|
[1]H. Sundgren, I. Lundström, F. Winquist, I. Lukkari, R. Carlesson, and S. Wold,” Evaluation of a Multiple Gas-Mixture with a Simple MOSFET Gas Sensor Array and Pattern-Recognition,” Sens. Actuators B, vol. 2, pp.115-123, 1990. [2]N. Yamazoe and N. Miura, “Development of gas sensors for environmental protection,” IEEE Trans. Components, Packing and Manufacturing Technology A, vol.18, pp.252-256, 1995. [3]C. C. Chang, Y. E. Chen, “Fabrication of high sensitivity ZnO thin film ultrasonic devices by electrochemical etch techniques,” IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, vol. 44, pp. 624-628, 1997. [4]S. R. Morrison, “Semiconductor Gas Sensors,” Sens. Actuators, vol. 2, pp. 329-341, 1982. [5]W. J. Buttner, G. J. Maclay, and J. R. Stetter, “Microfabricated amperometric gas sensors,” IEEE Trans. Electron Devices, vol. 35, pp. 793-799, 1988. [6]C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas detection,” J. Appl. Phys., vol. 68, pp. R1-R30, 1990. [7]P. T. Moseley, “Solid state gas sensors,” Meas. Sci. Technol., vol. 8, pp. 223-237, 1997. [8]K. Hjort, “Micromechanics in indium phosphide for opto electrical applications, ”Semiconductor Conference, 1997. CAS ‘97 Proceedings, 1997 International, vol.2, pp. 431-440L, 1997. [9]A. Baranzahi, E. Janzen, O. Kordina, I. Lundstrom, A.L. Spetz, and P. Tobias,”Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE Electron Device Lett., vol, 18, pp. 287-289, 1997. [10]M. Duffy, W.G. Hurley, J. Kubik, S. O’Reilly,and P. Ripka, “Current sensor in pcb technology,” Sensors, 2002 Proceedings of IEEE, Vol.18, pp. 779 —784, 2002. [11]K. K. Ng, Complete guide to semiconductor devices, New York, 2002. [12]I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen-sensitive MOS field effect transistor,” Appl. Phys. Lett., vol.26, pp.55-57, 1975. [13]T. L. Poteat and B. Lalevic, “Pd-MOS hydrogen and hydrocarbon sensor device,” IEEE Electron Device Lett., vol. 2, pp. 32-34, 1981. [14]T. L. Poteat and B. Lalevic, “Transition metal-gate gaseous detectors,” IEEE Trans. Electron Device, vol. 29, pp. 123-129, 1982. [15]I. Lunström, A. Spetz, F. Winquist, U. Ackelid and H. Sundgren, “Catalytic metals and field-effect devices { a useful combination,” Sens. Actuators B, vol. 1, pp. 15-20, 1990. [16]W. Hornik, “A novel structure for detecting organic vapours and hydrocarbons based on a Pd-MOS sensor,” Sens. Actuators B, vol. 1, pp. 35-39, 1990. [17]L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “The ammonia sensitivity of Pt/GaAs Schottky barrier diode,” J. Appl. Phys., vol. 70, pp. 3348-3354, 1991. [18]L. M. Lechuga, A. Calle, D. Golmayo, F. Briones, J. D. Abajo, and J. G. De La Campa, “Ammonia sensitivity of Pt/GaAs Schottky barrier diode. Improvement of the sensor with an organic layer,” Sens. Actuators B, vol. 8, pp. 249-252, 1992. [19]S. Nakagomi, A. L. Spetz, I. Lunström, and P. Tobias, “Electrical characterization of carbon monoxide sensitive high temperature sensor diode based on catalytic metal gate-insulator-silicon carbide structure,” IEEE Sensor, vol. 2, no. 5, pp. 379-386, 2002. [20]J. Schalwig, P. kreisl, S. Ahlers, and G. Müller, “Response mechanism of SiC-based MOS field-effect gas sensors,” IEEE Sensor, vol. 2, no. 5, pp. 394-402, 