(18.206.177.17) 您好!臺灣時間:2021/04/11 03:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱鎮國
研究生(外文):Chen-Kuo Chu
論文名稱:3.3V2.4~2.5GHz單晶微波積體電路功率放大器設計製作
論文名稱(外文):3.3 V Self-Biased 2.4~2.5GHz Power Amplifier MMIC
指導教授:洪茂峰洪茂峰引用關係王永和王永和引用關係
指導教授(外文):Mau-Phon HoungYeong-Her Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:121
中文關鍵詞:單晶微波積體電路功率放大器無線區域網路
外文關鍵詞:MMICpower amplifierWLAN
相關次數:
  • 被引用被引用:2
  • 點閱點閱:216
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
可以藉由這一顆偏壓在3.3V,功率到達23.5dBm,操作頻率為2.4GHz~ 2.5GHz AlGaAs / InGaAs / GaAs PHEMT 單晶微波積體電路功率放大器,來實現無線區域網路應用 (雙頻道在802.11a/b 結合的雙頻道)系統。這一顆二級的放大器是以 50 歐姆輸入和輸出的阻抗去做匹配。在這個製程過程中,並沒使用一個背面通道去接地的方法,因而它能夠為無線區域網路應用之積體電路大量生產提供很低的成本。以僅僅一個汲極電壓偏壓在3.3V條件之下,本放大器達到了小信號增益為 30dB,並有24.2% 功率增加的效率 ( PAE ) 以及在1dB的增益壓縮功率點為 23.5dBm。 此外,當操作頻率在2.45GHz狀態下, 第三階的中止點可以達到 37.2dBm 的高線性度。
這一顆單晶微波積體電路功率放大器將可以實現其無線區域網路應用系統所需求之高效率,高增益,高線性度和操作2.4GHz的頻帶中的各種要求。
A 2.4GHz—2.5GHz 3.3V 23.5dBm self-bias AlGaAs/InGaAs/GaAs PHEMT MMIC power amplifier for wireless local-area network (WLAN’s) applications (Dual Channel for 802.11a/b Combination) systems is demonstrated. This two-stage amplifier is designed to fully match for a 50 ohm input and output impedance. In this process, a backside via-ground method is not used, so it can offer very low cost for the production of wireless LAN IC. With only a 3.3V drain voltage, the amplifier has achieved 30dB small-signal gain, 23.5dBm 1-dB gain compression power with 24.2% power-added efficiency (PAE). In addition, high linearity with 37.2dBm third-order intercept point at frequency of 2.45GHz is achieved.
For this power amplifier MMIC, the WLAN requirements of power amplifiers include aspects of high efficiency, high gain, high linearity and operation at 2.4GHz ISM band are procured.
CONTENT
ABSTRACT
ACKNOWLEDGEMENTS
FIGURE CAPTIONS
TABLE CAPTIONS
Chapter 1 Introduction..........................1
1.1 Introduction.................................1
1.1.1 Technical Details..........................2
1.1.2 Application................................3
1.2 Research Motive..............................4
Chapter 2 Basic Theory And Design Methodology..8
2.1 The Smith Chart..............................8
2.2 Scattering Parameters.......................13
2.3 Stability Consideration.....................16
2.3.1 Noise Figure of the Cascading stages, Friis'' Formula..................................28
2.3.2 Passive Stages with Loss and Unspecified Noise Figure....................................29
2.3.1 Stages With Loss and Specified Noise Figure
................................................31
Chapter 3 Principles of Power Amplifier Design.40
3.1 Class of Amplifiers.........................40
3.1.1 Introduction..............................40
3.1.2 Class A...................................40
3.1.3 Class B...................................41
3.1.4 Class AB..................................42
3.1.5 Class C...................................43
3.1.6 Class D...................................43
3.2 Device Model................................43
3.2.1 Small Signal Model for MESFET.............43
3.2.2 Small Signal Model for HEMT...............43
3.2.3 Large Signal Model........................43
3.2.3.1 Materka Model...........................47
3.2.3.1 Curtice Model...........................49
3.3 Power Efficiency............................50
3.4 Dynamic Range and 1-dB Compression Point....51
3.5 Distortion and linearity....................52
3.5.1 Harmonic Distortion.......................53
3.5.2 Intel-Modulation Distortion...............54
3.5.3 Cross Modulation..........................56
Chapter 4 3.3 V Self-Biased 2.4~2.5GHz Power Amplifier Design................................62
4.1 Overview....................................62
4.2 Specification...............................62
4.3 Size of Transistors.........................63
4.4 Device Models...............................63
4.4.1 Small Signal Models for 1.2 mm PHEMT......64
4.4.2 Large Signal Models for 1.2 mm PHEMT......64
4.5 Power Matching..............................65
4.5.1 Calculation of Ropt and Copt..............65
4.5.2 Power Model...............................66
4.5.3 Power Matching Network....................67
4.6 Inter-stage Matching Network................67
4.7 Input Matching Network......................67
4.8 Consideration of Stability..................68
4.8.1 S11 and S22 of Smith Chart................68
4.8.2 K Factor and Δ(B1) Factor................69
4.8.3 Internal Stability........................69
4.9 Simulation Results with Lumped Element......69
4.10 Simulation with MLIN Match Networks........70
4.11 Process....................................70
4.12 Layout and EM Simulation...................71
Chapter 5 Measurement and Analysis.............96
5.1 Assembly of Power Amplifier MMIC............96
5.2 Equipments and Procedures of Measurement....96
5.2.1 Gain, Gain Flatness, Out of band gain,Input Return Loss and Output Return Loss Measurement..96
5.2.2 P1dB, PAE, Power Consumption and Output Power Variation Measurement.....................98
5.2.3 Stability Measurement.....................99
5.2.4 The Third-Order Intermodulation Measurement....................................100
5.3 Measured Data..............................100
5.4 Analysis...................................102
Chapter 6 Conclusion..........................115
References.....................................116
[1] K. Yamamoto, T. Moriwaki, T. Fujii, J. Otsuji, M. Miyashita, Y. Miyazaki, and K. Nishitani, “A 2.4 GHz high efficiency SiGe HBT power amplifier with high-Q LTCC harmonic suppression filter,” IEEE Journal of Solid-State Circuits, Vol. 34, No.4, April 1999, pp.502 —512.
