跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/16 05:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡盛伏
研究生(外文):Sheng-Fu Tsai
論文名稱:適用於極大型積體電路之多晶矽與擴散層電阻特性之研究
論文名稱(外文):Investigation of Poly Silicon and Diffused Resistors Characteristics in ULSI Applications
指導教授:劉文超劉文超引用關係
指導教授(外文):Wen-Chau Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:87
中文關鍵詞:多晶矽電阻擴散層電阻電阻溫度係數電阻電壓係數
外文關鍵詞:Polysilicon resistorDiffused resistorVCRTCR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們將對在應用於毫微米尺寸以下積體電路之多晶矽電阻器與擴散層電阻器做一完整且深入之特性研究與討論。我們建立一理論模型,用以分析及計算在多晶矽電阻與擴散層電阻中的各項重要參數,包含電阻電性寬度(DW)、電阻電性長度(DL)、基體電阻(Rbulk)和介面電阻(Rinterface)。再者,我們也對電壓對阻值的影響以及電阻的電壓係數(VCR)進行分析。另外,由於溫度也是影響電阻穩定度之因素之一,溫度對於電阻所造成的影響及電阻的溫度係數(TCR)在本文中亦有詳盡的討論。依據實驗結果顯示,該理論模型與實驗數據相符合。由此研究可知Rinterface對於電阻器的阻值穩定性、TCR、VCR…等扮演非常重要的角色,此理論模型之提出將有助於電路設計者精確計算多晶矽電阻與擴散層電阻的電阻值。
此外,在本文中提出一個新結構之多晶矽電阻器,針對傳統結構所造成的電阻特性之缺失進行改善,由此研究可知Rinterface在扮演重要的角色,此新結構之電阻器增加了一有效寬度,可以降低Rinterface所造成的影響,我們對幾個重要之參數進行分析,例如Rbulk及Rinterface對電壓的關係,還有新結構之電阻的電壓係數。由實驗結果可知,此新結構之電阻能有效降低Rinterface所造成的影響,進而得到較精確之阻值(較低的VCR值)。
根據以上所描述之結果,本文之結果可提供積體電路設計者製造更為精確之電阻器,以應用於在未來高頻與高密度之積體應電路中。
In this thesis, the characteristics of polysilicon resistor and diffused resistor in sub-quarter micron ULSI applications are studied. A simple and useful model is proposed to analyze and calculate some important parameters of polysilicon and diffused resistors including electrical delta W (DW), electrical delta L (DL), bulk sheet resistance (Rbulk) and interface resistance (Rinterface). This approach can substantially help engineers for the design and fabrication of precise resistors in sub-micron ULSI applications. In addition, the voltage-dependent characteristics and voltage coefficient of resistance (VCR) are discussed in this work. Furthermore, temperature is another element to affects stability of polysilicon and diffused resistors. The temperature-dependent performances of the studied resistors are also exhibited. According to the model, the calculated values are consistent with the experimental results. The characteristics of temperature coefficient of resistance (TCR) are also studied.
In addition, a new and improved structure of the studied resistors is demonstrated and studied. A simple model is proposed to analyze its important parameters such as voltage-dependent bulk sheet resistance, interface resistance, and VCR. An anomalous voltage-dependent characteristics, which is mainly resulted from the existence of interface resistance, is found. The proposed structure of resistor with a larger effective width of interface region shows substantial suppression of the voltage-dependent resistance deviation caused by interface resistance. The reduction of VCR value is also obtained for the new structure. Consequently, from experimental results, the proposed structure can be used in precise (lower VCR) studied resistors.
According to the experimental results in this thesis, the studied resistors will offer the precision for ULSI design and fabrication.
