跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/21 15:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張世傑
研究生(外文):Shih_Jie Chang
論文名稱:用於車型機器人之模糊停車控制法的設計與實現
論文名稱(外文):Design and Implementation of Fuzzy Parking Control Methodology for Car-Like Mobile Robots
指導教授:李祖聖
指導教授(外文):Tzuu-Hseng S. Li
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:145
中文關鍵詞:模糊邏輯控制車型機器人模糊車庫停車控制模糊目標物追蹤控制模糊路邊停車控制模糊滑動模式控制
外文關鍵詞:Fuzzy Sliding-Mode ControlFuzzy Garage-Parking ControlCar-Like Mobile RobotFuzzy Parallel-Parking ControlFuzzy Logic ControlFuzzy Target-Tracking Control
相關次數:
  • 被引用被引用:22
  • 點閱點閱:364
  • 評分評分:
  • 下載下載:89
  • 收藏至我的研究室書目清單書目收藏:4
本論文係設計實現一擁有自動停車能力之車型機器人,其中自動停車控制技術係依據模糊邏輯控制法研發設計之。本論文提出兩種自動停車控制方法,首先根據人們駕駛經驗,設計模糊車庫停車控制與模糊路邊停車控制法則,以操控車型機器人達成倒車或前進車庫停車及路邊停車的目標;接著就路徑追隨控制方法而言,我們先設計合理的停車參考路徑,再提出兩種模糊車庫停車控制與兩種模糊路邊停車控制,使得車型機器人能追隨所指定的路徑完成倒車及前進進入車庫停車或路邊停車。本論文也探討目標物追蹤控制,我們運用模糊滑動模式控制模組來達成自走式車型機器人的目標物追蹤行為能力,同時提出具障礙物規避能力的目標物追蹤控制法則。車型機器人的硬體架構主要由車身底盤結構、微電腦單元、馬達驅動單元以及感測器所組成。本文應用三種不同類型的感測器建構出四台微電腦車型機器人,其中感測器包括了反射型感測器、遮斷型感測器以及CCD攝影機。本文亦詳述此四台微電腦車型機器人之設計製作過程。最後,電腦模擬與即時實驗均展現所提出智慧型停車與目標物追蹤控制系統之適用性與有效性。
The theme of this dissertation is to design and implement a car-like mobile robot (CLMR) that possesses autonomous parking and target-tracking capability. All the parking control and the target tracking control are developed on the basis of fuzzy logic control (FLC) schemes. We develop the human-like driving skill and trajectory following approach for parking problems. According to human experiences, we propose the fuzzy garage- parking control (FGPC) and the fuzzy parallel-parking control (FPPC) to back-drive or head-in the garage and the parking lot. By a trajectory following approach, feasible reference trajectories are provided for the fuzzy logic controller to maneuver the steering angle and speed of the CLMR. To follow the specific reference trajectories, we also propose two FGPC methods and two FPPC methods to back-drive or head-in the CLMR to the garage and the parking lot, respectively. Fuzzy target-tracking control (FTTC) of autonomous CLMR is presented by using fuzzy sliding-mode control (FSMC) modular in this dissertation. Moreover, the target-tracking control with obstacle avoidance is also investigated. The hardware architecture of the PC-based CLMR developed in this dissertation is composed of chassis mechanism, microcomputer part, motor driver part, and sensors. Four types of the PC-based CLMRs are built up to accomplish the parking and target-tracking missions, where three types of sensors including reflective sensors, penetrative sensors, and a CCD camera are adopted. Both computer simulations and real-time implementation experiments demonstrate the feasibility and effectiveness of the proposed intelligent parking and autonomous target-tracking control schemes.
中文摘要 I
Abstract II
Acknowledgment (Chinese) III
Contents VI
List of Tables VIII
List of Figures IX
Chapter 1. Introduction 1
Chapter 2. Fuzzy Parking Control with Human-Like Driving Skill and Fuzzy Target Tracking Control10
Chapter 3. Fuzzy Parking Control with Trajectory Following Approach 59
Chapter 4. Hardware Architecture Installation 98
Chapter 5. Real-Time Experimental Result 119
Chapter 6. Conclusions and Future Research 137
Reference 140
Appendix. Circuit Design of FLC on FPGA Chip A-1
Autobiography (Chinese)
[1] An, H., Yoshino, T., Kashimoto, D., Okubo, M., Sakai, Y., and Hamamoto, T., “Improvement of Convergence to Goal for Wheeled Mobile Robot Using Parking Motion,” Proc. of IEEE Int. Conf. on Intelligent Robots and Systems, pp. 1693-1698, 1999.