[2] A. Raghavan. H. Deukhyoun, M. Moonkyun, A. Sutono, L. Kyutae, and J. Laskar, “A 2.2-V operation, 2.4-GHz single-chip GaAs MMIC transceiver for wireless applications,” 2002 IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 2002, pp. 1019 —1022.
[3] W. Simburger; H.P. Trost, H.D. Wohlmuth; H. Knapp; P. Weger, “1.3 W 1.9 GHz and 1 W 2.4 GHz power amplifier MMIC in silicon,” Electronics Letters, Volume: 32 Issue: 19, 12 Sept.1996,pp: 1827 -1829
[4] E. Chen; D. Heo; M. Hamai; J. Laskar; D. Bien; “0.24-um CMOS technology for Bluetooth power applications,” Radio and Wireless Conference. RAWCON IEEE , 10-13 Sept. 2000, pp: 163 -166
[5] M.F. O''Keefe; G.N. Henderson; T.E. Boles; P. Noonan; J.M. Sledziewski; B. Brown; “SiGe BJTs for low-voltage power applications,” High Performance Electron Devices for Microwave and Optoelectronic Applications Workshop, Electron Devices for Microwave and Optoelectronics, 25-26 Nov. 1996, pp: 27 —32
[6] G. Gonzalez, “Microwave Transistor Amplifiers Analysis and Design”, Prentice Hall, Inc., New Jersey, 1996.
[7] L.D. Abrite, “Design of RF and Microwave Amplifier and Oscillators”, Artech House, Inc., 1999.
[8] D. Vendelin, M. Pavio, L. Rohde, “Microwave Circuit Design Using Linear and Nonlinear Techniques”, John Wilely & Sons, Inc., 1990.
[9] S. C. Cripps, “RF Power Amplifiers for Wireless Communications”, Artech House, Inc., 1999.
[10] S. C. Cripps, “A theory for the prediction of GaAs FET load-pull power contours,” 1983 IEEE MTT-S International Microwave Symposium Digest, 1983, pp. 221-223.
[11] K. Wang, M. Jones, S. Nelson, "The S-Probe. A New, Cost-Effective, 4-Camma Method forEvaluating Multi-Stage Amplifier Stability". IEEE MIT-Symposium Digest,1992, p. 829-832.
[12] J. Truxal, "Introductory Systems Engineering". McGraw Hill. 1972.
[13] P. H. Ladbrooke, MMIC Design: GaAs FETs and HEMTs, Artech House, MA,1989.
[14] A. Cappy, "Noise Modeling and Measurement Techniques," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 1, pp. 1-10, Jan. 1988.
[15] W. R. Curtice and M. Ettenberg, "A nonlinear GaAsFET model for use in the design of output circuits for power amplifiers," IEEE Trans of Microwave Theory Tech, vol. MTT-33, pp. 1383-1394, Dec. 1985.
[16]C. Camacho-Penalosa and C.S. Aitchison, "Modelling frequency dependence of output impedance of a microwave MESFET at low frequencies," Electron. Lett., Vol. 21, pp. 528-529, June 6, 1985.
[17] G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory and Tech., vol. MTT-36, pp. 1151-1159, July 1988.
[18] R. Anholt and S. Swirhun, "Equivalent-circuit parameter extraction for cold GaAs MESFET’s," IEEE Trans. Microwave Theory and Tech., vol. MTT-39, pp. 1243-1247, July 1991.
[19] N. Rorsman, M. Garcia, C. Karlsson, and H. Zirath, "Accurate small-signal modeling of HFET’s for millimeter-wave applications," IEEE Trans. Microwave Theory and Tech., vol. MTT-44, pp. 432-437, Mar. 1996.
