tables
Figures
Publication List
Acknowledgment and Biography
[1]H. Sundgren, I. Lundström, F. Winquist, I. Lukkari, R. Carlesson, and S. Wold,” Evaluation of a Multiple Gas-Mixture with a Simple MOSFET Gas Sensor Array and Pattern-Recognition,” Sens. Actuators B, vol. 2, pp.115-123, 1990.
[2]N. Yamazoe and N. Miura, “Development of gas sensors for environmental protection,” IEEE Trans. Components, Packing and Manufacturing Technology A, vol.18, pp.252-256, 1995.
[3]C. C. Chang, Y. E. Chen, “Fabrication of high sensitivity ZnO thin film ultrasonic devices by electrochemical etch techniques,” IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, vol. 44, pp. 624-628, 1997.
[4]S. R. Morrison, “Semiconductor Gas Sensors,” Sens. Actuators, vol. 2, pp. 329-341, 1982.
[5]W. J. Buttner, G. J. Maclay, and J. R. Stetter, “Microfabricated amperometric gas sensors,” IEEE Trans. Electron Devices, vol. 35, pp. 793-799, 1988.
[6]C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas detection,” J. Appl. Phys., vol. 68, pp. R1-R30, 1990.
[7]P. T. Moseley, “Solid state gas sensors,” Meas. Sci. Technol., vol. 8, pp. 223-237, 1997.
[8]K. Hjort, “Micromechanics in indium phosphide for opto electrical applications, ”Semiconductor Conference, 1997. CAS ‘97 Proceedings, 1997 International, vol.2, pp. 431-440L, 1997.
[9]A. Baranzahi, E. Janzen, O. Kordina, I. Lundstrom, A.L. Spetz, and P. Tobias,”Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE Electron Device Lett., vol, 18, pp. 287-289, 1997.
[10]M. Duffy, W.G. Hurley, J. Kubik, S. O’Reilly,and P. Ripka, “Current sensor in pcb technology,” Sensors, 2002 Proceedings of IEEE, Vol.18, pp. 779 —784, 2002.
[11]K. K. Ng, Complete guide to semiconductor devices, New York, 2002.
[12]I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen-sensitive MOS field effect transistor,” Appl. Phys. Lett., vol.26, pp.55-57, 1975.
[13]T. L. Poteat and B. Lalevic, “Pd-MOS hydrogen and hydrocarbon sensor device,” IEEE Electron Device Lett., vol. 2, pp. 32-34, 1981.
[14]T. L. Poteat and B. Lalevic, “Transition metal-gate gaseous detectors,” IEEE Trans. Electron Device, vol. 29, pp. 123-129, 1982.
[15]I. Lunström, A. Spetz, F. Winquist, U. Ackelid and H. Sundgren, “Catalytic metals and field-effect devices { a useful combination,” Sens. Actuators B, vol. 1, pp. 15-20, 1990.
[16]W. Hornik, “A novel structure for detecting organic vapours and hydrocarbons based on a Pd-MOS sensor,” Sens. Actuators B, vol. 1, pp. 35-39, 1990.
[17]L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “The ammonia sensitivity of Pt/GaAs Schottky barrier diode,” J. Appl. Phys., vol. 70, pp. 3348-3354, 1991.
[18]L. M. Lechuga, A. Calle, D. Golmayo, F. Briones, J. D. Abajo, and J. G. De La Campa, “Ammonia sensitivity of Pt/GaAs Schottky barrier diode. Improvement of the sensor with an organic layer,” Sens. Actuators B, vol. 8, pp. 249-252, 1992.
[19]S. Nakagomi, A. L. Spetz, I. Lunström, and P. Tobias, “Electrical characterization of carbon monoxide sensitive high temperature sensor diode based on catalytic metal gate-insulator-silicon carbide structure,” IEEE Sensor, vol. 2, no. 5, pp. 379-386, 2002.
[20]J. Schalwig, P. kreisl, S. Ahlers, and G. Müller, “Response mechanism of SiC-based MOS field-effect gas sensors,” IEEE Sensor, vol. 2, no. 5, pp. 394-402, 2002.
[21]A. E. Åbom, E. Comini, G. Sberveglieri, N. Finnegan, I. Petrov, L. Hultman, and M. Eriksson, “Experimental evidence for a dissociation mechanism in NH3 detecion with MIS field-effect devices,” Sens. Actuators B, vol. 89, pp. 1-8, 2003.