2002. [21]A. E. Åbom, E. Comini, G. Sberveglieri, N. Finnegan, I. Petrov, L. Hultman, and M. Eriksson, “Experimental evidence for a dissociation mechanism in NH3 detecion with MIS field-effect devices,” Sens. Actuators B, vol. 89, pp. 1-8, 2003. [22]B. B. Kuliev, B. Lalevic, M. Yousuf, and D. M. Safarov, “New hydrogen-sensitive metal-InP diode,” Sov. Phys. Semicond., vol. 17, pp. 875-876, 1983. [23]L. M. Lechuga, A. Calle, D. Golmayo, and P. Tejedor and F. Briones, “A new hydrogen sensor based on a Pt/GaAs Schottky diode,” J. Electrochem. Soc., vol. 138, pp. 159-162, 1991. [24]L. M. Lechuga, A. Calle, D. Golmayo, and P. Tejedor and F. Briones, “A new hydrogen sensor based on a Pt/GaAs Schottky diode,” Sens. Actuators B, vol. 4, pp.515-518, 1991. [25]W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang, “Comparative Hydrogen-Sensing Study of Pd/GaAs and Pd/InP Metal-Oxide-Semiconductor Schottky Diodes,” Jpn. J. Appl. Phys., vol.40, pp. 6254-6259, 2001. [26]G. W. Hunter, P.G. Neudeck, M. Gray, D. Androjna, L. Y. Chen, R. W. Hoffman, C. C. Liu, and Q. H. Wu, “Silicon carbide and related materials,” Mat. Sci. Forum, pp. 1439-1442, 2000. [27]A. Arbab, A. Spetz and I. Lunström, “Gas sensors for high temperature operation based on metal oxide silicon carbide (MOSiC) devices,” Sens. Actuators B, vol.15-16, pp.19-23, 1993. [28]Y. Gurbuz, W. P. Kang, J. L. Davison and D. V. Kerns, “Analyzing the mechanism of hydrogen adsorption effects on diamond based MIS hydrogen sensor,” Sens. Actuators B, vol. 35-36, pp. 68-72, 1996. [29]G. W. Hunter, P. G. Neudeck, L. Y. Chen, D. Knight, C. C. Liu, Q. H. Wu, “Microfabricated chemical sensors for safety and emission control applications,” Digital Avionics Systems Conference, 1998. Proceedings, 17th DASC. The AIAA/IEEE/SAE, vol. 1, pp. D11/1-D11/8, 1998. [30]C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, D. J. Kim, and W. P. Kang, “Hydrogen sensing characteristics of Pd-SiC Schottky diode operating at high temperature,” J. Electron. Mat., vol. 28, pp. 202-205, 1999. [31]B. P. Luther, S. D. Wolter, and S. E. Mohney., “High temperature Pt Schottky diode gas sensors on n-type GaN,” Sens. Actuators B, vol.56, pp.164-168, 1999. [32]J. Schalwig, G. Müller, U. karrer, M. Eickhoff, O. Ambacher, and M. Stutzmann, L. Görgens, and G. Dollinger, “Hydrogen response mechanism of Pt-GaN Schottky diodes,” Appl. Phys. Lett., vol. 80, pp. 1222-1224, 2002. [33]J. H. Tsai, S. Y. Cheng, L. W. Laih, and W. C. Liu, “AlGaAs/InGaAs/GaAs heterostructure-emitter and heterostructure-base transistor (HEHBT),” IEE Electron. Lett., vol. 32, no. 18, pp. 1720-1721, 1996. [34]C. C. Cheng, J. H. Tsai, and W. C. Liu, “Multiple switching phenomena of AlGaAs/InGaAs/GaAs heterostructure transistors,” Jpn. J. Appl. Phys., vol. 36, no. 3A, pp. 980-983, 1997. [35]J. Y. Chen, S. Y. Cheng, W. L. Chang, and W. C. Liu, “-doping InGaP/GaAs heterojunction bipolar transistor,” Mat. Chem. Phys., vol. 53, no. 1, pp. 88-91, 1998. [36]W. C. Wang, S. Y. Cheng, W. L. Chang, H. J. Pan, Y. H. Shie and W. C. Liu, “Investigation of InGaP/GaAs double delta-doped heterojunction bipolar transistor (D3HBT),” Semicond. Sci. Technol., vol. 13, no. 6, pp. 630-633, 1998. [37]W. S. Lour, W. L. Chang, Y. M. Shih, and