(3.227.235.183) 您好!臺灣時間:2021/04/17 11:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭青境
研究生(外文):Ching-Ching Cheng
論文名稱:智慧型伏安系統設計與其碳纖維電極製作最佳化
論文名稱(外文):Design of an Intelligent Voltammetric System and Fabrication Optimisation of Its Carbon Fiber Electrode
指導教授:楊明興楊明興引用關係
指導教授(外文):Ming-Shing Young
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:102
中文關鍵詞:碳纖維電極靈敏度微分常規脈波伏安法多巴胺神經遞質田口方法伏安法
外文關鍵詞:Carbon fiber electrodeSensitivityDNPVDopamineNeurotransmitterTaguchi methodVoltammetry
相關次數:
  • 被引用被引用:1
  • 點閱點閱:169
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
  電化學伏安法常被用來量測可以氧化還原的微量物質。目前伏安法已被廣泛地應用於物理、化學、生物學、醫學與其他相關的領域。在本論文中,我們設計了一套由個人電腦 (PC) 與數位化伏安儀 (voltammeter) 組合而成的智慧型伏安系統。數位化伏安儀的硬體設計,係採用 VXIbus 擴展架構,整體電路包含系統控制電路板,伏安法量測電路板與電極評選電路板等。智慧型伏安系統可以用於高階、綜合或多樣化需求的伏安法實驗、並且具備儲存、分析與顯示等伏安法實驗結果的常用功能。數位化伏安儀除了可以提供單機 (stand-alone) 操作外,也可以藉由串列傳輸界面與 PC 連線,執行 Labview 圖控語言設計的伏安法功能與其他應用,譬如:自動搜尋氧化電位、量測結果的處理分析、儲存容量的擴充、伏安法任意波形的產生、新伏安法實驗以及其他附加功能等。

  伏安儀電路具有電子抹除可規劃式唯讀記憶體 (EEPROM),可以用來儲存各種波形參數與實驗資料,及寫入從 PC 下載的機器碼來更新伏安儀的程式;並且具有電極評選電路,可以量測電極的等效電阻與等效電容來評選電極的良窳。測試結果顯示,使用碳纖維電極在生理食鹽水 (PBS) 溶液中量測多巴胺 (dopamine,神經元間傳遞訊息的化學物質) 濃度時,伏安儀的最小氧化電流可以量測到 (或更低於) 10 pA (10-12 安培),最小多巴胺濃度可以量測到 (或更低於) 10 ppb (10-12 分率)。伏安儀與 PC 的結合提供了快速、精確,自動化與多用途的能力。而在 VXIbus 架構下設計的伏安儀電路,也預留了硬體容易擴充的功能。

  本論文也在智慧型伏安系統中設計了一套自動檢測程式,程式中應用田口玄一 (Taguchi) 博士提出的田口式品質工程方法來自動導引實驗,以推求出一組最佳微分常規脈波伏安法 (DNPV) 的實驗參數。本研究所進行的田口實驗為使用碳纖維電極量測生理食鹽水溶液中的多巴胺濃度。實驗結果顯示,我們僅需要使用一支電極與執行一組田口矩陣實驗的單電極單次測試方法來進行自動檢測,即可獲得最佳參數組合。從理論與實驗上顯示,田口式自動檢測伏安波形參數方法為一快速、準確與簡單的方法,可以消除採用試誤法 (trial-and-error) 的時間耗損與不佳參數值的設定。程式中也含有一套電極在實驗期間靈敏度衰減的補償方法。

  使用碳纖維電極以電化學伏安法來量測微量物質是量測神經遞質 (neurotransmitter) 的重要方法之一。以往碳纖維電極的製作,沒有固定、標準的製程,以致不良率太高。在電極製作的材料與製程中,須要設定一些參數條件,實驗人員往往使用傳統的試誤法去找出較適用的參數,常耗費許多時間與成本,又不見得可以獲得良好的電極品質。本研究也應用田口方法來推求一組製作碳纖維電極的最佳參數與最適的製程。依照田口方法的實驗導引,我們採用靈敏度作為電極的主要品質特性,電極的靈敏度即為使用伏安法量測電極時測得的反應電流大小。在執行田口矩陣實驗而求得最適參數之後,我們依求得的最適條件製作十支碳纖維電極來驗證電極製程改善後的再現性,實驗結果顯示其平均信號雜音比 (S/N ratio) 為 29.7 db,由原製程的 22 db 提昇至約 30 db。此田口實驗的最適參數結果如下:碳纖維在微破璃管的管外長度為 0.3 mm;管內長度為 2.5 mm;電極的電化學前處理為將電極浸入生理食鹽水溶液中,施以 2.9 V 三角波,進行處理 15 秒;電極的 Nafion (全氟磺酸離子交換樹脂) 電鍍處理為將電極浸入 5% Nafion 溶液中,施以 2.6 V 直流電壓,進行處理 45 秒。

