|
[1]K. Papathanasiou, A. Hamilton, “Palmo: a novel programmable mixed-signal technique for systems on a chip,” in Colloquium on Systems on a Chip, pp. 10/1 -10/6, IEE, September 1998. [2]C. H. Lee, H. F. Luan, S. C. Song, S. J. Lee, B. Evans, D. L. Kwong, “A manufacturable multiple gate oxynitride thickness technology for system on a chip,” in IEDM Tech. Dig. pp. 491-494, 1999. [3]A. Iwata, N. Sakimura, M. Nagata, T. Morie, “The architecture of delta sigma analog-to-digital converters using a voltage-controlled oscillator as a multibit quantizer,” IEEE Trans. Circ. and Syst., vol. 46, pp. 941 —945, 1999. [4]K. Kundert, H. Chang, D. Jefferies, G. Lamant, E. Malavasi, F. Sendig, “Design of mixed-signal systems-on-a-chip,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 19, pp. 1561 —1571, 2000. [5]P. Zarkesh-Ha, J. A. Davis, J. D. Meindl, “Prediction of net-length distribution for global interconnects in a heterogeneous system-on-a-chip,” IEEE Trans. VLSI System, vol. 8, pp. 649 —659, 2000. [6]K. Banerjee, S. J. Souri, P. Kapur, K. C. Saraswat, “ 3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration,” Proceedings of the IEEE, vol. 89, pp. 602 —633, 2001. [7]D. A. Rich, M. S. Carroll, M. R. Frei, T. G. Ivanov, M. Mastrapasqua, S. Moinian, A. S. Chen, C. A. King, E. Harris, J. De Blauwe, H. H. Vuong, V. Archer, K. Ng, “BiCMOS technology for mixed-digital, analog, and RF applications,” IEEE Microwave Magazine, vol. 3, pp. 44-55, 2002. [8]T. Givargis, F. Vahid, J. Henkel, “System-level exploration for Pareto-optimal configurations in parameterized system-on-a-chip,” IEEE Trans. VLSI System, vol. 10, pp. 416 —422, 2002. [9]F. Yunsi, N. K. Jha, “Functional partitioning for low power distributed systems of systems-on-a-chip,” Proc. Int. VLSI Conf., pp. 274 —281, 2002. [10]M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, “Cosimulation-based power estimation for system-on-chip design,” IEEE Trans. VLSI System, vol. 3, pp. 253 —266, 2002. [11]Y. S. Lin; C. C. Wu, C. S. Chang, R. P. Yang, W. M. Chen, J. J. Liaw, C. H. Diaz, “Leakage scaling in deep submicron CMOS for SoC,” IEEE Trans. Electron Devices, vol. 49, pp. 1034 —1041, 2002. [12]P. H. Yang, J. S. Wang, “Low-voltage pulsewidth control loops for SOC applications,” IEEE J. Solid-State Circuits, vol. 37, pp. 1348 —1351, 2002. [13]M. Kumar, Y. Tan, J. K. O. Sin, “Excellent cross-talk isolation, high-Q inductors, and reduced self-heating in a TFSOI technology for system-on-a-chip applications,” IEEE Trans. Electron Devices, vol. 49, pp.584-589, 2002. [14]C. H. Diaz, M. C. Chang, T. C. Ong, J. Y. -C. Sun, “Process and circuit design interlock for application-dependent scaling tradeoffs and optimization in the SoC era,” IEEE J. Solid-State Circuits, vol. 38, pp. 444 —449, 2003. [15]D.Flandre, B. Gentinne, J. P. Eggermont, P. Jespers, “Design of thin-film fully-depleted SOI CMOS analog circuits significantly outperforming bulk implementations,” in Proc. IEEE Int. SOI Conf., pp.99-100, 1994. [16]N. Nagi, A. Chatterjee, A. Balivada, J. A. Abraham, “Efficient