W. C. Liu, “New self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD,” IEEE Electron Device Lett., vol. 20, no. 6, pp. 304-306, 1999. [38]W. C. Wang, J. Y. Chen, H. J. Pan, S. C. Feng, K. H. Yu, and W. C. Liu, “Study of InGaP/GaAs/InGaP double -doped heterojunction bipolar transistor,” Superlattices & Microstructures, vol. 26, no. 1, pp. 23-33, 1999. [39]W. C. Liu, W. L. Chang, W. S. Lour, H. J. Pan, W. C. Wang, J. Y. Chen, K. H. Yu, and S. C. Feng, “High-performance InGaP/InxGa1-xAs HEMT with an inverted delta-doped V-shaped channel structure,” IEEE Electron Device Lett., vol. 20, no. 11, pp. 548-550, 1999. [40]W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei, S. Y. Cheng, W. S. Lour, and W. C. Liu, “Temperature-dependent characteristics of the inverted delta-doped V-shaped InGaP/InxGa1-xAs/GaAs pseudomorphic transistors,” Jpn. J. Appl. Phys., vol. 38, no. 12A, pp. L1385-1387, 1999. [41]J. Y. Chen, W. C. Wang, H. J. Pan, S. C. Feng, and K. H. Yu, S. Y. Cheng, W. C. Liu, “Characteristics of InGaP/GaAs delta-doped heterojunction bipolar transistor,” J. Vac. Sci. & Technol. B, vol. 18, no. 2, pp. 751-756, 2000. [42]K. H. Yu, K. W. Lin, C. C. Cheng, K. P. Lin, C. H. Yen, C. Z. Wu, and W. C. Liu, “InGaP/GaAs Camel-Like Field-Effect Transistor for High-Breakdown and High-Temperature Applications,” IEE Electron. Lett., vol. 36, no. 22, pp. 1886-1888, 2000. [43]K. H. Yu, K. W. Lin, C. C. Cheng, W. L. Chang, J. H. Tsai, S. Y. Cheng and W. C. Liu, “Temperature Dependence of Gate Current and Breakdown Behaviors in an n+-GaAs/p+-InGaP/n--GaAs High-Barrier Gate Field-Effect Transistor,” Jpn. J. Appl. Phys., vol. 40, no. 1, pp. 24-27, 2001. [44]H. J. Pan, S. C. Feng, W. C. Wang, K. W. Lin, K. H. Yu, C. Z. Wu, L. W. Laih, and W. C. Liu, “Investigation of an InGaP/GaAs Resonant-Tunneling Heterojunction Bipolar Transistor,” Solid-State Electron., vol. 45, no. 3, pp. 489-494, 2001. [45]W. C. Liu, K. W. Lin, H. I. Chen, C. K. Wang, C. C. Cheng, S. Y. Cheng, and C. T. Lu, “A new Pt/Oxide/In0.49GA0.51P MOS Schottky Diode Hydrogen Sensor,” IEEE Electron Device Lett., vol. 23, pp. 640-642, 2002. [46]W. C. Liu, Y. H. Wang, C. Y. Chang, and S. A. Liao, April, “GaAs n-i-p-i-n barrier transistor with ultra-thin p AlGaAs base prepared by molecular beam epitaxy,” IEE Proc. (I), vol. 133, no. 2, pp. 47-48, 1986. [47]Wen-Chau Liu and Wen-Shiung Lour, “AlGaAs/GaAs heterostructure-emitter bipolar transistor (HEBT) prepared by molecular beam epitaxy,” Solid-State Electron., vol. 34, no. 7, pp. 717-722, 1991. [48]Wen-Chau Liu, Der-Feng Guo, Chung-Yih Sun, and Wen-Shiung Lour, “Morphological defects on Be-doped AlGaAs layers grown by MBE,” J. Cryst. Growth, vol. 114, no. 4, pp. 700-706, 1991. [49]Wen-Chau Liu, Wen-Shiung Lour, and Der-FengGuo, “A new AlGaAs/GaAs double hetrostructure-emitter bipolar transistor prepared by molecular beam epitaxy,” Appl. Phys. Lett., vol. 60, no. 3, pp. 362-364, 1992. [50]Wen-Chau Liu, Wen-Shiung Lour, and Yeong-Her Wang, “Investigation of AlGaAs/GaAs superlattice-emitter resonant-tunneling bipolar transistor (SE-RTBT),” IEEE Trans. Electron Device, vol. 39, no. 10, pp. 2214-2219, 1992. [51]Wen-Chau Liu, Der-Feng Guo, and Wen-Shiung Lour, “Application of an emitter-edge