  本論文實驗結果顯示,在智慧型伏安系統中應用田口方法來推求 DNPV 的最佳參數,可以降低 DNPV 實驗的材料成本,實驗時間,改善伏安法的實驗品質與人為誤差。碳纖維電極的製作最佳化方面,也同樣可以降低材料成本、實驗時間與提高碳纖維電極品質。
  Electrochemical voltammetry is a common method for measuring and analysing redox reactions. Voltammetric techniques have been used in a wide range of chemical, physical, biological, medical and other applications. This dissertation presents an intelligent voltammetric system consisting of two units, a generic personal computer and a novel digital voltammeter with VXIbus (VMEbus extensions for instrumentation) architecture of system control board, voltammetric measurement board and electrode evaluation board. System is designed to provide superior, comprehensive, versatile and convenient storage, analysis and display of electrochemical and voltammetric waveforms. Voltammeter is capable of executing stand-alone operation or direct PC control through a Labview program and serial communication interface. PC connection gives additional functions such as automatic scanning of oxidation potential, expanded storage and processing of experimental data, arbitrary voltammetric waveform, etc.

  In a stand-alone voltammeter, the system control circuit uses EEPROM (electrically erasable programmable read only memory) to store waveform parameters, experimental data and machine code program downloaded from PC. Electrode evaluation circuit can test electrode quality by measuring electrode equivalent resistance and capacitance. Voltammeter test results using carbon fiber electrode to measure the dopamine (a neurotransmitter) concentration in PBS (phosphate buffered saline) solution are presented. It shows that the minimum oxidation current can be measured to less than 10 pA, with a minimum detectable bulk concentration of less than 10 ppb (parts per billion). The combination of a PC with a stand-alone voltammeter offers high-speed, precision, automation, versatility and portability, while the VXIbus architecture allows easy expansion capability.

  This dissertation also presents a procedure for autodetection of optimal DNPV (Differential Normal Pulse Voltammetry) parameters using the Taguchi quality engineering method in the proposed voltammetric system. We test the Taguchi experiment by using carbon fiber electrode to measure the dopamine concentration in PBS solution. From experimental results, we conclude that the one-electrode-single-test method using only one electrode and performing only one DNPV orthogonal array is preferred. It is shown both theoretically and experimentally that Taguchi-based autodetection of voltammetric waveform parameters is rapid, accurate and virtually foolproof, thereby eliminating the time-consuming and error-prone trial-and-error parameter set up of contemporary procedures. A method for offsetting decline of electrode sensitivity during extended experimentation is also presented.

  Voltammetry using a carbon fiber electrode is one of the most important methods for measuring neurotransmitter. There has been no fixed or standard procedure for fabricating carbon fiber electrodes. Traditionally, the trial-and-error method has been used. Production yield has thus been inconsistent in quality and of low and variable quantity. In this dissertation, we also describe an optimised procedure for fabricating carbon fiber electrodes using Taguchi method (TM). Sensitivity, as determined by voltammetric measurement, is selected as the main quality characteristic of the carbon fiber electrode. After completing Taguchi experiment, ten carbon fiber electrodes were assembled according to the optimal parameters to check the reproducibility of the improved electrode fabrication. Experimental tests of the ten electrodes yielded an average S/N (signal-to-noise) ratio of about 29.7 db (decibel), showing a S/N ratio improvement from 22 to 30 db. The optimised parameter obtained is that using a glass micropipette (0.3 mm outer/2.5 mm inner length of carbon fiber) dipped into PBS solution under 2.9 V triangle-wave electrochemical processing for 15 s, followed by coating treatment of micropipette on 2.6 V DC for 45 s in 5% Nafion (perfluorinated anode ion-exchange resin) solution.