multisine testing of analog circuits,” Proc. Int. VLSI Conf., pp. 234 —238, 1995. [17]J. Liu, B. Burton, F. Kamran, M. A. Brooke, R. G. Harley, T. G. Habetler, “High speed on-line neural network control of an induction motor immune to analog circuit nonidealities,” in Proc. Int. IEEE Circ. and Syst., vol. 1, pp. 633 —636, 1997. [18]M. Stuber, M. Megahed, J. J. Lee, T. Kobayashi, H. Domyo, “SOI CMOS with high-performance passive components for analog, RF, and mixed signal design,” in Proc. IEEE Int. SOI Conf., pp. 99 —100, 1998. [19]R. Giannetti, “On resistor-induced thermal noise in linear circuits,” IEEE Trans. Instrumentation and Measurement, vol. 49, pp. 87-88, 2000. [20]R. Brederlow, W. Weber, C. Dahl, D. Schmitt-Landsiedel, R. Thewes, “Low-frequency noise of integrated polysilicon resistors,” IEEE Trans. Electron Devices, vol. 48, pp. 1180 -1187, 2001. [21]R. Virkus, D. Weiser, K. Green, D. Richardson, G. Westphal, “Modeling of non-linear polysilicon resistors for analog circuit design,” ICMTS Microelectronic Test Structures, pp.89-91, 2001. [22]B. Fotouhi, D. Hodges, “An NMOS 12b monotonic 25µs A/D converter,” Solid-State Circuits Conf., Dig. and Tech., pp. 186 —187, 1979. [23] J. H. Huamg, “Resistor termination in D/A and A/D converters,” IEEE J. Solid-State Circuit, vol. SC-15, no. 6, pp. 1084-1087, 1980. [24]A. K. Sinha, “Refractory metal silicides for VLSI applications,” J. Vac. Sci., and Technol., pp.778, 1981. [25]S. Kuboki, K. Kato, N. Miyakawa, and K. Matsubara, “Nonlinearity analysis of resistor string A/D converters,” IEEE Trans. Circ. and Syst., vol.29, no. 6, pp. 383-390, 1982. [26]M. Kolluri, “A multi step parallel 10b 1.5µs ADC,” Solid-State Circuits Conf., Dig. and Tech., pp. 60 —61, 1984. [27]M. E. Aplerin, T. C. Hollaway, R. A. Haken, C. D. Gosmeryer, R. V. Kanaugh, and W. D. Parmantie, “Development of the self-aligned titanium silicide process for VLSI applications,” IEEE Trans. Electron Devices, vol. 32, no. 2, pp.141-149, 1985. [28]K. Chen, C. Svensson, J. R. Yuan, “A CMOS implementation of a video-rate successive approximation A/D converter,” in Symp. IEEE Circ. and Syst., vol. 3, pp. 2577 —2580, 1988. [29]J. Doernberg, P. R. Gray, D. A. Hodges, “A 10-bit 5-Msample/s CMOS two-step flash ADC,” IEEE J. Solid-State Circuits, vol. 24, pp. 241 -249, 1989. [30]P. Real, D. H. Robertson, C. W. Mangelsdorf, T. L. Tewksbury, “A wide-band 10-b 20 Ms/s pipelined ADC using current-mode signals,” IEEE J. Solid-State Circuit, vol. 26, pp. 1103 -1109, 1989. [31]S. Chin, M. K. Mayes, R. Filippi, “A multistep ADC family with efficient architecture,” Solid-State Circuits Conf., Dig. And Tech., pp. 16 -17, 274,1989. [32]S. Ramet, “A 13-bit, 160 kHz, differential analog to digital converter,” Solid-State Circuits Conf., Dig. and Tech., pp. 20 -21, 276, 1989. [33]K. Tsugaru, Y. Sugimoto, M. Noda, H. Iwai, G. Sasaki, Y. Suwa, “A 10 bit 40 MHz ADC using 0.8 μm Bi-CMOS technology,” Bipolar Circuits and Technology Meeting, Proceedings, pp. 48 —51,1989. [34]K. Tan, S. Kiriaki, M. de