thinning technique to GaAs/AlGaAs double hetrostructure-emitter bipolar transistor,” Appl. Phys. Lett., vol. 61, no. 12, pp. 1441-1443, 1992. [52]Wen-Chau Liu, Der-Feng Guo, and Wen-Shiung Lour, “AlGaAs/GaAs double hetrostructure-emitter bipolar transistor (DHEBT),” IEEE Trans. Electron Device, vol. 39, no. 12, pp. 2740-2744, 1992. [53]A. Voskoboynikov, S. H. Liu, and C. P. Lee, “Spin-dependent delay time in electronic resonant tunneling at zero magnetic field”, Solid State Comm., vol.115, pp. 477-481, 2000. [54]T. L. Poteat, B. Lalevic, B. Kuliyev, M. Yousuf, and M. Chen, “MOS and Schottky diode gas sensors using transition metal electrodes,” J. Electron. Mat., vol.12 pp.181-214, 1983. [55]A. Baranzahi, A. L. Spetz , B. Andersson, and I. Lundström, ”Gas sensitive field effect devices for high temperature” Sens. Actuators B, vol. 26, pp. 165-169, 1995. [56]Y. T. Cheng, Y. Li, D. Lisi, and W. M. Wang, “Preparation and characterization of Pd/Ni thin films for hydrogen sensing,” Sens. Actuators B, vol. 30, pp. 11-16, 1996. [57]V. Casey, J. B. McMonagle, B. O’Beirn, “Minority-carrier MIS tunnel diode hydrogen sensors,” Sens. Actuators B, vol. 30, pp. 233-240, 1996. [58]H. Seo, T. Endoh, H. Fukuda, and S. Nomura, “Highly sensitive MOSFET gas sensors with porous platinum gate electrode,” IEE Electron. Lett., vol. 33, pp. 535-536, 1997. [59]S. Basu and A. Dutta, “Room-temperature hydrogen sensors based on ZnO,” Mat. Chem. Phys., vol. 47, pp. 93-96, 1997. [60]J. P. Xu, P. T. Lai, D. G. Zhong, and C. L. Chan, “Improved hydrogen-sensitive properties of MISiC Schottky with thin NO-grown oxynitride as gate insulator,” IEEE Electron Device Lett., vol. 24, no. 1, pp. 13-15, 2003. [61]M. Yousuf, B. Kuliyev, and B. Lalevic, “Pd-InP Schottky diode hydrogen sensors,” Solid-State Electron., vol. 25, pp. 753-758, 1982. [62]W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen-sensitive characteristics of a novel Pd/InP MOS Schottky diode hydrogen sensor,” IEEE Trans. Electron Device, vol. 48, no. 9, pp. 1938-1944, 2001 [63]H. J. Pan, K. W. Lin, K. H. Yu, C. C. Cheng, K. B. Thei, W. C. Liu, and H. I. Chen, “Highly hydrogen-sensitive Pd/InP metal-oxide-semiconductor Schottky diode hydrogen sensor,” IEE Electron. Lett., vol. 38, pp. 92-94, 2002. [64]H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actuators B, vol. 85, pp. 10-18, 2002. [65]H. I. Chen, Y. I. Chou, C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd-InP Schottky diode,” Sens. Actuators B, vol. 92, pp. 6-16, 2003. [66]K. I. Lundström, M. S. Shivaraman, and C. M. Svensson, “A hydrogen-sensitive Pd-gate MOS transistor,” J. Appl. Phys., vol. 46, pp. 55-57, 1975. [67]M. C. Steele, J. W. Hile, and B. A. Maclver, “Hydrogen-sensitive Palladium-gate MOS capacitors,” J. Appl. Phys., vol. 47, pp. 2537-2538, 1976. [68]L. Yadava, R. Dwivedi, and S. K. Srivastava, “A titanium dioxide-based MOS hydrogen sensor,” Solid-State Electron., vol. 33, pp. 1229-1234, 1990. [69]S. Fomenko, S. gumenjuk, B. Polepetsky, V. Chuvashov, and G. Safronkin, “The influence of technological factors on the hydrogen sensitivity of MOSFET sensors,” Sens. Actuators B, vol. 10, pp. 7-10, 1992. [70]M. Eriksson and L. G. Ekedahl, “Hydrogen adsorption states at the Pd/SiO2 