Abstract (Chinese)
Abstract (English)
Table Lists
Figure Captions
Chapter 1. Introduction
1.1. Brief introduction of ULSI CMOS devices (P1)
1.2. Organization of thesis objective (P1)
Chapter 2.Voltage-dependent Characteristics of Polysilicon and Diffused Resistors
2.1. Introduction (P3)
2.2. Structure and fabrication of the studied resistors (P4)
2.3. Experimental results and discussion (P5)
2.3.1. DC characteristics of resistance of the studied resistors (P5)
2.3.2. Voltage coefficient of resistance (VCR) of the studied resistors (P8)
2.4. Summary (P10)
Chapter 3. Analysis of Temperature-Dependent Characteristics of Polysilicon and Diffused Resistors
3.1. Introduction (P12)
3.2. Experimental results and discussion (P13)
3.3. Summary (P16)
Chapter 4. A New and Improved Structure for Polysilicon Resistors
4.1. Introduction (P17)
4.2. Experimental Results and Discussion (P18)
4.4. Summary (P21)
Chapter 5. Conclusion and Prospect
6.1. Achievement (P23)
6.2. Future work (P24)
References (P25)
Publication List
Vita
[1]K. Papathanasiou, A. Hamilton, “Palmo: a novel programmable mixed-signal technique for systems on a chip,” in Colloquium on Systems on a Chip, pp. 10/1 -10/6, IEE, September 1998.
[2]C. H. Lee, H. F. Luan, S. C. Song, S. J. Lee, B. Evans, D. L. Kwong, “A manufacturable multiple gate oxynitride thickness technology for system on a chip,” in IEDM Tech. Dig. pp. 491-494, 1999.
[3]A. Iwata, N. Sakimura, M. Nagata, T. Morie, “The architecture of delta sigma analog-to-digital converters using a voltage-controlled oscillator as a multibit quantizer,” IEEE Trans. Circ. and Syst., vol. 46, pp. 941 —945, 1999.
[4]K. Kundert, H. Chang, D. Jefferies, G. Lamant, E. Malavasi, F. Sendig, “Design of mixed-signal systems-on-a-chip,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 19, pp. 1561 —1571, 2000.
[5]P. Zarkesh-Ha, J. A. Davis, J. D. Meindl, “Prediction of net-length distribution for global interconnects in a heterogeneous system-on-a-chip,” IEEE Trans. VLSI System, vol. 8, pp. 649 —659, 2000.
[6]K. Banerjee, S. J. Souri, P. Kapur, K. C. Saraswat, “ 3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration,” Proceedings of the IEEE, vol. 89, pp. 602 —633, 2001.
[7]D. A. Rich, M. S. Carroll, M. R. Frei, T. G. Ivanov, M. Mastrapasqua, S. Moinian, A. S. Chen, C. A. King, E. Harris, J. De Blauwe, H. H. Vuong, V. Archer, K. Ng, “BiCMOS technology for mixed-digital, analog, and RF applications,” IEEE Microwave Magazine, vol. 3, pp. 44-55, 2002.
[8]T. Givargis, F. Vahid, J. Henkel, “System-level exploration for Pareto-optimal configurations in parameterized system-on-a-chip,” IEEE Trans. VLSI System, vol. 10, pp. 416 —422, 2002.
[9]F. Yunsi, N. K. Jha, “Functional partitioning for low power distributed systems of systems-on-a-chip,” Proc. Int. VLSI Conf., pp. 274 —281, 2002.
[10]M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, “Cosimulation-based power estimation for system-on-chip design,” IEEE Trans. VLSI System, vol. 3, pp. 253 —266, 2002.
[11]Y. S. Lin; C. C. Wu, C. S. Chang, R. P. Yang, W. M. Chen, J. J. Liaw, C. H. Diaz, “Leakage scaling in deep submicron CMOS for SoC,” IEEE Trans. Electron Devices, vol. 49, pp. 1034 —1041, 2002.
[12]P. H. Yang, J. S. Wang, “Low-voltage pulsewidth control loops for SOC applications,” IEEE J. Solid-State Circuits, vol. 37, pp. 1348 —1351, 2002.
[13]M. Kumar, Y. Tan, J. K. O. Sin, “Excellent cross-talk isolation, high-Q inductors, and reduced self-heating in a TFSOI technology for system-on-a-chip applications,” IEEE Trans. Electron Devices, vol. 49, pp.584-589, 2002.
[14]C. H. Diaz, M. C. Chang, T. C. Ong, J. Y. -C. Sun, “Process and circuit design interlock for application-dependent scaling tradeoffs and optimization in the SoC era,” IEEE J. Solid-State Circuits, vol. 38, pp. 444 —449, 2003.