Wit, J. Fattaruso, F. C. - Y. Tsay, W. E. Matthews, R. Hester, “A 5 V, 16 b 10 μs differential CMOS ADC,” Solid-State Circuits Conf., Dig. And Tech., pp. 166 -167, 291, 1990. [35]S. Li, Y. Shi, R. Zhu, S.Wang, “The design of cascaded resistors in a new analog switch two-step ADC architecture,” Solid-State and Integrated Circuit Technology, Proceeding, pp. 397 -400, 1998. [36]T. S. Rathore, “Optimised weighted-resistor digital to analogue converter,” in Proc. IEE Circuits, Devices and Systems, vol. 145, pp. 197 —200, 1998. [37]R. Wang, “Design of a high speed 12-bit subranging A/D converter,” Solid-State and Integrated Circuit Technology, Proceeding, pp. 389 —392, 1998. [38]P. C. Maulik, “Analysis of leakage current induced nonlinearity in resistor-ladder based data converters,” IEEE Trans. Circ. and Syst., vol. 47, pp. 136 -137, 2000. [39]S. Chunlei, J. Wilson, M. Ismail, “Design techniques for improving intrinsic accuracy of resistor string DACs,” in Symp. IEEE Circ. and Syst., vol. 1, pp. 400-403, 2001. [40]P. C. S. Scholtens, M. Vertregt, “A 6-b 1.6-Gsample/s flash ADC in 0.18-/spl mu/m CMOS using averaging termination,” IEEE J. Solid-State Circuits, vol. 37, pp. 1599 -1609, 2002. [41]P. Scholtens, M. Vertregt, “A 6b 1.6 Gsample/s flash ADC in 0.18 μm CMOS using averaging termination,” Solid-State Circuits Conf., Dig. and Tech., pp. 168 —457, 2002. [42]R. Dragovic-Ivanovic, Z. Mijanovic, L. Stankovic, N. Lekic, “Optimal resistor ratio in the DAC with low precision resistors $statistical approach,” Electronics, International Conference, Circ. and Syst., vol. 1, pp. 409 —412,2002. [43]C. S. Lin, B. D. Liu, “A new successive approximation architecture for low-power low-cost CMOS A/D converter,” IEEE J. Solid-State Circuits, vol. 38, pp.54-62, 2003. [44] I. Sakai, H.Abiko, H. Kawaguchi, T. Hirayama, L. E. G. Johansson, and K. Okabe, “A new salicide process (PASET) for sub-half micron CMOS,” Symposium on VLSI Technology, pp.66-67, 1992. [45]J. Foerstner, J. Jones, M. Huang, B. Y. Hwang, M. Racanelli, and J. Tsao, “Behavior of contact-silicide TFSOI gate-structure,” in Proc. IEEE Int. SOI Conf., pp. 86-87, 1993. [46]T. Mogami, H. Wakabayashi, Y. Saito, T. Tatsumi, T. Matsuki, and T. Kunio, “Low-resistance self-aligned Ti-silicide technology for sub-quarter micron CMOS devices,” IEEE Trans. Electron Devices, vol. 43, no. 6, pp. 932-939, 1996. [47]J. Y. Tsai and S. E. C. Yeh, “Device degradation associated with pre-amorphization implant (PAI) of the Ti salicide process,” Proc. IEEE Electron Int. VLSI Tech., pp. 28-33,1997. [48]T. C. Hsiao, P. Liu, and J. C. S. Woo, “An advanced Ge preamorphization salicide technology for ultra-thin-film SOI CMOS devices,” IEEE Electron Device Lett., vol. 18, no. 18, pp. 309-311, 1997. [49]P. Liu, T. C. Hsioa, and J. C. S. Woo, “A low thermal budget self-aligned Ti silicide technology using germanium implantation for thin-film SOI MOSFET’s,” IEEE Trans. Electron Devices, vol. 45, no. 6, pp. 1280-1286, 1998. [50]J. A. Kittl, Q. Z. Homg, C. P. Chao, I. H. Chen, N. Yu, S. O’Brien, and