  It thus shows that using Taguchi process optimisation in our intelligent voltammetric system can reduce the cost, shorten the experimental time, improve quality of voltammetric results, and avoid human error at same time. Fabrication optimisation of carbon fiber electrode can also dramatically improve cost, time and quality of carbon fiber electrode.
Abstract (Chinese) I
Abstract (English) IV
Acknowledgement (Chinese) VII
Contents VIII
List of tables XI
List of figures XII
Symbols XVI

Chapter 1 Introduction 1

Chapter 2 Design of an intelligent voltammetric system 9
 2.1 Method of voltammetric system 9
  2.1.1 Voltammetric method 9
  2.1.2 Equivalent resistance and capacitance of electrode 16
 2.2 System architecture 18
 2.3 Hardware design 21
  2.3.1 System control circuit board 21
  2.3.2 Voltammetric circuit board 23
   2.3.2.1 Standard waveform generator and control circuits 26
   2.3.2.2 Voltammetric waveform generator circuit 28
   2.3.2.3 Oxidation current input and amplifier circuit 29
   2.3.2.4 Peak voltage holder circuit 30
   2.3.2.5 Analog-to-digital converter circuit 33
   2.3.2.6 Analog output circuit for measurement Results 33
  2.3.3 Electrode evaluation circuit board 34
 2.4 Software design 38
  2.4.1 EEPROM program 42
   2.4.1.1 Settable parameter 42
   2.4.1.2 Electrochemical treatment 43
   2.4.1.3 Voltammetric measurement 43
   2.4.1.4 Electrode evaluation 45
   2.4.1.5 Data transfer 46
   2.4.1.6 Remote control 46
  2.4.2 Program of personal computer 47
 2.5 Autodetection of optimal DNPV parameters using Taguchi method 49
  2.5.1 Parameter design 49
   2.5.1.1 Plan tests 49
   2.5.1.2 TM parameter autodetection 51
   2.5.1.3 Analyse results, verify reproducibility 51
  2.5.2 Factor effects estimation 53
  2.5.3 Application program 54
  2.5.4 Experimental procedure 56
   2.5.4.1 DNPV parameter design 56
   2.5.4.2 Voltammetric experiment 60

Chapter 3 Fabrication optimisation of carbon fiber electrode 61
 3.1 Fabrication of carbon fiber electrode 61
  3.1.1 Preparation of electrode 62
  3.1.2 Electrochemical preprocessing 63
 3.2 Application of Taguchi Method 65
  3.2.1 Parameter design 65
   3.2.1.1 Plan tests 65
   3.2.1.2 Execute tests 67
   3.2.1.3 Analyse and verify the results 67
  3.2.2 Factor effects estimation 69
  3.2.3 Experimental procedure 69

Chapter 4 Results 73
 4.1 Results of testing the intelligent digital voltammetric system 73
  4.1.1 System performance 73
  4.1.2 Results of circuit testing and dopamine concentration measuring experiment 77
  4.1.3 Results of electrode evaluation experiment 79
 4.2 Results of autodetection of optimal DNPV parameters 81
  4.2.1 Optimisation of DNPV parameters set 81
  4.2.2 Comparison of three sampling methods 86
 4.3 Results of fabrication optimisation of carbon fiber electrode 88

Chapter 5 Discussions 93
 5.1 Discussion about intelligent digital voltammetric system 93
 5.2 Discussion about autodetection of optimal DNPV parameters 95
 5.3 Discussion about fabrication optimisation of carbon fiber electrode 97

Chapter 6 Conclusions and future studies 98
 6.1 Conclusions 98
 6.2 Future studies 101

References 103
Appendix A Voltammeter circuit diagram 113
Appendix B Voltammeter program 126
Appendix C Labview program for voltammetric system 131
Appendix D Communication format between PC and voltammeter 141
Appendix E Carbon fiber electrode 154
Appendix F Equipments 156
Appendix G Voltammogram baseline cancellation 169
Vita (Chinese) 171
[1] F. G. Gonon, F. Navarre, and M. Buda, "In vivo monitoring of dopamine release in the rat brain with differential normal pulse voltammetry", Anal. Chem., Vol. 56, pp. 573-575, 1984.

[2] F. Marcenac and F.G. Gonon, "Fast in vivo monitoring of dopamine release in the rat brain with differential pulse amperommetry", Anal. Chem., vol. 57, pp. 1778-1779, 1985.