[22]B. B. Kuliev, B. Lalevic, M. Yousuf, and D. M. Safarov, “New hydrogen-sensitive metal-InP diode,” Sov. Phys. Semicond., vol. 17, pp. 875-876, 1983.
[23]L. M. Lechuga, A. Calle, D. Golmayo, and P. Tejedor and F. Briones, “A new hydrogen sensor based on a Pt/GaAs Schottky diode,” J. Electrochem. Soc., vol. 138, pp. 159-162, 1991.
[24]L. M. Lechuga, A. Calle, D. Golmayo, and P. Tejedor and F. Briones, “A new hydrogen sensor based on a Pt/GaAs Schottky diode,” Sens. Actuators B, vol. 4, pp.515-518, 1991.
[25]W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang, “Comparative Hydrogen-Sensing Study of Pd/GaAs and Pd/InP Metal-Oxide-Semiconductor Schottky Diodes,” Jpn. J. Appl. Phys., vol.40, pp. 6254-6259, 2001.
[26]G. W. Hunter, P.G. Neudeck, M. Gray, D. Androjna, L. Y. Chen, R. W. Hoffman, C. C. Liu, and Q. H. Wu, “Silicon carbide and related materials,” Mat. Sci. Forum, pp. 1439-1442, 2000.
[27]A. Arbab, A. Spetz and I. Lunström, “Gas sensors for high temperature operation based on metal oxide silicon carbide (MOSiC) devices,” Sens. Actuators B, vol.15-16, pp.19-23, 1993.
[28]Y. Gurbuz, W. P. Kang, J. L. Davison and D. V. Kerns, “Analyzing the mechanism of hydrogen adsorption effects on diamond based MIS hydrogen sensor,” Sens. Actuators B, vol. 35-36, pp. 68-72, 1996.
[29]G. W. Hunter, P. G. Neudeck, L. Y. Chen, D. Knight, C. C. Liu, Q. H. Wu, “Microfabricated chemical sensors for safety and emission control applications,” Digital Avionics Systems Conference, 1998. Proceedings, 17th DASC. The AIAA/IEEE/SAE, vol. 1, pp. D11/1-D11/8, 1998.
[30]C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, D. J. Kim, and W. P. Kang, “Hydrogen sensing characteristics of Pd-SiC Schottky diode operating at high temperature,” J. Electron. Mat., vol. 28, pp. 202-205, 1999.
[31]B. P. Luther, S. D. Wolter, and S. E. Mohney., “High temperature Pt Schottky diode gas sensors on n-type GaN,” Sens. Actuators B, vol.56, pp.164-168, 1999.
[32]J. Schalwig, G. Müller, U. karrer, M. Eickhoff, O. Ambacher, and M. Stutzmann, L. Görgens, and G. Dollinger, “Hydrogen response mechanism of Pt-GaN Schottky diodes,” Appl. Phys. Lett., vol. 80, pp. 1222-1224, 2002.
[33]J. H. Tsai, S. Y. Cheng, L. W. Laih, and W. C. Liu, “AlGaAs/InGaAs/GaAs heterostructure-emitter and heterostructure-base transistor (HEHBT),” IEE Electron. Lett., vol. 32, no. 18, pp. 1720-1721, 1996.
[34]C. C. Cheng, J. H. Tsai, and W. C. Liu, “Multiple switching phenomena of AlGaAs/InGaAs/GaAs heterostructure transistors,” Jpn. J. Appl. Phys., vol. 36, no. 3A, pp. 980-983, 1997.
[35]J. Y. Chen, S. Y. Cheng, W. L. Chang, and W. C. Liu, “-doping InGaP/GaAs heterojunction bipolar transistor,” Mat. Chem. Phys., vol. 53, no. 1, pp. 88-91, 1998.
[36]W. C. Wang, S. Y. Cheng, W. L. Chang, H. J. Pan, Y. H. Shie and W. C. Liu, “Investigation of InGaP/GaAs double delta-doped heterojunction bipolar transistor (D3HBT),” Semicond. Sci. Technol., vol. 13, no. 6, pp. 630-633, 1998.
[37]W. S. Lour, W. L. Chang, Y. M. Shih, and W. C. Liu, “New self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD,” IEEE Electron Device Lett., vol. 20, no. 6, pp. 304-306, 1999.