M. Hanratty, “Salicides for 0.10mm gate lengths :a comparative study of one-step RPT Ti with Mo doping, Ti with pre-amorphization and Co process,” in Symp. VLSI Tech. Dig., pp.103-104,1992. [51]A. Ito, “Modeling of voltage-dependent diffusied resistors,” IEEE Trans. Electron Devices, vol. 44, no. 12, pp.2300-2302, 1997. [52]Q. X. Xu, and Chenming Hu, “Novel Ti-salicide process with low resistivity for sub-0.2mm CMOS technology,” Solid-State and Integrated Circuit Technology, Proceeding, pp. 47-51, 1998. [53]N. Bhat and J. Vasi, “Interface-state generation under radiation and high-field stressing in reoxidized nitrided oxide MOS capacitors,” IEEE Trans. Nuclear Science, vol. 39, no. 6, pp. 2230-2235, 1992. [54]J. E. Brighton, D. P. Verret, T. T. Ten Eyck, M. T. Welch, R. E. McMann, M. L. Torreno, A. T. Appel, and M. P. Keleher, “Scaling issues in the evolution of ExCL bipolar technology,” in BCTM Tech. Dig., 1988, pp. 121-124. [55]C. Y. Lu, J. J. Sung, R. Liu, N. S. Tsai, R. Sing, S. J. Hillenius, and H. C. Kirsch, “Process limitation and device design tradeoffs of self-aligned TiSi2 junction formation in submicrometer CMOS devices,” IEEE Trans. Electron Devices, vol. 38, no. 2, pp. 246-254, 1991. [56]K. Shenai, “ Effect of p-base sheet and contact resistances on static current-voltage characteristics of scaled low-voltage vertical power DMOSFETs,” IEEE Electron Device Lett., vol. 12, no 6 , pp. 207-272, 1991. [57]T. J. King and K.C. Saraswat, “Low-temperature (≦550 0C) fabrication of poly-Si thin-film transistors,” IEEE Electron Device Lett., vol. 13, no. 6, pp. 309-311, 1992. [58]R. M. Patrikar, R. Lal, and J. Vasi, “Net positive-charge buildup in various MOS insulators due to high-field stressing,” IEEE Electron Device Lett., vol. 14, no. 11, pp. 530-532, 1993. [59]M. R. Pinto, E. Sangiorgi, and J. Bude, “ Silicon MOS transconductance scaling into the overshoot regime,” IEEE Electron Device Lett., vol. 14, no. 8, pp. 375-378, 1993. [60]T. J. King, J. P. McVittie, K. C. Saraswat, and J. R. Pfiester, “Electrical properties of heavily doped polycrystalline silicon-germanium films,” IEEE Trans. Electron Devices, vol. ED-41, no. 2, pp. 228-232, 1994. [61]Q.F. Wang, K. Maex, S. Kubicek, R. Jonckheere, B. Kerkwijk, R. Verbeeck, S. Biesemans, and K. De Meyer, “New CoSi2 salicide technology for 0.1mm processes and below,” in Symp. VLSI Technology Dig., 1995, pp. 17-18. [62]I. C. Kizilyalli, M. J. Thoma, S. A. Lytle, E. P. Martin, Jr., R. Singh, S. C. Vitkavage, P. F. Bechtold, J. W. Kearney, M. M. Rambaud, M. S. Twiford, W. T. Cochran, L.R. Fenstermaker, R. Freyman, Sun Weishi, and A. Duncan, “ High performance 3.3- and 5-V 0.5mm CMOS technology for ASIC''s,” IEEE Trans. Semiconductor Manufacturing, vol. 8, no. 4, pp. 440-448, 1995. [63]D. Esseni, L. Selmi, E. Sangiorgi, R. Bez, and B. Ricco, “Temperature dependence of gate and substrate currents in the CHE crossover regime,” IEEE Electron Device Lett., vol. 16, no. 11, pp. 506-508, 1995. [64]S. Biesemans, S. Kubicek, and