[15]D.Flandre, B. Gentinne, J. P. Eggermont, P. Jespers, “Design of thin-film fully-depleted SOI CMOS analog circuits significantly outperforming bulk implementations,” in Proc. IEEE Int. SOI Conf., pp.99-100, 1994.
[16]N. Nagi, A. Chatterjee, A. Balivada, J. A. Abraham, “Efficient multisine testing of analog circuits,” Proc. Int. VLSI Conf., pp. 234 —238, 1995.
[17]J. Liu, B. Burton, F. Kamran, M. A. Brooke, R. G. Harley, T. G. Habetler, “High speed on-line neural network control of an induction motor immune to analog circuit nonidealities,” in Proc. Int. IEEE Circ. and Syst., vol. 1, pp. 633 —636, 1997.
[18]M. Stuber, M. Megahed, J. J. Lee, T. Kobayashi, H. Domyo, “SOI CMOS with high-performance passive components for analog, RF, and mixed signal design,” in Proc. IEEE Int. SOI Conf., pp. 99 —100, 1998.
[19]R. Giannetti, “On resistor-induced thermal noise in linear circuits,” IEEE Trans. Instrumentation and Measurement, vol. 49, pp. 87-88, 2000.
[20]R. Brederlow, W. Weber, C. Dahl, D. Schmitt-Landsiedel, R. Thewes, “Low-frequency noise of integrated polysilicon resistors,” IEEE Trans. Electron Devices, vol. 48, pp. 1180 -1187, 2001.
[21]R. Virkus, D. Weiser, K. Green, D. Richardson, G. Westphal, “Modeling of non-linear polysilicon resistors for analog circuit design,” ICMTS Microelectronic Test Structures, pp.89-91, 2001.
[22]B. Fotouhi, D. Hodges, “An NMOS 12b monotonic 25µs A/D converter,” Solid-State Circuits Conf., Dig. and Tech., pp. 186 —187, 1979.
[23] J. H. Huamg, “Resistor termination in D/A and A/D converters,” IEEE J. Solid-State Circuit, vol. SC-15, no. 6, pp. 1084-1087, 1980.
[24]A. K. Sinha, “Refractory metal silicides for VLSI applications,” J. Vac. Sci., and Technol., pp.778, 1981.
[25]S. Kuboki, K. Kato, N. Miyakawa, and K. Matsubara, “Nonlinearity analysis of resistor string A/D converters,” IEEE Trans. Circ. and Syst., vol.29, no. 6, pp. 383-390, 1982.
[26]M. Kolluri, “A multi step parallel 10b 1.5µs ADC,” Solid-State Circuits Conf., Dig. and Tech., pp. 60 —61, 1984.
[27]M. E. Aplerin, T. C. Hollaway, R. A. Haken, C. D. Gosmeryer, R. V. Kanaugh, and W. D. Parmantie, “Development of the self-aligned titanium silicide process for VLSI applications,” IEEE Trans. Electron Devices, vol. 32, no. 2, pp.141-149, 1985.
[28]K. Chen, C. Svensson, J. R. Yuan, “A CMOS implementation of a video-rate successive approximation A/D converter,” in Symp. IEEE Circ. and Syst., vol. 3, pp. 2577 —2580, 1988.
[29]J. Doernberg, P. R. Gray, D. A. Hodges, “A 10-bit 5-Msample/s CMOS two-step flash ADC,” IEEE J. Solid-State Circuits, vol. 24, pp. 241 -249, 1989.
[30]P. Real, D. H. Robertson, C. W. Mangelsdorf, T. L. Tewksbury, “A wide-band 10-b 20 Ms/s pipelined ADC using current-mode signals,” IEEE J. Solid-State Circuit, vol. 26, pp. 1103 -1109, 1989.
[31]S. Chin, M. K. Mayes, R. Filippi, “A multistep ADC family with efficient architecture,” Solid-State Circuits Conf., Dig. And Tech., pp. 16 -17, 274,1989.
[32]S. Ramet, “A 13-bit, 160 kHz, differential analog to digital converter,” Solid-State Circuits Conf., Dig. and Tech., pp. 20 -21, 276, 1989.
