(18.206.177.17) 您好!臺灣時間:2021/04/11 03:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃克穠
研究生(外文):Ke-Nung Huang
論文名稱:採用超音波相位差法之震動及溫度量測系統
論文名稱(外文):Vibration and Temperature Measurement Systems Based on Ultrasonic Phase-Shift Method
指導教授:楊明興楊明興引用關係
指導教授(外文):Ming-Shing Young
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:91
中文關鍵詞:超音波相位差
外文關鍵詞:Ultrasonic Phase-Shift
相關次數:
  • 被引用被引用:2
  • 點閱點閱:265
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
  震動量測在工業應用上是非常重要的。本論文的主要目標是採用超音波相位差法來設計一量測震動和空氣中平均溫度的系統。此系統由一對40 kHz的超音波換能器來組成。在一個為發射、另一個為接收的操作模式下,來量測震動物體表面的動作。物體的相對動作,與發射端及接收端的連續超音波信號之間的相位差直接相關。利用新的重建方法,以擷取到的相位差角度變化可重建出物體的震動動作。由實驗得知,在發射與接收不同端的情況下此震動量測系統的準確度是 0.07 mm,在相同端的情況下是 0.98 mm。

  本研究的另一項應用設計是藉著量測空氣中的音速變化,來換算出空氣中平均溫度的變化。我們利用FPGA設計出一數位相位差偵測模組,將發射端與接收端的連續超音波信號之間的相位差記錄下來,再由89C51單晶微控制器來分析及計算出空氣中的平均溫度值。當發射端與接收端的相對距離為 10 cm 時,理論上本系統的準確性為 0.05 ℃,溫度變化的反應時間為10 ms。此一採用超音波相位差法之新型震動及溫度量測系統的主要優點是高解析度、反應時間短可快速量測、採非接觸式並且在硬及軟體上易於實現。
  Vibration measurements are very important in many industrial applications. The main aim of this dissertation is to design a measurement system based on an ultrasonic phase-shift method to measure vibration and average temperature in air. The instrument developed consists of a pair of 40 kHz ultrasonic transducers which are used as transmitter and receiver respectively to get the motion of a vibration object. The relative motion of the object modulates the phase angle between transmitted and received ultrasound signals. We developed an ingenious method to reconstruct the relative motion of an object from the acquired data of the phase angle changes. The measurement accuracy of the system in the reported experiments is within 0.07 mm in face to face direct mode, and 0.98 mm in round trip mode.

  This study also presents a microcontroller-based ultrasonic system which can measure air temperature based on the variations of sound speed in the air. Changes of the sound speed are in turn determined by detecting the phase-shift variations of a 40 kHz continuous ultrasonic wave. In a test embodiment, two 40 kHz ultrasonic transducers are set face to face at a constant distance. Phase angle differences between transmitted and received signals are determined by a FPGA digital phase detector and then analyzed in an 89C51 single-chip microcontroller. Temperature is calculated and then sent to an LCD display and, optionally, to a PC. Theoretical accuracy of measurement is within 0.05 ℃ at an inter-transducer distance of 10 cm. Temperature variations are displayed within 10 ms. The main advantages of the vibration and temperature measurement system are high resolution, rapid temperature measurement, noncontact measurement and easy implementation.
ABSTRACT
LIST OF FIGURES

CHAPTER 1. INTRODUCTION………………………………………………… 01

CHAPTER 2. METHODS
  2.1 METHOD OF VIBRATION MEASUREMENT ………………………10
  2.2 METHOD OF TEMPERATURE MEASUREMENT
    2.2.1 Calibration system ………………………………………………18
    2.2.2 Measurement of sound speed and temperature …………………22

CHAPTER 3. SYSTEM IMPLEMENTATION
  3.1 IMPLEMENTATION OF THE VIBRATION MEASURMENT SYSTEM …25
    3.1.1 Implementation of the system hardware …………………………25
      3.1.1.1 FPGA reconstruction chip…………………………………26
      3.1.1.2 Analog amplifier and comparator…………………………29
      3.1.1.3 89C51 microcontroller………………………………………31
    3.1.2 Implementation of the system software ……………………………32
  3.2 IMPLEMENTATION OF THE TEMPERATURE
    MEASUREMENT SYSTEM……………………………………………35
    3.2.1 Implementation of the system hardware …………………………35
      3.2.1.1 Signal source ………………………………………………35
      3.2.1.2 Analog amplifier and voltage comparator…………………36
      3.2.1.3 Altera FLEX10K10 digital phase meter……………………36
      3.2.1.4 89C51 single-chip microcontroller…………………………38
      3.2.1.5 Stepping motor……………………………………………39
    3.2.2 Implementation of the system software……………………………40

CHAPTER 4. TESTING THE SYSTEM
  4.1 TEST OF THE VIBRATION MEASUREMENT SYSTEM ………………44
    4.1.1 Experimental method ……………………………………………44
    4.1.2 Results ……………………………………………………………46
  4.2 TEST OF THE TEMPERATURE MEASUREMENT SYSTEM …………48
    4.2.1 Experimental method ……………………………………………48
    4.2.2 Results ……………………………………………………………49

CHAPTER 5. DISCUSSION ………………………………………………………56

CHAPTER 6. CONCLUSIONS AND FUTURE DEVELOPMENT ………………60

REFERENCES ……………………………………………………………………62

APPENDIX A. Specifications of the temperature control box……………………66
APPENDIX B. Specification of the ultrasonic transducer. ………………………68
APPENDIX C. Specification of ADAM-4018 thermocouple module. ………………70
APPENDIX D. The whole schematic diagrams. ……………………………………71
APPENDIX E. Source code of FPGA FLEX10K10 and 89C51 microcontroller……75
1.D. Marioli, C. Narduzzi, C. Offelli, D. Petri, E. Sardini, and A. Taroni, “Digital time-of-flight measurement for ultrasonic sensors.” IEEE Trans. Instrum. Meas., vol. 41, pp.93-97, Feb. 1992.