[2] Balkenius, C. and Kopp, L., “Visual Tracking and Target Selection for Mobile Robots,” Proc. of First Euromicro Workshop on Advanced Mobile Robot, pp. 166 —171, 1996.
[3] Barraquand, J. and Latombe, J. C., “On Nonholonomic Mobile Robots and Optimal Maneuvering,” Proc. of IEEE Int. Conf. on Intelligent Control, pp. 340 —347, 1989.
[4] Bison, P., Chemello, G., Sossai, C., and Trainito, G., “Using a Structured Beacon for Cooperative Position Estimation,” Robotics and Autonomous Systems, Vol. 29, pp. 33-40, 1999.
[5] Crisman, I. D., Cleary, M. E., and Rojas, J. C., “The Deictically Controlled Wheelchair,” Image and Vision Computing, Vol. 16, pp. 235-249, 1998.
[6] Daxwanger, W. A. and Schmidt, G. K., “Skill-Based Visual Parking Control Using Neural and Fuzzy Networks,” Proc. of IEEE Inter. Conf. on System, Man, and Cybernetics, Vol. 2, pp. 1659-1664, 1995.
[7] Daxwanger, W. A. and Schmidt, G. K., “Neuro-Fuzzy Posture Estimation for Visual Vehicle Guidance,” Proc. of IEEE Inter. Conf. on Computational Intelligence, Vol. 3, pp. 2086-2091, 1998.
[8] Dedieu, D., Cadenat, V., and Soueres, P., “Mixed Camera-Laser Based Control for Mobile Robot Navigation,” Proc. of IEEE/RSJ Inter. Conf. on Intelligent Robots and Systems, Vol. 2, pp. 1081 —1086, 2000.
[9] Divelbiss, A. W. and Wen, J. T., “Trajectory Tracking Control of a Car-Trailer System,” IEEE Trans. on Control Systems Technology, Vol. 53, pp. 269-278, 1997.
[10] Dorst, L., “Analyzing the Behaviors of a Car: A Study in Abstraction of Goal-Directed Motions,” IEEE Trans. on System, Man, and Cybernetics, Vol. 28, pp. 811-822, 1998.
[11] Driss, A., Rodrigues, V., and Cohen, P., “Parking a Vision-Guided Automobile Vehicle,” Proc. of IEEE Inter. Conf. on Control Applications, Vol. 1, pp. 59-64, 1994.
[12] Fraichard, T. and Garnier, P., “Fuzzy Control to Drive Car-Like Vehicle,” Robotics and Autonomous Systems, Vol. 34, pp. 1-22, 2001.
[13] Gokkus, L., Erkmen, A. M., and Tekinalp, O., “Interacting Fuzzy Multimodel Intelligent Tracking System for Swift Target Manoeuvres,” Proc. of IEEE/RSJ Inter. Conf. on Intelligent Robots and Systems, Vol. 2, pp. 766-771, 1997.
[14] Gomez-Bravo, F., Cuesta, F., and Ollero, A., “Parallel and Diagonal Parking in Nonholonomic Autonomous Vehicles,” Engineering Applications of Artificial Intelligence, Vol. 14, pp. 419-434, 2001.
[15] Gorinevsky, D., Kapitanovsky, A., and Goldenberg, A., “Design of Radial Basis Function-Based Controller for Autonomous Parking of Wheeled Vehicles,” Proc. of American Control Conference, Vol. 1, pp. 806-810, 1994.
[16] Gorinevsky, D., Kapitanovsky, A., and Goldenberg, A., “Neural Network Architecture for Trajectory Generation and Control of Automated Car Parking,” IEEE Trans. on Control Systems Technology, Vol. 4, pp. 55-56, 1996.
[17] Green, D. N., Sasiadek, J. Z., and Vukovich, G. S., “Path Tracking, Obstacle Avoidance and Position Estimation by an Autonomous, Wheeled Planetary Rover,” Proc. of IEEE Inter. Conf. on Robotics and Automation, Vol. 2, pp. 1300 —1305, 1994.