[33]K. Tsugaru, Y. Sugimoto, M. Noda, H. Iwai, G. Sasaki, Y. Suwa, “A 10 bit 40 MHz ADC using 0.8 μm Bi-CMOS technology,” Bipolar Circuits and Technology Meeting, Proceedings, pp. 48 —51,1989.
[34]K. Tan, S. Kiriaki, M. de Wit, J. Fattaruso, F. C. - Y. Tsay, W. E. Matthews, R. Hester, “A 5 V, 16 b 10 μs differential CMOS ADC,” Solid-State Circuits Conf., Dig. And Tech., pp. 166 -167, 291, 1990.
[35]S. Li, Y. Shi, R. Zhu, S.Wang, “The design of cascaded resistors in a new analog switch two-step ADC architecture,” Solid-State and Integrated Circuit Technology, Proceeding, pp. 397 -400, 1998.
[36]T. S. Rathore, “Optimised weighted-resistor digital to analogue converter,” in Proc. IEE Circuits, Devices and Systems, vol. 145, pp. 197 —200, 1998.
[37]R. Wang, “Design of a high speed 12-bit subranging A/D converter,” Solid-State and Integrated Circuit Technology, Proceeding, pp. 389 —392, 1998.
[38]P. C. Maulik, “Analysis of leakage current induced nonlinearity in resistor-ladder based data converters,” IEEE Trans. Circ. and Syst., vol. 47, pp. 136 -137, 2000.
[39]S. Chunlei, J. Wilson, M. Ismail, “Design techniques for improving intrinsic accuracy of resistor string DACs,” in Symp. IEEE Circ. and Syst., vol. 1, pp. 400-403, 2001.
[40]P. C. S. Scholtens, M. Vertregt, “A 6-b 1.6-Gsample/s flash ADC in 0.18-/spl mu/m CMOS using averaging termination,” IEEE J. Solid-State Circuits, vol. 37, pp. 1599 -1609, 2002.
[41]P. Scholtens, M. Vertregt, “A 6b 1.6 Gsample/s flash ADC in 0.18 μm CMOS using averaging termination,” Solid-State Circuits Conf., Dig. and Tech., pp. 168 —457, 2002.
[42]R. Dragovic-Ivanovic, Z. Mijanovic, L. Stankovic, N. Lekic, “Optimal resistor ratio in the DAC with low precision resistors $statistical approach,” Electronics, International Conference, Circ. and Syst., vol. 1, pp. 409 —412,2002.
[43]C. S. Lin, B. D. Liu, “A new successive approximation architecture for low-power low-cost CMOS A/D converter,” IEEE J. Solid-State Circuits, vol. 38, pp.54-62, 2003.
[44] I. Sakai, H.Abiko, H. Kawaguchi, T. Hirayama, L. E. G. Johansson, and K. Okabe, “A new salicide process (PASET) for sub-half micron CMOS,” Symposium on VLSI Technology, pp.66-67, 1992.
[45]J. Foerstner, J. Jones, M. Huang, B. Y. Hwang, M. Racanelli, and J. Tsao, “Behavior of contact-silicide TFSOI gate-structure,” in Proc. IEEE Int. SOI Conf., pp. 86-87, 1993.
[46]T. Mogami, H. Wakabayashi, Y. Saito, T. Tatsumi, T. Matsuki, and T. Kunio, “Low-resistance self-aligned Ti-silicide technology for sub-quarter micron CMOS devices,” IEEE Trans. Electron Devices, vol. 43, no. 6, pp. 932-939, 1996.
[47]J. Y. Tsai and S. E. C. Yeh, “Device degradation associated with pre-amorphization implant (PAI) of the Ti salicide process,” Proc. IEEE Electron Int. VLSI Tech., pp. 28-33,1997.
[48]T. C. Hsiao, P. Liu, and J. C. S. Woo, “An advanced Ge preamorphization salicide technology for ultra-thin-film SOI CMOS devices,” IEEE Electron Device Lett., vol. 18, no. 18, pp. 309-311, 1997.