[38]W. C. Wang, J. Y. Chen, H. J. Pan, S. C. Feng, K. H. Yu, and W. C. Liu, “Study of InGaP/GaAs/InGaP double -doped heterojunction bipolar transistor,” Superlattices & Microstructures, vol. 26, no. 1, pp. 23-33, 1999.
[39]W. C. Liu, W. L. Chang, W. S. Lour, H. J. Pan, W. C. Wang, J. Y. Chen, K. H. Yu, and S. C. Feng, “High-performance InGaP/InxGa1-xAs HEMT with an inverted delta-doped V-shaped channel structure,” IEEE Electron Device Lett., vol. 20, no. 11, pp. 548-550, 1999.
[40]W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei, S. Y. Cheng, W. S. Lour, and W. C. Liu, “Temperature-dependent characteristics of the inverted delta-doped V-shaped InGaP/InxGa1-xAs/GaAs pseudomorphic transistors,” Jpn. J. Appl. Phys., vol. 38, no. 12A, pp. L1385-1387, 1999.
[41]J. Y. Chen, W. C. Wang, H. J. Pan, S. C. Feng, and K. H. Yu, S. Y. Cheng, W. C. Liu, “Characteristics of InGaP/GaAs delta-doped heterojunction bipolar transistor,” J. Vac. Sci. & Technol. B, vol. 18, no. 2, pp. 751-756, 2000.
[42]K. H. Yu, K. W. Lin, C. C. Cheng, K. P. Lin, C. H. Yen, C. Z. Wu, and W. C. Liu, “InGaP/GaAs Camel-Like Field-Effect Transistor for High-Breakdown and High-Temperature Applications,” IEE Electron. Lett., vol. 36, no. 22, pp. 1886-1888, 2000.
[43]K. H. Yu, K. W. Lin, C. C. Cheng, W. L. Chang, J. H. Tsai, S. Y. Cheng and W. C. Liu, “Temperature Dependence of Gate Current and Breakdown Behaviors in an n+-GaAs/p+-InGaP/n--GaAs High-Barrier Gate Field-Effect Transistor,” Jpn. J. Appl. Phys., vol. 40, no. 1, pp. 24-27, 2001.
[44]H. J. Pan, S. C. Feng, W. C. Wang, K. W. Lin, K. H. Yu, C. Z. Wu, L. W. Laih, and W. C. Liu, “Investigation of an InGaP/GaAs Resonant-Tunneling Heterojunction Bipolar Transistor,” Solid-State Electron., vol. 45, no. 3, pp. 489-494, 2001.
[45]W. C. Liu, K. W. Lin, H. I. Chen, C. K. Wang, C. C. Cheng, S. Y. Cheng, and C. T. Lu, “A new Pt/Oxide/In0.49GA0.51P MOS Schottky Diode Hydrogen Sensor,” IEEE Electron Device Lett., vol. 23, pp. 640-642, 2002.
[46]W. C. Liu, Y. H. Wang, C. Y. Chang, and S. A. Liao, April, “GaAs n-i-p-i-n barrier transistor with ultra-thin p AlGaAs base prepared by molecular beam epitaxy,” IEE Proc. (I), vol. 133, no. 2, pp. 47-48, 1986.
[47]Wen-Chau Liu and Wen-Shiung Lour, “AlGaAs/GaAs heterostructure-emitter bipolar transistor (HEBT) prepared by molecular beam epitaxy,” Solid-State Electron., vol. 34, no. 7, pp. 717-722, 1991.
[48]Wen-Chau Liu, Der-Feng Guo, Chung-Yih Sun, and Wen-Shiung Lour, “Morphological defects on Be-doped AlGaAs layers grown by MBE,” J. Cryst. Growth, vol. 114, no. 4, pp. 700-706, 1991.
[49]Wen-Chau Liu, Wen-Shiung Lour, and Der-FengGuo, “A new AlGaAs/GaAs double hetrostructure-emitter bipolar transistor prepared by molecular beam epitaxy,” Appl. Phys. Lett., vol. 60, no. 3, pp. 362-364, 1992.
[50]Wen-Chau Liu, Wen-Shiung Lour, and Yeong-Her Wang, “Investigation of AlGaAs/GaAs superlattice-emitter resonant-tunneling bipolar transistor (SE-RTBT),” IEEE Trans. Electron Device, vol. 39, no. 10, pp. 2214-2219, 1992.