interface and simulation of the response of a Pd metal-oxide-semiconductor hydrogen sensor,” J. Appl. Phys., vol. 38, pp. 3947-3951, 1998. [71]D. Briand, H. Sundgren, B. Schoot, I. Lundström and N. F. Rooij, “Thermally Isolated MOSFET for Gas Sensing Application,“ IEEE Electron Device Lett., vol. 22, pp. 11-13, 2001. [72]W. Liu, Handbook of III-V heterojunction bipolar transistors, Wiley, New York, 1998. [73]R. R. Rye and A. J. Ricco, “Ultrahigh vacuum studied of Pd metal/insulator/semiconductor diode H2 sensors”, J. Appl. Phys., vol.62, pp.1084-1092, 1987. [74]J. Fogelberg, M. Eriksson, H. Dannetun, and L. G. Petersson, “Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen-sensitive field-effect devices: Observation of large hydrogen-induced dipoles at the Pd-SiO2 interface,” J. Appl. Phys., vol. 78, pp. 988-996, 1995. [75]I. Lundström and L. G. Petersson, “Chemical sensors with catalytic metal gates,” J. Vac. Sci. Technol. A, vol.14 pp.1539-1545, 1996. [76]Y. Gurbuz, W. P. Kang, J. L. Davison and D. V. Kerns, “Diamond microelectronic gas sensors,” Sens. Actuators B, vol. 33, pp. 100-104, 1996. [77]L. M. Lechuga, A. Calle, D. Golmayo and F. Briones, “Different catalytic metals (Pt, Pd and Ir) for GaAs Schottky barrier sensors,” Sens. Actuators B, vol. 7, pp. 614-618, 1992. [78]K. A. Bertness, T. Kendelewicz, R. S. List, M. D. Williams, I. Lindau, and W. E. Spicer, “Fermi level pinning during oxidation of atomically clean n-InP (110),” J. Vac. Sci. Technol. A, vol. 4, pp.1424-1426, 1986. [79]N. Newman, W. E. Spicer, T. Kendelewicz, and I. Lindua, “On the Fermi level pinning behavior of metal/III-V semiconductor interfaces,” J. Vac. Sci. Technol. B, vol. 4, pp. 931-938, 1986. [80]R. L. V. Meirhaeghe, W. H. Laflere, and F. Cardon, “Influence of defect passivation by hydrogen on the Schottky barrier height of GaAs and InP contacts,” J. Appl. Phys., vol. 76, pp. 403-406, 1994. [81]Y. K. Fang, S. B. Hwang, C. Y. Lin and C. C. Lee, “Trench Pd/Si metal-oxide-semiconductor Schottky barrier diode for a high sensitivity hydrogen gas sensor, “ Appl, Phys. Lett., vol. 57, pp. 2686-2688, 1990. [82]W.P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, pp. 8175-8181, 1994. [83]R. C. Hughes, W. K. Schubert, T. E. Zipperian, J. L. Rodriguez, and T. A. Plut, “Thin film palladium and silver alloys and layers for metal-insulator-semicinductor sensors.” J. Appl. Phys., vol. 62, pp. 1074-1082, 1987. [84]Y. Morita, K. I. Nakamura, and C. Kim, “Langmuir analysis on hydrogen gas response of palladium-gate FET,” Sens. Actuators B, vol. 33, pp. 96-99, 1996 [85]I. Lundström, “Hydrogen sensitive MOS-structures part1: principles and applications,” Sens. Actuators B, vol.1, pp. 403-426, 1981. [86]L. -G. Petersson, H. Dannetun, J. Fogelberg, and I. Lundström, “Oxygen as promoter or poison in the catalytic dissociation of H2, C2H4, C2H2, and NH3 on palladium,” Appl. Surface Science, vol. 27, pp. 275-284, 1986. [87]B. Hellsing, B. Kasemo, and V. P. Zhdanov, “Kinetic of the hydrogen-oxygen reaction on platinum,” J. Catalysis, vol. 132, pp. 210-228, 1991. [88]M. Johansson, I. Lundström, and L. G. Ekedahl, “Bridging the pressure gap for palladium metal-insulator-semiconductor hydrogen sensors in oxygen containing