[49]P. Liu, T. C. Hsioa, and J. C. S. Woo, “A low thermal budget self-aligned Ti silicide technology using germanium implantation for thin-film SOI MOSFET’s,” IEEE Trans. Electron Devices, vol. 45, no. 6, pp. 1280-1286, 1998.
[50]J. A. Kittl, Q. Z. Homg, C. P. Chao, I. H. Chen, N. Yu, S. O’Brien, and M. Hanratty, “Salicides for 0.10mm gate lengths :a comparative study of one-step RPT Ti with Mo doping, Ti with pre-amorphization and Co process,” in Symp. VLSI Tech. Dig., pp.103-104,1992.
[51]A. Ito, “Modeling of voltage-dependent diffusied resistors,” IEEE Trans. Electron Devices, vol. 44, no. 12, pp.2300-2302, 1997.
[52]Q. X. Xu, and Chenming Hu, “Novel Ti-salicide process with low resistivity for sub-0.2mm CMOS technology,” Solid-State and Integrated Circuit Technology, Proceeding, pp. 47-51, 1998.
[53]N. Bhat and J. Vasi, “Interface-state generation under radiation and high-field stressing in reoxidized nitrided oxide MOS capacitors,” IEEE Trans. Nuclear Science, vol. 39, no. 6, pp. 2230-2235, 1992.
[54]J. E. Brighton, D. P. Verret, T. T. Ten Eyck, M. T. Welch, R. E. McMann, M. L. Torreno, A. T. Appel, and M. P. Keleher, “Scaling issues in the evolution of ExCL bipolar technology,” in BCTM Tech. Dig., 1988, pp. 121-124.
[55]C. Y. Lu, J. J. Sung, R. Liu, N. S. Tsai, R. Sing, S. J. Hillenius, and H. C. Kirsch, “Process limitation and device design tradeoffs of self-aligned TiSi2 junction formation in submicrometer CMOS devices,” IEEE Trans. Electron Devices, vol. 38, no. 2, pp. 246-254, 1991.
[56]K. Shenai, “ Effect of p-base sheet and contact resistances on static current-voltage characteristics of scaled low-voltage vertical power DMOSFETs,” IEEE Electron Device Lett., vol. 12, no 6 , pp. 207-272, 1991.
[57]T. J. King and K.C. Saraswat, “Low-temperature (≦550 0C) fabrication of poly-Si thin-film transistors,” IEEE Electron Device Lett., vol. 13, no. 6, pp. 309-311, 1992.
[58]R. M. Patrikar, R. Lal, and J. Vasi, “Net positive-charge buildup in various MOS insulators due to high-field stressing,” IEEE Electron Device Lett., vol. 14, no. 11, pp. 530-532, 1993.
[59]M. R. Pinto, E. Sangiorgi, and J. Bude, “ Silicon MOS transconductance scaling into the overshoot regime,” IEEE Electron Device Lett., vol. 14, no. 8, pp. 375-378, 1993.
[60]T. J. King, J. P. McVittie, K. C. Saraswat, and J. R. Pfiester, “Electrical properties of heavily doped polycrystalline silicon-germanium films,” IEEE Trans. Electron Devices, vol. ED-41, no. 2, pp. 228-232, 1994.
[61]Q.F. Wang, K. Maex, S. Kubicek, R. Jonckheere, B. Kerkwijk, R. Verbeeck, S. Biesemans, and K. De Meyer, “New CoSi2 salicide technology for 0.1mm processes and below,” in Symp. VLSI Technology Dig., 1995, pp. 17-18.
[62]I. C. Kizilyalli, M. J. Thoma, S. A. Lytle, E. P. Martin, Jr., R. Singh, S. C. Vitkavage, P. F. Bechtold, J. W. Kearney, M. M. Rambaud, M. S. Twiford, W. T. Cochran, L.R. Fenstermaker, R. Freyman, Sun Weishi, and A. Duncan, “ High performance 3.3- and 5-V 0.5mm CMOS technology for ASIC''s,” IEEE Trans. Semiconductor Manufacturing, vol. 8, no. 4, pp. 440-448, 1995.