K. De Meyer, “Test structure to investigate the series resistance components of source/drain structure,” IEEE Electron Device Lett., vol. 18, no. 10, pp. 477-479, 1997. [65]M. Koh, K. Iwamoto, W. Mizubayashi, H. Murakami, T. Ono, M. Tsuno, T. Mihara, K. Shibahara, S. Yokoyama, S. Miyazaki, M.M. Miura, and M. Hirose, “ Threshold voltage fluctuation induced by direct tunnel leakage current through 1.2-2.8 nm thick gate oxides for scaled MOSFETs,” in IEDM Tech. Dig., 1998, pp. 919-922. [66]G. Baccarani and S. Reggiani, “A compact double-gate MOSFET model comprising quantum-mechanical and nonstatic effects” IEEE Trans. Electron Devices, vol. 46, no. 8, pp. 1656-1666, 1999. [67]F. J. De la Hidalga, M. J. Deen, and E. A. Gutierrez, “Theoretical and experimental characterization of self-heating in silicon integrated devices operating at low temperatures,” IEEE Trans. Electron Devices, vol. ED-47, no. 5, pp. 1098-1106, 2000. [68]N. C. C. Lu, L. Gerzberg, C. Y. Lu, and J. D. Meindl, “A new conduction model for polycrystalline silicon films,” IEEE Electron Device Lett., vol. 2, pp. 95-98, 1981. [69]W. A. Lane and G. T. Wrixon, “The design of thin-film polysilicon resistors for analog IC applications,” IEEE Trans. Electron Devices, vol. ED-36, no. 4, pp. 738-744, 1989. [70]C. Wann, J. Harrington, R. Mih, S. Biesemans, K. Han, R. Dennard, O. Prigge, C. Lin, R. Mahnkopf, and B. Chen, “CMOS with active well bias for low-power and RF/analog application,” in Symp. VLSI Technology Dig., pp. 158-159, 2000. [71]D. W. Lee, T. M. Roh, H. S. Park, J. Kim, J. G. Koo, and D. Y. Kim, “Fabrication technology of polysilicon resistors using novel mixed process for analogue CMOS applications,” Electron Lett., vol. 35, no. 7, pp. 603-604, 1999. [72]S. Nygren, D. T. Amm, D. Levy, J. Torres, G. Goltz, T. D’ouville, and P. Delpech, “ Dual-type CMOS gate electrodes by dopant diffusion from silicide,” IEEE Trans. Electron Devices, vol. ED-36, no. 6, pp. 1087-1093, 1989. [73]C. Y. Lu, J. M. Sung, H. C. Kirsch, S. J. Hillenius, T. E. Smith, and L. Manchanda, “Anomalous C-V characteristics of implanted poly MOS structure in n+/p+ dual-gate CMOS technology,” IEEE Electron Device Lett., vol. 10, pp. 192-194, 1989. [74]J. J. Sung, C. Y. Lu, “A comprehensive study on p+ polysilicon-gate MOSFET''s instability with fluorine incorporation,” IEEE Trans. Electron Devices, vol. 37, pp. 2312-2321, 1990. [75]C.D. Parikh and R.M. Patrikar, “A compact model for the N-well resistor,” Solid-State Electronics, vol. 43 pp. 683-685, 1999. [76]J. R. Lloyd, M. R. Polcari, and G. A. MacKenzie, “Observation of electromigration in heavily doped polycrystalline silicon thin films,” Appl Phys Lett., vol. 36, 1980. [77]K. Kato and T. Ono, “Change in temperature coefficient of resistance of heavily doped polysilicon resistors caused by electrical trimming,” Jpn. J. Appl. Phys., vol. 35, pp. 4209-4215, 1996. [78]S. Kumar and L. Bouknight, “Modeling of polycrystalline silicon thermal coefficient of resistance,” on IEEE Internationa1 Integrated Reliability