[51]Wen-Chau Liu, Der-Feng Guo, and Wen-Shiung Lour, “Application of an emitter-edge thinning technique to GaAs/AlGaAs double hetrostructure-emitter bipolar transistor,” Appl. Phys. Lett., vol. 61, no. 12, pp. 1441-1443, 1992.
[52]Wen-Chau Liu, Der-Feng Guo, and Wen-Shiung Lour, “AlGaAs/GaAs double hetrostructure-emitter bipolar transistor (DHEBT),” IEEE Trans. Electron Device, vol. 39, no. 12, pp. 2740-2744, 1992.
[53]A. Voskoboynikov, S. H. Liu, and C. P. Lee, “Spin-dependent delay time in electronic resonant tunneling at zero magnetic field”, Solid State Comm., vol.115, pp. 477-481, 2000.
[54]T. L. Poteat, B. Lalevic, B. Kuliyev, M. Yousuf, and M. Chen, “MOS and Schottky diode gas sensors using transition metal electrodes,” J. Electron. Mat., vol.12 pp.181-214, 1983.
[55]A. Baranzahi, A. L. Spetz , B. Andersson, and I. Lundström, ”Gas sensitive field effect devices for high temperature” Sens. Actuators B, vol. 26, pp. 165-169, 1995.
[56]Y. T. Cheng, Y. Li, D. Lisi, and W. M. Wang, “Preparation and characterization of Pd/Ni thin films for hydrogen sensing,” Sens. Actuators B, vol. 30, pp. 11-16, 1996.
[57]V. Casey, J. B. McMonagle, B. O’Beirn, “Minority-carrier MIS tunnel diode hydrogen sensors,” Sens. Actuators B, vol. 30, pp. 233-240, 1996.
[58]H. Seo, T. Endoh, H. Fukuda, and S. Nomura, “Highly sensitive MOSFET gas sensors with porous platinum gate electrode,” IEE Electron. Lett., vol. 33, pp. 535-536, 1997.
[59]S. Basu and A. Dutta, “Room-temperature hydrogen sensors based on ZnO,” Mat. Chem. Phys., vol. 47, pp. 93-96, 1997.
[60]J. P. Xu, P. T. Lai, D. G. Zhong, and C. L. Chan, “Improved hydrogen-sensitive properties of MISiC Schottky with thin NO-grown oxynitride as gate insulator,” IEEE Electron Device Lett., vol. 24, no. 1, pp. 13-15, 2003.
[61]M. Yousuf, B. Kuliyev, and B. Lalevic, “Pd-InP Schottky diode hydrogen sensors,” Solid-State Electron., vol. 25, pp. 753-758, 1982.
[62]W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen-sensitive characteristics of a novel Pd/InP MOS Schottky diode hydrogen sensor,” IEEE Trans. Electron Device, vol. 48, no. 9, pp. 1938-1944, 2001
[63]H. J. Pan, K. W. Lin, K. H. Yu, C. C. Cheng, K. B. Thei, W. C. Liu, and H. I. Chen, “Highly hydrogen-sensitive Pd/InP metal-oxide-semiconductor Schottky diode hydrogen sensor,” IEE Electron. Lett., vol. 38, pp. 92-94, 2002.
[64]H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actuators B, vol. 85, pp. 10-18, 2002.
[65]H. I. Chen, Y. I. Chou, C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd-InP Schottky diode,” Sens. Actuators B, vol. 92, pp. 6-16, 2003.
[66]K. I. Lundström, M. S. Shivaraman, and C. M. Svensson, “A hydrogen-sensitive Pd-gate MOS transistor,” J. Appl. Phys., vol. 46, pp. 55-57, 1975.
[67]M. C. Steele, J. W. Hile, and B. A. Maclver, “Hydrogen-sensitive Palladium-gate MOS capacitors,” J. Appl. Phys., vol. 47, pp. 2537-2538, 1976.
[68]L. Yadava, R. Dwivedi, and S. K. Srivastava, “A titanium dioxide-based MOS hydrogen sensor,” Solid-State Electron., vol. 33, pp. 1229-1234, 1990.
[69]S. Fomenko, S. gumenjuk, B. Polepetsky, V. Chuvashov, and G. Safronkin, “The influence of technological factors on the hydrogen sensitivity of MOSFET sensors,” Sens. Actuators B, vol. 10, pp. 7-10, 1992.