[63]D. Esseni, L. Selmi, E. Sangiorgi, R. Bez, and B. Ricco, “Temperature dependence of gate and substrate currents in the CHE crossover regime,” IEEE Electron Device Lett., vol. 16, no. 11, pp. 506-508, 1995.
[64]S. Biesemans, S. Kubicek, and K. De Meyer, “Test structure to investigate the series resistance components of source/drain structure,” IEEE Electron Device Lett., vol. 18, no. 10, pp. 477-479, 1997.
[65]M. Koh, K. Iwamoto, W. Mizubayashi, H. Murakami, T. Ono, M. Tsuno, T. Mihara, K. Shibahara, S. Yokoyama, S. Miyazaki, M.M. Miura, and M. Hirose, “ Threshold voltage fluctuation induced by direct tunnel leakage current through 1.2-2.8 nm thick gate oxides for scaled MOSFETs,” in IEDM Tech. Dig., 1998, pp. 919-922.
[66]G. Baccarani and S. Reggiani, “A compact double-gate MOSFET model comprising quantum-mechanical and nonstatic effects” IEEE Trans. Electron Devices, vol. 46, no. 8, pp. 1656-1666, 1999.
[67]F. J. De la Hidalga, M. J. Deen, and E. A. Gutierrez, “Theoretical and experimental characterization of self-heating in silicon integrated devices operating at low temperatures,” IEEE Trans. Electron Devices, vol. ED-47, no. 5, pp. 1098-1106, 2000.
[68]N. C. C. Lu, L. Gerzberg, C. Y. Lu, and J. D. Meindl, “A new conduction model for polycrystalline silicon films,” IEEE Electron Device Lett., vol. 2, pp. 95-98, 1981.
[69]W. A. Lane and G. T. Wrixon, “The design of thin-film polysilicon resistors for analog IC applications,” IEEE Trans. Electron Devices, vol. ED-36, no. 4, pp. 738-744, 1989.
[70]C. Wann, J. Harrington, R. Mih, S. Biesemans, K. Han, R. Dennard, O. Prigge, C. Lin, R. Mahnkopf, and B. Chen, “CMOS with active well bias for low-power and RF/analog application,” in Symp. VLSI Technology Dig., pp. 158-159, 2000.
[71]D. W. Lee, T. M. Roh, H. S. Park, J. Kim, J. G. Koo, and D. Y. Kim, “Fabrication technology of polysilicon resistors using novel mixed process for analogue CMOS applications,” Electron Lett., vol. 35, no. 7, pp. 603-604, 1999.
[72]S. Nygren, D. T. Amm, D. Levy, J. Torres, G. Goltz, T. D’ouville, and P. Delpech, “ Dual-type CMOS gate electrodes by dopant diffusion from silicide,” IEEE Trans. Electron Devices, vol. ED-36, no. 6, pp. 1087-1093, 1989.
[73]C. Y. Lu, J. M. Sung, H. C. Kirsch, S. J. Hillenius, T. E. Smith, and L. Manchanda, “Anomalous C-V characteristics of implanted poly MOS structure in n+/p+ dual-gate CMOS technology,” IEEE Electron Device Lett., vol. 10, pp. 192-194, 1989.
[74]J. J. Sung, C. Y. Lu, “A comprehensive study on p+ polysilicon-gate MOSFET''s instability with fluorine incorporation,” IEEE Trans. Electron Devices, vol. 37, pp. 2312-2321, 1990.
[75]C.D. Parikh and R.M. Patrikar, “A compact model for the N-well resistor,” Solid-State Electronics, vol. 43 pp. 683-685, 1999.
[76]J. R. Lloyd, M. R. Polcari, and G. A. MacKenzie, “Observation of electromigration in heavily doped polycrystalline silicon thin films,” Appl Phys Lett., vol. 36, 1980.
[77]K. Kato and T. Ono, “Change in temperature coefficient of resistance of heavily doped polysilicon resistors caused by electrical trimming,” Jpn. J. Appl. Phys., vol. 35, pp. 4209-4215, 1996.
[78]S. Kumar and L. Bouknight, “Modeling of polycrystalline silicon thermal coefficient of resistance,” on IEEE Internationa1 Integrated Reliability Workshop Final Report, 1999, pp. 150-151.