[3] J. Osteryoung and M. Donten, "Pulse techniques in studies of metal dissolution: anodization", J. Electrochem, Soc., vol. 138, pp. 82-88, 1991.

[4] A. Rojo, A. Rosenstratten and D. Anjo, "Characterization of a conductive carbon film electrode for voltammetry", Anal. Chem., vol. 58, pp. 2988-2991, 1986.

[5] J. A. Stamford, "Monitoring neuronal activity. In: J. A. Stamford, F. Crespi and C. A. Marsden, editors. In vivo voltammetric methods for monitoring monoamine release and metabolism", Oxford, New York, pp. 113-145, 1992.

[6] B. Y. Liao, M. S. Young and C. Y. Wang, "A PC-based instrument of a modified differential normal pulse voltammetry with background current correction technique", Rev. Sci. Instrum., vol. 65, pp. 1679-1685, 1994.

[7] F. Crespi, K. F. Martin and C. A. Marsden, "Measurement of extracellular basal levels of serotonin in vivo using Nafion-coated carbon fibre electrodes combined with differential pulse voltammetry", Neuroscience, vol. 27, pp. 885-896, 1988.

[8] C. Mermet and F. Gonon, "In vivo voltammetric monitoring of noradrenaline release and catecholamines metabolism in the hypothalamic paraventricular nucleus", Neuroscience, vol. 19, pp. 829-838, 1986.

[9] J. K. Park, P. H. Tran, J. K. T. Chao, R. Ghodadra, R. Rangarajan and N. V. Thakor, "In vivo nitric oxide sensor using non-conducting polymer-modified carbon fiber", Biosens. Bioelectron., vol. 13, pp. 1187-1195, 1998.

[10] N. Gajovic, G. Binyamin, A. Warsinke, F. W. Scheller and A. Heller, "Operation of a miniature redox hydrogel-based pyruvate sensor in undiluted deoxygenated calf serum", Anal. Chem., vol. 72, pp. 2963-2968, 2000.

[11] H. Sakslund, J. Wang and O. Hammerich, "Analysis of the factors determining the sensitivity of a miniaturized glucose biosensor made by codeposition of palladium and glucose oxidase onto an 8 μm carbon fiber", J. Electroanal. Chem., vol. 402, pp. 149-160, 1996.

[12] N. F. Shram, L. I. Netchiporouk, C. Martelet, N. Jaffrezic-Renault, C. Bonnet and R. I. Cespuglio, "In vivo voltammetric detection of rat brain lactate with carbon fiber microelectrodes coated with lactate oxidase", Anal. Chem., vol. 70, pp. 2618-2622, 1998.

[13] I. Karube, K. Yokoyama and E. Tamiya, "Microbiosensors for acetylcholine and glucose", Biosens. Bioelectron., vol. 8, pp. 219-228, 1993.

[14] W. G. Kuhr, V. L. Barrett, M. R. Gagnon, P. Hopper and P. Pantano, "Dehydrogenase-modified carbon-fiber microelectrodes for the measurement of neurotransmitter dynamics. 1. NADH voltammetry", Anal. Chem., vol. 65, pp. 617-622, 1993.

[15] P. Pantano and W. G. Kuhr, "Dehydrogenase-modified carbon-fiber microelectrodes for the measurement of neurotransmitter dynamics. 2. covalent modification utilizing avidin-biotin technology", Anal. Chem., vol. 65, pp. 623-630, 1993.

[16] M. R. Smyth and J. G. Vos, "Analytical voltammetry, Comprehensive analytical chemistry", Elsevier Science Inc., New York, vol. 27, pp. 1-113, 1992.

[17] D. O. Wipf and R. M. Wightman, "Submicrosecond measurements with cyclic voltammetry", Anal. Chem., vol. 60, pp. 2460-2464, 1988.

[18] J. L. Morris, Jr and L. R. Faulkner, "Normal pulse voltammetry in electrochemically oised systems", Anal. Chem., vol. 49, pp. 489-494, 1977.

[19] M. Lovric and J. Osteryoung, "Theory of differential normal pulse voltammetry", Electrochimica Acta Electrochim. Acta, vol. 27, pp. 963-968, 1982.