[18] Guldner, J. and Utkin, V. I., “Sliding Mode Control for Gradient Tracking and Robot Navigation Using Artificial Potential Fields,” IEEE Trans. on Robotics and Automation, Vol. 11, pp. 247-254, 1995.
[19] Hao, J. F., Li, X., and Yan, D. S., “A Multisensor Fusing System on Ultrasonic Sensors,” Proc. of IEEE Inter. Conf. on Vehicle Electronics, Vol. 1, pp. 140-144, 1999.
[20] Hasegawa, T. and Terasaki, H., “Collision Avoidance: Divide-and-Conquer Approach by Space Characterization and Intermediate Goals,” IEEE Trans. on System, Man and Cybernetics, Vol. 18, pp. 151-166, 1988.
[21] Jiang, K., “A Sensor Guided Parallel Parking System for Nonholonomic Vehicles,” Proc. of IEEE Conf. on Intelligent Transportation Systems, pp. 270-275, 2000.
[22] Jiang, K. and Seneviratne, L. D., “A Sensor Guided Autonomous Parking System for Nonholonomic Mobile Robot,” Proc. of IEEE Inter. Conf. on Robotics and Automation, Vol. 1, pp. 311-316, 1999.
[23] Jung, I. K., Hong, K. B., Hong, S. K., and Hong, S. C., “Path Planning of Mobile Robot Using Neural Network,” Proc. of IEEE Inter. Conf. Symposium on Industrial Electronics, Vol. 3, pp. 979-983, 1999.
[24] Katagiri, M. and Nakano, O., “Solving Design Problems by a Heuristic Divide and Conquer Method,” Proc. of IEEE Inter. Conf. on Intelligent Robotics, pp. 213—218, 1988.
[25] Kaynak, O., Erbatur, K., and Ertugrul, M., “The Fusion of Computationally Intelligent Methodologies and Sliding-Mode Control- a Survey,” IEEE Trans. on Industrial Electronics, Vol. 48, pp. 4-17, 2001.
[26] Kobayashi, T. and Majima, S., “Real-Time Optimization Control for Parking a Vehicle Automatically,” Proc. of IEEE Inter. Conf. on Vehicle Electronics, pp. 97-102, 2001.
[27] Kondak, K., and Hommel, G., “Computation of Time Optimal Movements for Autonomous Parking of Non-Holonomic Mobile Platform,” Proc. of IEEE Inter. Conf. on Intelligent Robots and Systems, pp. 2698-2703, 2001.
[28] Laugier, C., Fraichard, T., Paromtchik, I. E., and Garnier, P., “Sensor-Based Control Architecture for a Car-Like Vehicle,” Proc. of IEEE Inter. Conf. on Intelligent Robots and Systems, pp. 216-222, 1998.
[29] Laugier, C., Paromtchik, I. E., and Parent, M., “Developing Autonomous Maneuvering Capabilities for Future Car,” Proc. of IEEE Inter. Conf. on Intelligent Transportation Systems, pp. 68-73, 1999.
[30] Latombe, J. C., Robot Motion Planning, Kluwer Academic Publishers, Boston, 1991.
[31] Laumond, J. P., Jacobs, P. E., Taix, M., and Murray, R. M., “A Motion Planner for Nonholonomic Mobile Robots,” IEEE Trans. on Robots and automation, Vol. 10, pp. 577-593, 1994.
[32] Lee, S., Kim, M., Youm, Y., and Chung, W., “Control of a Car-Like Mobile Robot for Parking Problem,” Proc. of IEEE Inter. Conf. on Robotics & Automation, pp. 1-6, 1999.
[33] Lee, S., Youm, Y., and Chung, W., “Control of a Car-Like Mobile Robots for Posture Stabilization,” Proc. of IEEE Inter. Conf. on Intelligent Robots and Systems, pp. 1745-1750, 1999.
[34] Lee, S. O., Cho, Y. J., Myung, H. B., You, B. J., and Oh, S. R., “A Stable Target-Tracking Control for Unicycle Mobile Robots,” Proc. of IEEE/RSJ Inter. Conf. on Intelligent Robots and Systems, Vol. 3, pp. 1822-1827, 2000.
[35] Lee, T. C., Song, K. T., L, C. H., and Teng, C. C., “Tracking Control of Unicycle- Method Mobile Robots Using a Saturation Feedback Controller,” IEEE Trans. on Control Systems Technology, Vol. 9, pp. 305-318, 2001.