[79]C. H. Chen, Y. K. Fang, M. H. Kuo, Y. L. Hsu, and S. L. Hsu, “A DC current stress method to improve the voltage coefficient of resistance of the polysilicon resistor in high voltage CMOS technology,” Solid-State Electronics, vol. 44 pp. 1743-1746, 2000.
[80]B. Tavel, T. Skotnicki, G. Pares, N. Carriere, M. Rivoire, F. Leverd, C. Julien, J. Torres, and R. Pantel, “Totally silicided (CoSi2) polysilicon: a novel approach to very low-resistive gate (~25W/d) without metal CMP nor etching,” in IEDM Tech. Dig., ,pp. 37.5.1-37.5.4, 2001.
[81]R. Murji and M. J. Deen, “A scalable meander-line resistor model for silicon RFICs,” IEEE Trans. Electron Devices, vol. 49, pp. 187-190, 2002.
[82]T. I. Kamins, “Hall mobility in chemically deposited polycrystalline silicon,” J. Appl. Phys., vol. 42, pp. 4357-4365, 1971.
[83]J. Y. W. Seto, “The electrical properties of polycrystalline silicon films,” J. Appl. Phys., vol. 46, pp. 5247-5254, 1975.
[84]N. C. C. Lu, L. Gerzberg, C. Y. Lu, and J. D. Mwindl, “Modeling and optimization of monolithic polycrystalline silicon resistors,” IEEE Trans. Electron Devices, vol. ED-28, no. 7, pp. 818-830, 1981.
[85]D. W. Feldbaumer and J. A. Babcock, “Theory and application of polysilicon resistor trimming,” Solid-State Electron, vol. 38, no. 11, pp. 1861—1869, 1995.
[86]W. C. Liu, K. B. Thei, H. M. Chuang, K. W. Lin, C. C. Cheng,Y. S. Ho, C. W. Su, S. C. Wong, C. H. Lin, and C. H. Diaz, “Characterization of Polysilicon Resistors in Sub-0.25mm CMOS ULSI Applications, IEEE Electron Device Lett., vol. 22, pp. 318-320, 2001.
[87]C. Wann, J. Harrington, R. Mih, S. Biesemans, K. Han, R. Dennard, O. Prigge, C. Lin, R. Mahnkopf, and B. Chen, “ CMOS with active well bias for low-power and RF/analog application,” in Symp. VLSI Technology Dig., 2000, pp. 158-159.
[88]S. M. Sze, Physics of Semiconductor Devices, New York : Wiley, 1983.
[89]N. S. Alvi, S. M. Tang, R. Kwor, and M. R. Fulcher, “Recrystallization by rapid thermal annealing of implanted low-pressure chemical-vapor-deposited amorphous Si films”, J. Appl. Phy., pp. 4878-4883, 1987.
[90]S. Mahapatra,V. Ramgopal Rao, K.N. Manjula Rani, C. D. Parikh, J. Vasi, B. Cheng, and M. Khare, “100 nm Channel Length MNSFET’s using a Jet Vapor Deposited Ultra-thin Silicon Nitride Gate Dielectric,” Symposium on VLSI Technology , pp. 79-80, 1999.
[91]M. Jurczak, T. Skotnicki, M. Paoli, B. Tormen, J. Martins, J. L. Regolini, D. Dutartre, P. Ribot, D. Lenoble, R. Pantel, S. Monfray, “Silicon-on-Nothing (SON)-an innovative process for advanced CMOS,” IEEE Trans. Electron Devices, vol. 47, no. 11, pp. 2179-2187, 2000.
[92]M. Togo, S. Kimura, T. Mogami, “Recoiled-oxygen-free processing for 1.5 nm SiON gate-dielectric in sub-100-nm CMOS technology,” IEEE Trans. Electron Devices, vol. 49, no. 7, pp. 1165 -1171, 2002.
[93]C. L. Chu, K. C. Saraswat, and S. S. Wong, “ Measurement of lateral dopant diffusion in thin film silicide layers,” IEEE Trans. Electron Devices, vol. ED-39, no. 10, pp. 2333-2340, 1992.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top