[20] W. F. Sokol and D. H. Evans, "Suppression of background current in differential pulse voltammetry with solid electrodest", Anal. Chem., vol. 53, pp. 578-580, 1989.

[21] L. Camacho, J. J. Ruiz, A. Molina and C. Serna, "Double differential pulse voltammetry", J. Electroanal. Chem., vol. 365, pp. 97-105, 1994.

[22] C. Serna, A. Molina, L. Camacho and J. J. Ruiz, "Triple-pulse voltammetry and polarography", Anal. Chem., vol. 65, pp. 215-222, 1993.

[23] D. Krulic, N. Fatouros and J. Chevalet, "Multiple square wave voltammetry: experimential verification of the theory", J. Electroanal. Chem., vol. 287, pp. 215-227, 1990.

[24] W. W. Goldsworthy and R. G. Clem, "A digital potentiostat", Anal. Chem., vol. 43, pp. 1718-1720, 1971.

[25] B. H. Vassos, "Averaging polarograph with digital output", Anal. Chem., vol. 45, pp. 1292-1295, 1972.

[26] A. G. Ewing, R. Withnell and R. M. Wightman, "Instrument design for pulse voltammetry with microvoltammetric electrodes", Rev. Sci. Instrum., vol. 52, pp. 454-458, 1981.

[27] H. J. Huang, P. He and L. R. Faulkner, "Current multiplier for use with ultramicroelectrodes", Anal. Chem., vol. 58, pp. 2889-2891, 1986.

[28] W. W. Goldsworthy and R. G. Clem, "Bipolar digipotentiogrator for electroanalytical uses direct conversion of charge to a digital number", Anal. Chem., vol. 44, pp. 1360-1366, 1972.

[29] J. E. Anderson and A. M. Bond, "Microprocessor-controlled instrument for the simultaneous generation of square wave, alternating current, direct current, and pulse polarograms", Anal. Chem., vol. 55, pp. 1934-1939, 1983.

[30] N. Fanelli, R. Fuoco, G. D. uidarini and P. Papoff, "Performance of a general-purpose electrochemical instrument adided by a stand-alone microcomputer system in traceanalysis", Anal. Chim. Acta, vol. 185, pp. 33-48, 1986.

[31] Anonymous, "Biopulse pulse voltammetry system instruction manual", Tacussel Corp., France, 1985.

[32] F. J. Heredia-Lopez, J. L. Gonigora-Alfaro, F. J. Alvarez-Cervera and JL Bata-Garcia, "A PC-controlled voltage pulse generator for electroanalytical applications", Rev. Sci. Instrum., vol. 68, pp. 1879-1885, 1997.

[33] Anonymous, "The VXIbus specification", Rev. 1.3. VXIbus consortium Inc., Vancouver, WA, 1989.

[34] G. S. Peace, "Taguchi methods: a hands-on approach", Addison-wesley, Massachusetts, 1993.

[35] M. S. Phadke, "Quality engineering using robust design", Prentice-Hall, Englewood Cliffs, NJ, 1989.

[36] P. J. Ross, "Taguchi techniques for quality engineering", second ed., McGraw-Hill, New York, 1996.

[37] E. Barrado, F. Prieto, M. Vega and F. Fernandez-Polanco, "Optimisation of the operational variables of a medium-scale reactor for metal-containing wastewater purification by ferrite formation", Water Res., vol. 32, pp. 3055-3061, 1998.

[38] J. M. Chen, C. L. Tsai, C. Y. Yao, S. P. Sheu and H. C. Shih, "Experimental design method applied to Li/LiCoO2 rechargeable cells", Mater. Chem. Phys., vol. 51, 190-194, 1997.

[39] B. Donmez, Z. Ekinci, C. Celik and S. Colak, "Optimisation of the chlorination of gold in decopperized anode slime in aqueous medium", Hydrometallurgy, vol. 52, pp. 81-90, 1999.

[40] C. C. Hung and H. C. Shih, "Experimental design method applied to microwave plasma enhanced chemical vapor deposition diamond films", J. Cryst. Growth, vol. 233, pp. 723-729, 2001.

[41] J. M. Liu, P. Y. Lu and W. K. Weng, "Studies on modifications of ITO surfaces in OLED devices by Taguchi methods", Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., vol. B85, 209-211, 2001.

[42] M. Sunar, S. J. Hyder and B. S. Yilbas, "Robust design of piezoelectric actuators for structural control", Comput. Methods Appl. Mech. Eng., vol. 190, pp. 6257-6270, 2001.