enviroments,” J. Appl. Phys., vol. 84, pp. 44-51, 1998. [89]W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen-sensitive characteristics of a novel Pd/InP Metal-Oxide-Semiconductor (MOS) Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, vol. 48, pp. 1938-1944, 2001. [90]C. Tsamis, L. Tsoura, A. G. Nassiopoilou, A. Travlos, C. E. Salmas, K. S. Hatzilyberis, and G. P. Androutsopoulos, “Hydrogen catalytic oxidation reaction on Pd-doped porous silicon, ”IEEE Sensors, vol. 2, no. 2, pp. 89-95, 2002. [91]M. Löfdahl, M. Eriksson, M. Johansson, and I. Lundström, “Difference in hydrogen sensitivity between Pt and Pd field-effect devices,” J. Appl. Phys., vol. 91, pp. 4275-4280, 2002. [92]R. J. Silbey and R. A. Alberty, Physical chemistry — 3rd ed., John Willey & Sons, Inc., New York, 2001. [93]W. E. Spicer, S. Pan, D. Mo, N. Newman, P. Mahowald, T. Kendelewicz, and S. Eglash, “Metallic and atom approximations at the Schottky barrier interfaces,” J. Vac. Sci. Technol. B, vol. 2, pp. 476-480, 1984. [94]E. Hökelek and G. Y. Robinson, “A comparison of Pd Schottky contacts on InP, GaAs and Si,” Solid-State Electron., vol. 24, pp. 99-103, 1981. [95]J. R. Lothian, F. Ren, J. M. Kuo, J. S. Weiner, and Y. K. Chen, “Pt/Ti/Pt/Au Schottky contacts on InGaP/GaAs HEMTs,” Solid-State Electron., vol. 41, no. 5, pp. 673-675, 1997. [96]H. Hasegawa, “Controlled formation of high Schottky barriers on InP and related materials, “ IEEE 10th Intern. Conf. on InP and related materials, pp. 451-454, 1998. [97]W. Walukiewicz, “Mechanism oh Schottky barrier formation: The role of amphoteric native defects,” J. Vac. Sci. Technol. B, vol. 5, pp. 1062-1067, 1987. [98]H. Y. Nie and Y. Mammichi, “Pd-on-GaAs Schottky contact: itsbarrier height and response to hydrogen,” Jpn. J. Appl. Phys., vol. 30, pp. 906-913, 1991. [99]Y. Gurbuz, W. P. Kang, J. L. Davison and D. V. Kerns, “Minority-carrier MIS tunnel diode hydrogen sensors,” Sens. Actuators B, vol. 30, pp. 233-240, 1996. [100]J. F. Wager and C. W. Wilmsen, “Thermal oxidation of InP,” J. Appl. Phys., vol. 51, pp. 812-814, 1980. [101]A. A. Iliadis, “Nearly ideal enhanced barrier height Schottky contacts to n-InP for MESFET applications,” IEE Electron. Lett., vol. 25, pp. 572-574, 1989. [102]Z. L. Weber, E. R. Weber, and J. Washburn, “Schottky barrier contacts on defect-free GaAs,” Appl. Phys. Lett., vol. 56, no. 25, pp. 2507-2509, 1990. [103]H. Hasegawa, T. Sato, and T. Hashizumi, “Evolution mechanism of nearly pinning-free platinum/n-type indium phosphide interface with a high Schottky barrier height by in situ electrochemical process,” J. Vac. Sci. Technol. B, vol. 15, pp. 1227-1235, 1997. [104]S. Lodha, D. B. Janes, and N. P. Chen, “Unpinned interface Fermi-level in Schottky contacts to n-GaAs capped with low-temperature-grown GaAs; experiments and modeling using defect state distributions,” J. Appl. Phys., vol. 93, pp. 2772-2778, 2003. [105]S. Uemiya, M. Kajiwara, and T. Kojima, “Composite membranes of group VIII metal supported on porous alumina,” AIChE Journal, vol. 43, no. 11A, pp. 2715-2723, 1984. [106]S. -Y. Choi, K. Takahashi, and T. Matsuo, “No blister formation Pd/Pt double metal gate MISFET hydrogen sensors,” IEEE Electron Device Lett., vol. 5, pp. 14-15, 1984.
|