[20] B. Huges, et al., “Accurate On-Waver Power and Harmonic Measurements of Microwave Amplifiers and Devices”, Proc. IEEE Intl. Microw Symp., 1992.
[21] ATN Microwave, “A Load Pull System With Harmonic Tuning”, Microwave Journal, 1996.
[22] J. Michael Golio, “Microwave MESFETs and HEMTs”, Artech House,1991.
[23] Gilles Dambrine, Alain Cappy, Frederic Heliodore, Edouard Playez, “A New Method for Determining the FET Small-Signal Equivalent Circuit”, EEE Trans. Microwave Theory and Techniques, vol. 36, no. 7, July 1988.
[24] S.R. Pennock & P.R. Shepherd, “Microwave Engineering with Wireless Applications”, Mcgrow-Hill,1998.
[25] H.J. Siweris, A. Werthof, H. Tischer, and U. Schaper, “Low-cost GaAs PHEMT MMIC’s for millimeter-wave sensor applications”, IEEE Trans. Microwave Theory and Techniques, vol.46, pp. 2560 ~ 2567, December 1998.
[26]J. J. Komiak, “Design and performance of an octave band 11 watt power amplifier MMIC,” IEEE Trans. Microwave Theory and Tech., vol. MTT-38, no. 12, pp. 2001-2006, Dec. 1990.
[27] D., Fitzgerald; Y., Tajima; R., Donahue; M., McPartlin; R., Binder; M., Tsai; G., Chu; J., Wendler; “A MMIC 2.4 GHz transmitter and 5.78 GHz receiver for wireless LAN applications,” Technologies for Wireless Applications Digest, 1995, MTT-S Symposium on , 20-22 Feb 1995; pp21 —25
[28] J., Portilla; H. Garcia; E. Artal; “High power-added efficiency MMIC amplifier for 2.4 GHz wireless communications,” Solid-State Circuits, IEEE Journal of , Volume: 34 Issue: 1 , Jan 1999; pp 120 —123
[29] H. Z. Liu, C. C. Wang, Y. H. Wang, C. C. Hsu, C. H. Chang, W. Wu, C. L. Wu, C. S. Chang; “A Single-Bias C-Band 29 dBm PHEMT MMIC Power Amplifier” International Conference on Solid State Devices and Materials, Japan; pp636-637
[30] 呂學士, “微波通訊半導體電路”, 全華科技圖書股份有限公司, 民國87年
[31] 邱煥凱,”2.4-2.5GHz ISM 頻帶砷化鎵微波單石積體電路晶片組之研製” 國立台灣大學電機工程學研究所博士論文.民國86年
[32] 劉啟全,”5GHz微波單晶積體電路功率放大器之設計製作”,國立成功大學電機工程學系碩士論文, 民國91年
[33] 邱瑞杰,” 5.7GHz 功率及低雜訊放大器之設計與MMIC電場分析之探討”, 國立成功大學電機工程學系碩士論文, 民國91年
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 趙金祁、許榮富、黃芳裕(民82):科學哲學對組成科學知識之主張及其演變。科學教育月刊,第161期。
2. 張川木(民84b):促進概念改變的教學法(Ⅱ)。科學教育月刊,第186期。
3. 林清山(民65):科學教育的心理學基礎(上)。科學教育月刊,創刊號。
4. 謝青龍(民84):從「迷思概念」到「另有架構」的概念改變。科學教育月刊,第180期。
5. 鍾聖校(民83):對科學教育錯誤概念研究之省思。教育研究資訊,2(3)。
6. 劉宏文(民85):概念及概念學習在教學上之應用---以弱酸的教學為例。科學教育月刊,第192期。
7. 趙金祁、許榮富、黃芳裕(民84):建構論在科學教育研究的典範類型與應用(一)---建構論的典範與評析。科學教育月刊,第180期。
8. 杜鴻模(民72):皮亞傑理論在課堂上之一實例。科學教育月刊,第62期。
9. 杜鴻模(民69):從皮亞傑理論看討論式教學的重要性。科學教育月刊,第38期。
10. 林邦傑(民81):我國國中及高中學生認知發展之研究。科學教育月刊,第51期。
11. 吳心楷(民86b):科學學習相關的認知能力與認知風格之性別差異探討(續)。科學教育月刊,第205期。
12. 吳心楷(民86a):科學學習相關的認知能力與認知風格之性別差異探討。科學教育月刊,第204期。
13. 謝青龍 (民84):從迷思概念到另有架構的概念改變。科學教育月刊,第180期。
14. 董正玲,郭重吉 (民81):利用晤談方式探究國小兒童運動與力概念的另有架構。彰化師範大學科學教育,第3期。
15. 許榮富,黃芳裕 (民84):當今科學概念發展研究賦予科學學習的新意義。科學教育月刊,第178期。
 
系統版面圖檔 系統版面圖檔