[43] H. Takatsuji and T. Arai, "Pinholes in Al thin films: their effects on TFT characteristics and a Taguchi method analysis of their origins", Vacuum, vol. 59, pp. 606-613, 2000.

[44] A. Al-Habaibeh and N. Gindy, "A new approach for systematic design of condition monitoring systems for milling processes," J. Mater. Process. Technol., vol. 107, pp. 243-251, 2000.

[45] B. H. Yan, C. C. Wang, W. D. Liu and F. Y. Huang, "Machining characteristics of Al2O3/6061Al composite using rotary EDM with a disklike electrode", Int. J. Adv. Manuf. Technol., vol. 16, pp. 322-333, 2000.

[46] C. C. Wang and B. H. Yan, "Blind-hole drilling of Al2O3/6061Al composite using rotary electro-discharge machining", J. Mater. Process Technol., vol. 102, 90-102, 2000.

[47] C. Jeney, O. Dobay, A. Lengyel, E. Adam and I. Nasz, "Taguchi optimisation of ELISA procedures", J. Immunol. Methods, vol. 223, pp. 137-146, 1999.

[48] N. M. Sudharsan and E. Y. K. Ng, "Parametric optimization for tumour identification: bioheat equation using ANOVA and the Taguchi method", Proc. Inst. Mech. Eng. Part H J. Eng. Medi., vol. 214, pp. 505-512, 2000.

[49] D. Oliveira and J. V. Oliveira, "Enzymatic alcoholysis of palm kernel oil in n-hexane and SCCO2. J. Supercrit", Fluids, vol. 19, pp. 141-148, 2001.

[50] G. Kang, J. Xu, Z. Zhou and H. G. Kang, "The carbon fiber electrode and its application for detecting neurohormones", IEEE Eng. Medi. Biol. Soc. 18th Ann. Int. Conf., vol. 1, pp. 112-113, 1996.

[51] A. Abi-Dargham, J. Rodenhiser, D. Printz, Y. Zea-Ponce, R. Gil, L. S. Kegeles, R. Weiss, T. B. Cooper, J. J. Mann, R. L. Van Heertum, J. M. Gorman and M. Laruelle, "Increased baseline occupancy of D2 receptors by dopamine in schizophrenia", Proc. Natl. Acad. Sci. USA, vol. 97, pp. 8104-8109, 2000.

[52] J. H. Kim, J. M. Auerbach, J. A. Rodriguez-Gomez, I. Velasco, D. Gavin, N. Lumelsky, S. H. Lee, J. Nguyen, R. Sanchez-Pernaute, K. Bankiewicz and R. Mckay, "Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease", Nature, vol. 418, pp. 50-56, 2002.

[53] M. S. Young, M. T. Ho and M. T. Lin, "Fabrication and electrochemical treatment of the carbon fiber electrode in the neurotransmitters measurement via voltammetry", IEEE Eng. Medi. Biol. Soc. 11th Ann. Int. Conf., vol. 4, pp. 1130-1131, 1989.

[54] J. Weber, L. Dunsch and A. Neudeck, "Carbon fiber microelectrodes modified with Nafion", Electroanalysis, vol. 7, pp. 255-259, 1995.

[55] B. Y. Liao, H. P. Lio, C. Y. Wang, M. S. Young, M. T. Ho and M. T. Lin, "A simplified method for selecting a carbon-fiber electrode in pulse voltammetry", J. Neurosci. Methods, vol. 50, pp. 291-299, 1993.

[56] M. S. Young, K. W. Lin and M. T. Lin, "Microcomputer-aided system for electrocardiograms and blood pressure analysis during drug-induced transient periods", Pharmacology, vol. 44, pp. 215-224, 1992.

[57] M. S. Young, Y. C. Li and M. T. Lin, "A modularized infrared light matrix system with high resolution for measuring animal behaviors", Physiol. Behav., Vol. 53, pp. 545-551, 1993.

[58] B. Y. Liao, M. S. Young and C. Y. Wang, "A PC-based instrument of a modified differential normal pulse voltammetry with background current correction technique", Rev. Sci. Instrum., Vol. 65, pp. 1679-1685, 1994.