[70]M. Eriksson and L. G. Ekedahl, “Hydrogen adsorption states at the Pd/SiO2 interface and simulation of the response of a Pd metal-oxide-semiconductor hydrogen sensor,” J. Appl. Phys., vol. 38, pp. 3947-3951, 1998.
[71]D. Briand, H. Sundgren, B. Schoot, I. Lundström and N. F. Rooij, “Thermally Isolated MOSFET for Gas Sensing Application,“ IEEE Electron Device Lett., vol. 22, pp. 11-13, 2001.
[72]W. Liu, Handbook of III-V heterojunction bipolar transistors, Wiley, New York, 1998.
[73]R. R. Rye and A. J. Ricco, “Ultrahigh vacuum studied of Pd metal/insulator/semiconductor diode H2 sensors”, J. Appl. Phys., vol.62, pp.1084-1092, 1987.
[74]J. Fogelberg, M. Eriksson, H. Dannetun, and L. G. Petersson, “Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen-sensitive field-effect devices: Observation of large hydrogen-induced dipoles at the Pd-SiO2 interface,” J. Appl. Phys., vol. 78, pp. 988-996, 1995.
[75]I. Lundström and L. G. Petersson, “Chemical sensors with catalytic metal gates,” J. Vac. Sci. Technol. A, vol.14 pp.1539-1545, 1996.
[76]Y. Gurbuz, W. P. Kang, J. L. Davison and D. V. Kerns, “Diamond microelectronic gas sensors,” Sens. Actuators B, vol. 33, pp. 100-104, 1996.
[77]L. M. Lechuga, A. Calle, D. Golmayo and F. Briones, “Different catalytic metals (Pt, Pd and Ir) for GaAs Schottky barrier sensors,” Sens. Actuators B, vol. 7, pp. 614-618, 1992.
[78]K. A. Bertness, T. Kendelewicz, R. S. List, M. D. Williams, I. Lindau, and W. E. Spicer, “Fermi level pinning during oxidation of atomically clean n-InP (110),” J. Vac. Sci. Technol. A, vol. 4, pp.1424-1426, 1986.
[79]N. Newman, W. E. Spicer, T. Kendelewicz, and I. Lindua, “On the Fermi level pinning behavior of metal/III-V semiconductor interfaces,” J. Vac. Sci. Technol. B, vol. 4, pp. 931-938, 1986.
[80]R. L. V. Meirhaeghe, W. H. Laflere, and F. Cardon, “Influence of defect passivation by hydrogen on the Schottky barrier height of GaAs and InP contacts,” J. Appl. Phys., vol. 76, pp. 403-406, 1994.
[81]Y. K. Fang, S. B. Hwang, C. Y. Lin and C. C. Lee, “Trench Pd/Si metal-oxide-semiconductor Schottky barrier diode for a high sensitivity hydrogen gas sensor, “ Appl, Phys. Lett., vol. 57, pp. 2686-2688, 1990.
[82]W.P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, pp. 8175-8181, 1994.
[83]R. C. Hughes, W. K. Schubert, T. E. Zipperian, J. L. Rodriguez, and T. A. Plut, “Thin film palladium and silver alloys and layers for metal-insulator-semicinductor sensors.” J. Appl. Phys., vol. 62, pp. 1074-1082, 1987.
[84]Y. Morita, K. I. Nakamura, and C. Kim, “Langmuir analysis on hydrogen gas response of palladium-gate FET,” Sens. Actuators B, vol. 33, pp. 96-99, 1996
[85]I. Lundström, “Hydrogen sensitive MOS-structures part1: principles and applications,” Sens. Actuators B, vol.1, pp. 403-426, 1981.
[86]L. -G. Petersson, H. Dannetun, J. Fogelberg, and I. Lundström, “Oxygen as promoter or poison in the catalytic dissociation of H2, C2H4, C2H2, and NH3 on palladium,” Appl. Surface Science, vol. 27, pp. 275-284, 1986.
[87]B. Hellsing, B. Kasemo, and V. P. Zhdanov, “Kinetic of the hydrogen-oxygen reaction on platinum,” J. Catalysis, vol. 132, pp. 210-228, 1991.