Workshop Final Report, 1999, pp. 150-151. [79]C. H. Chen, Y. K. Fang, M. H. Kuo, Y. L. Hsu, and S. L. Hsu, “A DC current stress method to improve the voltage coefficient of resistance of the polysilicon resistor in high voltage CMOS technology,” Solid-State Electronics, vol. 44 pp. 1743-1746, 2000. [80]B. Tavel, T. Skotnicki, G. Pares, N. Carriere, M. Rivoire, F. Leverd, C. Julien, J. Torres, and R. Pantel, “Totally silicided (CoSi2) polysilicon: a novel approach to very low-resistive gate (~25W/d) without metal CMP nor etching,” in IEDM Tech. Dig., ,pp. 37.5.1-37.5.4, 2001. [81]R. Murji and M. J. Deen, “A scalable meander-line resistor model for silicon RFICs,” IEEE Trans. Electron Devices, vol. 49, pp. 187-190, 2002. [82]T. I. Kamins, “Hall mobility in chemically deposited polycrystalline silicon,” J. Appl. Phys., vol. 42, pp. 4357-4365, 1971. [83]J. Y. W. Seto, “The electrical properties of polycrystalline silicon films,” J. Appl. Phys., vol. 46, pp. 5247-5254, 1975. [84]N. C. C. Lu, L. Gerzberg, C. Y. Lu, and J. D. Mwindl, “Modeling and optimization of monolithic polycrystalline silicon resistors,” IEEE Trans. Electron Devices, vol. ED-28, no. 7, pp. 818-830, 1981. [85]D. W. Feldbaumer and J. A. Babcock, “Theory and application of polysilicon resistor trimming,” Solid-State Electron, vol. 38, no. 11, pp. 1861—1869, 1995. [86]W. C. Liu, K. B. Thei, H. M. Chuang, K. W. Lin, C. C. Cheng,Y. S. Ho, C. W. Su, S. C. Wong, C. H. Lin, and C. H. Diaz, “Characterization of Polysilicon Resistors in Sub-0.25mm CMOS ULSI Applications, IEEE Electron Device Lett., vol. 22, pp. 318-320, 2001. [87]C. Wann, J. Harrington, R. Mih, S. Biesemans, K. Han, R. Dennard, O. Prigge, C. Lin, R. Mahnkopf, and B. Chen, “ CMOS with active well bias for low-power and RF/analog application,” in Symp. VLSI Technology Dig., 2000, pp. 158-159. [88]S. M. Sze, Physics of Semiconductor Devices, New York : Wiley, 1983. [89]N. S. Alvi, S. M. Tang, R. Kwor, and M. R. Fulcher, “Recrystallization by rapid thermal annealing of implanted low-pressure chemical-vapor-deposited amorphous Si films”, J. Appl. Phy., pp. 4878-4883, 1987. [90]S. Mahapatra,V. Ramgopal Rao, K.N. Manjula Rani, C. D. Parikh, J. Vasi, B. Cheng, and M. Khare, “100 nm Channel Length MNSFET’s using a Jet Vapor Deposited Ultra-thin Silicon Nitride Gate Dielectric,” Symposium on VLSI Technology , pp. 79-80, 1999. [91]M. Jurczak, T. Skotnicki, M. Paoli, B. Tormen, J. Martins, J. L. Regolini, D. Dutartre, P. Ribot, D. Lenoble, R. Pantel, S. Monfray, “Silicon-on-Nothing (SON)-an innovative process for advanced CMOS,” IEEE Trans. Electron Devices, vol. 47, no. 11, pp. 2179-2187, 2000. [92]M. Togo, S. Kimura, T. Mogami, “Recoiled-oxygen-free processing for 1.5 nm SiON gate-dielectric in sub-100-nm CMOS technology,” IEEE Trans. Electron Devices, vol. 49, no. 7, pp. 1165 -1171, 2002. [93]C. L. Chu, K. C. Saraswat, and S. S. Wong, “ Measurement of lateral dopant diffusion in thin film silicide layers,” IEEE Trans. Electron Devices, vol. ED-39, no. 10, pp. 2333-2340, 1992.
|