[36] Leitch, D. and Probert, P. J., “New Techniques for Genetic Development of a Class of Fuzzy Controller,” IEEE Trans. on System, Man, and Cybernetics, Vol. 28, pp. 112-123, 1998.
[37] Leonard, J. J. and Durrant-Whyte, H. F., “Application of Multi-Target Tracking to Sonar-Based Mobile Robot Navigation,” Proc. of IEEE Inter. Conf. on Decision and Control, Vol. 6, pp. 3118-3123, 1990.
[38] Leu, M. C. and Kim, T. Q., “Cell Mapping Based Fuzzy Control of Car Parking,” Proc. of IEEE Inter. Conf. on Robotics & Automation, pp. 2494-2499, 1998.
[39] Lian, K. Y., Chin, C. S., and Chiang, T. S., “Parallel Parking a Car-Like Robot Using Fuzzy Gain Scheduling,” Proc. of IEEE Inter. Conf. on Control Applications, Vol. 2, pp. 1686-1691, 1999.
[40] Luo, R. C. and Chen, T. M., “Autonomous Mobile Target Tracking System Based on Grey-Fuzzy Control Algorithm,” IEEE Trans. on Industrial Electronics, Vol. 47, pp. 920-931, 2000.
[41] Luo, R. C. and Kay, M. G., “Multisensor Integration and Fusion in Intelligent Systems,” IEEE Trans. on System, Man and Cybernetics, Vol. 19, pp. 901-931, 1989.
[42] Lyon, D., “Parallel Parking with Curvature and Nonholonomic Constraint,” Proc. of IEEE Inter. Conf. Intelligent Vehicles Symposium, Detroit, MI, pp. 341-346, 1992.
[43] Maksarov, D. and Durrant-Whyte, H., “Mobile Vehicle Navigation in Unknown Environments: a Multiple Hypothesis Approach,” Proc. of IEE on Control Theory and Applications, Vol. 142, pp. 385-400, 1995.
[44] Mckerrow, P. J. and Volk, S. J., “Correcting Mismatch in a Data Fusion System for Ultrasonic Mapping with a Mobile Robot,” Proc. of IEEE/SICE/RSJ Inter. Conf. on Multisensor Fusion and Integration for Intelligent Systems, pp. 749-756, 1996.
[45] Murray, R. M. and Sastry, S. S., “Nonholonomic Motion Planning: Steering Using Sinusoids,” IEEE Trans. on Automatic Control, Vol. 4, pp. 700-716, 1993.
[46] Neira, J., Horn, J., Tardos, J. D., and Schmidt, G., “Multisensor Mobile Robot Localization,” Proc. of IEEE Inter. Conf. on Robotics and Automation, Vol. 1, pp. 673-679, 1996.
[47] Neira, J., Tardos, J. D., Horn, J., and Schmidt, G., “Fusing Range and Intensity Images for Mobile Robot Localization,” IEEE Trans. on Robotics and Automation, Vol. 15, pp. 76-84, 1999.
[48] Niwa, S., Masuda, T., and Sezaki, Y., “Kalman Filter with Time-Variable Gain for a Multisensor Fusion System,” Proc. of IEEE/SICE/RSJ Inter. Conf. on Multisensor Fusion and Integration for Intelligent Systems, pp. 56-61, 1999.
[49] Ohata, A. and Mio, M., “Parking Control Based on Nonlinear Trajectory Control for Low Speed Vehicles,” Proc. of IECON, Kobe, Japan, pp. 107-112, 1991.
[50] Ohkita, M., Mitita, H., Miura, M., and Kuono, H., “Travelling Experiment of an Autonomous Mobile Robot for a Flush Parking,” Proc. of 2nd IEEE Inter. Conf. on Fuzzy System, Francisco, CA, Vol. 2, pp. 327-332, 1993.
[51] Paromtchik, I. E. and Laugire, C., “Motion Generation and Control for Parking an Autonomous Vehicle,” Proc. of IEEE Inter. Conf. on Robotics and Automation, Minneapolis, MN, Vol. 4, pp. 3117-3122, 1996.
[52] Paromtchik, I. E. and Laugier, C., “Autonomous Parallel Parking of a Nonholonomic Vehicle,” Proc. of IEEE Inter. Conf. on Intelligent Vehicles, pp. 13-18, 1996.