2.C. Cai and Paul P. L. Regtien, “Accurate digital time-of-flight measurement using self-interference.” IEEE Trans. Instrum. Meas., vol. 42, pp.990-994, Dec. 1993.

3.G. Bucci, et al., “Numerical method for transit time measurement in ultrasonic sensor applications.” IEEE Trans. Instrum. Meas., vol. 46, pp.1241-1246, Dec. 1997.

4.F. E. Gueuning, et al., “Accurate distance measurement by an autonomous ultrasonic system combining time-of-flight and phase-shift methods.” IEEE Trans. Instrum. Meas., vol. 46, pp.1236-1240, Dec. 1997.

5.M. Parrilla, J. J. Anaya, and C. Fritsch, “Digital signal processing techniques for high accuracy ultrasonic range measurements.” IEEE Trans. Instrum. Meas., vol. 40, pp. 759-763, Aug. 1991.

6.D. Webster, “A pulsed ultrasonic distance measurement system based upon phase digitizing.” IEEE Trans. Instrum. Meas., vol. 43, pp. 578-582, Aug. 1994.

7.F. Figueroa and E. Barbieri, “An Ultrasonic Ranging System for Structral Vibration Measurements.” IEEE Trans. Instrum. Meas., vol. 40, pp.764-769, 1991.

8.F. Figueroa et al., “Increased measurement range via frequency division in ultrasonic phase detection methods.” Acustica., vol. 73, pp.47-49, 1991.

9.M. S. Young and Y. C. Li, “A high precision ultrasonic system for vibration measurements.” Rev. Sci. Instrum., 63(11), pp.5435-5441, 1992.

10.O. B. Matar, et al., “Noncontact measurement of vibration using airborne ultrasound.” IEEE trans. On ultrasonics, ferroelectrics, and frequency control, vol. 45, pp.626~633, 1998.

11.M. Yang, S. L. Hill, B. Bury, and J. O. Gray, “A multifrequency AM-based ultrasonic system for accuracy distance measurement.” IEEE Trans. Instrum. Meas., vol. 43, pp.861-866, Dec. 1994.

12.A. K. T. Lee, J. Lucas, and L. E. Virr, “Microcomputer-controlled acoustic rangefinding technique.” J. Phys. E: Sci. Instrum., vol. 22, pp.52-58, 1989.

13.C. F. Huang, M. S. Young and Y. C. Li, “Multiple-frequency continuous wave ultrasonic system for accurate distance measurement.” Rev. Sci. Instrum. 70(2), pp. 1452-1458, Feb. 1999.

14.G. Mauris, E. Benoit, and L. Foulloy, “Local measurement validation for an intelligent chirped-FM ultrasonic range sensor.” IEEE Trans. Instrum. Meas., vol. 49, pp.835-839, Aug. 2000.

15.C.W.Young, M.S.Young and Y.C.Li, “An Advanced Ultrasonic System for Vibration Measurement.” Advances in Instrumentation and Control International Conference, vol. 51, Part2, pp.811-816, 1996.

16.J. W. Dally, W. F. Riley, and K. G. McConnell, “Instrumentation for engineering measurements.” 2nd ed. Wiley, New York, 1993. p.413

17.George S. K. Wong; “ Speed of sound in standard air.” J. Acoust. Soc. Am. 79 (5), pp. 1359-1366, May 1986.

18.P. Rothwell, “Sound propagation in the lower atmosphere.” J. Acoust. Soc. Am., 19, pp. 205-221, July 1956.

19.D. K. Wilson and D. W. Thomson, “Acoustic propagation through anisotropic, surface-layer turbulence.” J. Acoust. Soc. Am., 96, pp.1080-1095, Aug. 1994.

20.R. H. Mellen and G. Siling, “Sound propagation through atmospheric turbulence: multifractal phase fluctuations.” J. Acoust. Soc. Am., 97, pp.141-146, Jan. 1995.

21.G. A. Daigle, T. F. W. Embleton, and J. E. Piercy, “Propagation of sound in the presence of gradients and turbulence near the ground.” J. Acoust. Soc. Am., 79(3), pp.613-627, Mar. 1986.

22.M. Bramanti et al., “An acoustic pyrometer system for tomographic thermal imaging in power plant boilers.” IEEE Trans. Instrum. Meas., vol. 45, pp.159-167, Feb. 1996.

23.K. D. Wilson and W. T. Dennis, “Acoustic propagation through anisotropic, surface-layer turbulence.” J. Acoust. Soc. Am. 96, pp. 1080-1095, 1994.

24.C. Canali et at., “ A temperature compensated ultrasonic sensor operating in air for distance and proximity measurements.” IEEE Trans. Ind. Electron., vol. IE-29, pp.336-341, Nov. 1982.

25.D. Marioli, E. Sardini, and A. Taroni, “Ultrasonic distance measurement for linear and angular position control.” IEEE Trans. Instrum. Meas., vol. 37, pp.578-581, Dec. 1988.

26.J. M. Martin et at., “Ultrasonic ranging gets thermal correction.” Sensor Review, vol. 9, pp.153-155, Jul. 1989.

27.J. M. Martin et at., “Ultrasonic ranging.” Sensor Review, vol. 12, pp.17-21, 1992.

28.S. K. Jeng and C. H. Liu, “Wave propagation in media with three-dimensional quadratic refractive index profile.” J. Acoust. Soc. Am. 81(6), pp. 1732-1739, June 1987.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