[59] Y. H. Sheu and M. S. Young, "Fast and precise thermoregulation system in physiological brain slice experiment", Rev. Sci. Instrum., vol. 66, pp. 5609-5617, 1995.

[60] T. S. Wey, C. W. Mao, B. Y. Liao and M. S. Young, "A simulation system to predict parameter effects on voltammogram features in differential normal pulse voltammetry", Int. J. Microcomput. Appl., vol. 14, pp. 74-80, 1995.

[61] Y. H. Sheu and M. S. Young, "A combined long-term recording system for single-unit activity and neurotransmitter efflux of a brain slice slice", Rev. Sci. Instrum. Vol. 69, pp. 1860-1868, 1998.

[62] C. C. Cheng, S. W. Young and M. S. Young, "A new digital system for simplifying the voltammetric experiments", Annu. Int. Conf. IEEE Eng. Medi. Biol. Proc., vol. 2, pp. 855, 1999.

[63] M. S. Young, C. W. Young and Y. C. Li, "A combined system for measuring animal motion activities" J. Neurosci. Methods, vol. 95, pp. 55-63, 2000.

[64] C. C. Cheng, M. S. Young, C. L. Chuang and C. C. Chang, "Fabrication optimisation of carbon fiber electrode with Taguchi method", Biosens. bioelectronics, in press.

[65] C. C. Cheng, M. S. Young, S. W. Young and C. L. Chuang, "An intelligent digital voltammetric system with multiple functions executed through stand-alone operation or PC-control", Biomed. Eng. Appl. Basis Comm., in press.

[66] C. C. Cheng, M. S. Young and C. L. Chuang, "High-accuracy expandable voltammetric system with PC interface and autodetection of optimal DNPV parameters", Submitted to J. Neurosci. Methods.

[67] C. C. Cheng and M. S. Young, "A Labview controlled digital voltammetric system", 中華民國八十九年醫學工程科技研討會, 2000.

[68] C. C. Cheng, Y. D. Lee and M. S. Young, "Improving the quality of carbon fiber electrode by Taguchi method and the standardization of fabricating procedures", 中華民國八十七年醫學工程科技研討會, pp. 326-327, 1998.

[69] C. C. Cheng, C. C. Chang and M. S. Young, "Design of an automated measurement system for equivalent resistance and capacitance of carbon fiber electrode in voltammetry", 中華民國八十六年醫學工程科技研討會, pp. 282-283, 1997.

[70] C. C. Chang, C. C. Cheng and M. S. Young, "Application of Taguchi method on fabrication optimization of a carbon fiber electrode", 第一屆亞太品質工程研討大會, pp. 112-125, 1996.

[71] C. J. Jie, C. L. Chuang, C. C. Cheng and M. S. Young, "Feasibility study of designing a human-based artificial nose mimic system", 中華民國八十九年醫學工程科技研討會, 2000.

[72] L. F. Adina and C. Yarnitzky, "Background compensation in fast scan square wave voltammetry and other pulse techniques at the dropping mercury electrode", Anal. Chem., vol. 56, pp. 678-681, 1984.

[73] F. Gonon, R. Cespuglio, M. Buda and J. F. Pujol, "In vivo electrochemical detection of monoamine derivatives. In: S. Parvez, T. Nagatsu, I. Nagatsu and H. Parvez editors. Methods in biogenic amine research", Elsevier, Amsterdam, pp. 165-188, 1983.

[74] J. Zak and T. Kuwana, "Electrooxidative catalysis using dispersed alumina on glassy carbon surfaces", J. Am. Chem. Soc., vol. 104, pp. 5514-5515, 1982.

[75] M. P. Brazell, R. J. Kasser, K. J. Renner, J. Feng, B. Moghaddam and R. N. Adams, "Electrocoating carbon fiber microelectrode with Nafion improves selectivity for electroactive neurotransmitters", J. Neurosci. Methods, vol. 22, pp. 167-172, 1987.

[76] Z. Hahn, R. Cespuglio, H. Faradji and H. Jouvet, "Factors influencing the properties of voltammetry carbon fiber electrodes: the importance of the pH of the medium used for the electrical treatment and of the resin coating of the fibers", J. Biochem. Bioph. Methods, vol. 11, pp. 265-275, 1985.

[77] Anonymous, "The measurement and automation catalog 2000", National Instruments Corp., Austin, TX, pp. 65-105, 2000.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