[53] Paromtchik, I. E. and Laugier, C., “Automatic Parallel Parking and Returning to Traffic Manoeuvres,” Proc. of IEEE Inter. Conf. on Intelligent Robots and Systems, Vol. 3, pp. 21-23, 1997.
[54] Rigatos, G. G., “Fuzzy Stochastic Automata for Intelligent Vehicle Control,” IEEE Trans. on Industrial Electronics, Vol. 50, pp. 76-79, 2003.
[55] Rigatos, G. G., Tzafestas, S. G., and Evangelidis, G. J., “Reactive Parking Control of Nonholonomic Vehicles via a Fuzzy Learning Automaton,” Proc. of IEE on Control Theory Applications, Vol. 148, pp. 169-179, 2001.
[56] Shirazi, B. and Yih, S., “Learning to Control: a Heterogeneous Approach,” Proc. of IEEE Inter. Conf. on Intelligent Control Symposium, pp. 320-325, 1989.
[57] Skubic, M., Graves, S., and Mollenhauer, J., “Design of a Two-Level Fuzzy Controller for a Reactive Miniature Mobile Robot,” Inter. Conf. on Industrial Fuzzy Control and Intelligent Systems, pp. 224-227, 1993.
[58] Smith, C. and Erickson, G., “Multisensor Data Fusion: Concepts and Principles,” IEEE Communications, Computers and Signal Processing on System, Vol. 1, pp. 235-237, 1991.
[59] Sugeno, M. and Murakami, K., “An Experimental Study on Fuzzy Parking Control Using a Model Car,” Industrial Applications of Fuzzy Control (M. Sugeno ed.), North-Holland, pp. 105-124, 1985.
[60] Sugeno, M., Murofushi, T., Mori, T., Tatematsu, T., and Tanaka, J., “Fuzzy Algorithmic Control of a Model Car by Oral Instructions,” Fuzzy Sets and Systems, Vol. 32, pp. 207-219, 1989.
[61] Sugeno, M. and Nishida, M., “Fuzzy Control Model Car,” Fuzzy Sets and Systems, Vol. 16, pp. 103-113, 1985.
[62] Tanaka, K. and Sano, M., “Trajectory Stabilization of a Model Car via Fuzzy Control,” Fuzzy Sets and Systems, Vol. 70, pp. 155-170, 1995.
[63] Tayebi, A. and Rachid, A., “A Time-Varying-Based Robust Control for the Parking Problem of a Wheeled Mobile Robot,” Proc. of IEEE Inter. Conf. on Robotics and Automation, pp. 3099-3104, 1996.
[64] Tsai, C. C., “A Localization System of a Mobile Robot by Fusing Dead-Reckoning and Ultrasonic Measurements,” IEEE Trans. on Instrumentation and Measurement, Vol. 47, pp. 1399-1404, 1998.
[65] von Altrock, C., Krause, B., and Zimmermann, H. -J., “Advanced Fuzzy Logic Control of A Model Car in Extreme Situations,” Fuzzy Sets and Systems, Vol. 48, pp. 41-52, 1992.
[66] Wallner, F., Graf, R., and Dillmann, R., “Real-Time Map Refinement by Fusing Sonar and Active Stereo-Vision,” Proc. of IEEE Inter. Conf. on Robotics and Automation, Vol. 3, pp. 2968-2973, 1995.
[67] Wang, Y. and Carmell, M. P., “Autonomous Vehicle Parallel Parking Design Using Function Fitting Approaches,” Robotica, Vol. 16, pp. 159-170, 1998.
[68] Xiu, J., Chen, G., and Xie, M., “Vision-Guided Automatic Parking for Smart Car,” Proc. of IEEE Inter. Conf. on Intelligent Vehicles Symposium, pp. 725-730, 2000.
[69] Xu, J., Xie, M., and Lu, J. Z., “Duplex Motion Planning Strategy for Automatic Manoeuvre of Vehicle in Complex Environment,” Proc. of IEEE Inter. Conf. on Intelligent Transportation Systems, pp. 292-297, 2001.
[70] Yasunobu, S. and Murai, Y., “Parking Control Based on Predictive Fuzzy Control,” Proc. of 3rd IEEE Conf. on Fuzzy System, Orlando, FL, pp. 1338-1341, 1994.
[71] Zadeh, L. A., “Fuzzy Sets,” Information Control, Vol. 8, pp.338-353, 1965
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top