[88]M. Johansson, I. Lundström, and L. G. Ekedahl, “Bridging the pressure gap for palladium metal-insulator-semiconductor hydrogen sensors in oxygen containing enviroments,” J. Appl. Phys., vol. 84, pp. 44-51, 1998.
[89]W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen-sensitive characteristics of a novel Pd/InP Metal-Oxide-Semiconductor (MOS) Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, vol. 48, pp. 1938-1944, 2001.
[90]C. Tsamis, L. Tsoura, A. G. Nassiopoilou, A. Travlos, C. E. Salmas, K. S. Hatzilyberis, and G. P. Androutsopoulos, “Hydrogen catalytic oxidation reaction on Pd-doped porous silicon, ”IEEE Sensors, vol. 2, no. 2, pp. 89-95, 2002.
[91]M. Löfdahl, M. Eriksson, M. Johansson, and I. Lundström, “Difference in hydrogen sensitivity between Pt and Pd field-effect devices,” J. Appl. Phys., vol. 91, pp. 4275-4280, 2002.
[92]R. J. Silbey and R. A. Alberty, Physical chemistry — 3rd ed., John Willey & Sons, Inc., New York, 2001.
[93]W. E. Spicer, S. Pan, D. Mo, N. Newman, P. Mahowald, T. Kendelewicz, and S. Eglash, “Metallic and atom approximations at the Schottky barrier interfaces,” J. Vac. Sci. Technol. B, vol. 2, pp. 476-480, 1984.
[94]E. Hökelek and G. Y. Robinson, “A comparison of Pd Schottky contacts on InP, GaAs and Si,” Solid-State Electron., vol. 24, pp. 99-103, 1981.
[95]J. R. Lothian, F. Ren, J. M. Kuo, J. S. Weiner, and Y. K. Chen, “Pt/Ti/Pt/Au Schottky contacts on InGaP/GaAs HEMTs,” Solid-State Electron., vol. 41, no. 5, pp. 673-675, 1997.
[96]H. Hasegawa, “Controlled formation of high Schottky barriers on InP and related materials, “ IEEE 10th Intern. Conf. on InP and related materials, pp. 451-454, 1998.
[97]W. Walukiewicz, “Mechanism oh Schottky barrier formation: The role of amphoteric native defects,” J. Vac. Sci. Technol. B, vol. 5, pp. 1062-1067, 1987.
[98]H. Y. Nie and Y. Mammichi, “Pd-on-GaAs Schottky contact: itsbarrier height and response to hydrogen,” Jpn. J. Appl. Phys., vol. 30, pp. 906-913, 1991.
[99]Y. Gurbuz, W. P. Kang, J. L. Davison and D. V. Kerns, “Minority-carrier MIS tunnel diode hydrogen sensors,” Sens. Actuators B, vol. 30, pp. 233-240, 1996.
[100]J. F. Wager and C. W. Wilmsen, “Thermal oxidation of InP,” J. Appl. Phys., vol. 51, pp. 812-814, 1980.
[101]A. A. Iliadis, “Nearly ideal enhanced barrier height Schottky contacts to n-InP for MESFET applications,” IEE Electron. Lett., vol. 25, pp. 572-574, 1989.
[102]Z. L. Weber, E. R. Weber, and J. Washburn, “Schottky barrier contacts on defect-free GaAs,” Appl. Phys. Lett., vol. 56, no. 25, pp. 2507-2509, 1990.
[103]H. Hasegawa, T. Sato, and T. Hashizumi, “Evolution mechanism of nearly pinning-free platinum/n-type indium phosphide interface with a high Schottky barrier height by in situ electrochemical process,” J. Vac. Sci. Technol. B, vol. 15, pp. 1227-1235, 1997.
[104]S. Lodha, D. B. Janes, and N. P. Chen, “Unpinned interface Fermi-level in Schottky contacts to n-GaAs capped with low-temperature-grown GaAs; experiments and modeling using defect state distributions,” J. Appl. Phys., vol. 93, pp. 2772-2778, 2003.
[105]S. Uemiya, M. Kajiwara, and T. Kojima, “Composite membranes of group VIII metal supported on porous alumina,” AIChE Journal, vol. 43, no. 11A, pp. 2715-2723, 1984.
[106]S. -Y. Choi, K. Takahashi, and T. Matsuo, “No blister formation Pd/Pt double metal gate MISFET hydrogen sensors,” IEEE Electron Device Lett., vol. 5, pp. 14-15, 1984.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top