跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 02:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許正興
研究生(外文):Cheng-Shing Hsu
論文名稱:微波介電材料之備製與應用之研究
論文名稱(外文):Fabrication and Application of Microwave Dielectric Materials
指導教授:魏炯權黃正亮
指導教授(外文):Chung-Chuang WeiCheng-Liang Huang
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:214
中文關鍵詞:微帶線微波帶通濾波器微波介電材料介電薄膜
外文關鍵詞:Microwave Dielectric MaterialMicrowave Bandpass FilterDielectric Thin FilmMicrostrip Line
相關次數:
  • 被引用被引用:2
  • 點閱點閱:382
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:2
微波介電材料所製作之介電共振器具有高介電常數,高溫度穩定係數及低損失因子等特性,適合應用於微波濾波器、震盪器、天線與微波積體電路中。近年來由於高頻通訊元件快速之發展,元件之輕薄短小為其重要之研究目標。就縮小體積之多層陶瓷濾波器而言,降低燒結溫度便為發展介電材料之重要趨勢。此外,介電材料之積體化也亦為實現微波高頻元件之重要課題之一。本論文針對上述之方向做了下列三大部分進行探討與研究:
一、高品質因子,高溫度穩定性與高介電常數之微波陶瓷介電材料備製
[a] 嘗試在特性優良之(Zr,Sn)-TiO2介電材料中,加入不同的雜質以改善介電特性並達到降低燒結溫度之目的
[b] 不同摻雜對MgNb2O6微波介電材料之研究
二、介電薄膜之製作
利用自製之(Zr,Sn)-TiO2靶材以射頻磁控濺鍍法進行薄膜之製作,在不同之製程參數下,製作高品質之介電薄膜,經由進行各種不同之薄膜分析技術,以進行物理特性,電學特性之研究。
三、微波微帶濾波器之設計、分析與製作
以第一部份之研究成果為基礎,分析設計並製作應用於通訊系統中之微帶濾波器,並以compact hairpin型態來進行各種耦合方式之微帶濾波器。
Microwave dielectric resonators which are fabricated by high dielectric constant, low dielectric loss and good temperature stability of microwave dielectric materials are suitably applied in microwave filters, oscillators, antennas and microwave integral circuits (MICs). With the recent progress of microwave communication devices, miniaturization of microwave components for volume efficiency is a major research requirement. For the miniaturized multilayer ceramic filters, reduce the sintering temperature has become the important tendency to researched dielectric materials. In addition, the integration of dielectric materials are also become main studied for implement microwave devices. As mentioned above, the main research of this dissertation is divided three parts which preparation of low sintering temperature microwave dielectric resonators, fabrication of dielectric thin films and their applications on microwave planar filters.
1.Preparation for microwave dielectric resonator with high quality factor (Q×f), excellent temperature stability and high dielectric constant:
[ a ] Zirconium tin titanium oxide was investigated as a potentially useful dielectric material owing to its excellent dielectric properties. Properties improvement and reduce the sintering temperature of Zr0.8Sn0.2TiO4 dielectric materials have been achieved by amount various additions. The experimental results showed that small amount of additions attribute to sintering and grain growth.
[ b ] For producing miniaturized devices, multilayer structures with low sintering temperatures are needed to co-fire with low melting point electrodes. Using low melting dopants are generally the most effective and least expensive technique to reduce the sintering temperature. Since CuO and Fe2O3 are the popular sintering fluxes, these were chosen as a sintering aid to lower the firing temperature of the MgNb2O6 ceramics in this experiment. The microwave dielectric properties and the microstructures of CuO-doped and Fe2O3-doped MgNb2O6 ceramics were also investigated.
2.Fabrication of Dielectric Thin Films:
Due to thin-film technology has become a major requirement for integration since integrated circuits have been applied in today’s microwave communication system and dynamic random access memories. In this part, the electrical and physical properties of ZnO-doped (Zr0.8Sn0.2)TiO4 thin films were fabricated by rf magnetron sputtering have been researched. A ZST target was prepared and used for deposition. ZST thin films were deposited at different processing parameters. The dependence of the physical and electrical characteristics on rf power, substrate temperature and Ar/O2 ratios were also investigated.
3.Design and Fabrication of Microwave Filters:
Microwave planar filters are widely used in the communication circuits. In this part, analysis, design and fabrication of microwave hairpin planar filter were studied. The results of the first part are applied to constructed hairpin band-pass filter. The band-pass filter were constructed by using λ/2 microstrip resonators. Both mixed-coupling and cross-coupling structures were designed as the coupling instruments in the transformation electromagnetic energy. In addition, the coupled lines at the ends of a miniaturized hairpin resonator are used as a capacitor for the purpose of reducing its size. The compact hairpin filters are also implemented and characteristics compared with normal hairpin filters were also investigated in different substrate materials.
CONTENTS
Abstract……………………………………………………………………….I
Contents……………………………………………………………………...V
Table Captions……………………….……………………………………..IX
Figure Captions………………………………………….…………………..X
Chapter 1 Generation Introduction………………………………………...1
1-1 Review Microwave Dielectric Materials and Resonators…………….1
1-2 Dielectric Thin Films…………………………………………………3
1-3 Deposition Techniques………………………………………………..5
1-4 Microwave Planar Filter……………………………………………...7
1-5 Outline of the Thesis………………………………………………….9
Chapter 2 Theory…………………………………………………………...12
2-1 Theory of Microwave Dielectric Properties…………………………12
2-2 Analysis and Measurement of Dielectric Resonator………………...15
2-3 Microstructure of Deposited Film…………………………………...21
2-4 Analysis of Electrical Properties of Films…………………………...22
2-4-1 I-V characteristic………………………………………………22
2-4-2 C-V characteristic……………………………………………..24
2-5 Basic Theory of Microwave Filter…………………………………..26
Chapter 3 Effect of Additives on Microstructures and Microwave Dielectric Properties of (Zr,Sn)TiO4 Ceramics ………..…..33
3-1 Introduction………………………………………………………….33
3-2 Experimental Procedures……………………………………………34
3-2-1 Sample Preparation……………………………………………34
3-2-2 Characteristics Analysis Measurement of Microwave
Dielectric Properties…………………………………………..35
3-3 Results and Discussions……………………………………………..35
3-4 Conclusions………………………………………………………….40
Chapter 4 Liquid Phase Sintering and Microwave Dielectric Properties
of MgNb2O6Ceramics…………………………………………..42
4-1 Introduction………………………………………………………….42
4-2 Experimental Procedures……………………………………………42
4-2-1 Sample Preparation……………………………………………42
4-2-2 Characteristics Analysis Measurement of Microwave
Dielectric Properties…………………………………………..43
4-3 Results and Discussions……………………………………………..44
4-4 Conclusions………………………………………………………….48
Chapter 5 RF Magnetron Sputtered Zr0.8Sn0.2TiO4 Thin Films…………50
5-1 Introduction………………………………………………………….50
5-2 Sputtering System…………………………………………………...52
5-3 Experimental Procedures……………………………………………53
5-3-1 Target Fabrication……………………………………………..53
5-3-2 Clean Substrate………………………………………………..53
5-3-3 Deposition Process……………………………………………54
5-3-4 Analysis of Physical and Chemical Properties of Films……...55
5-3-5 Analysis of Electrical Properties of Film……………………..55
5-4 Results and Discussions…………………………………………….56
5-4-1 Crystal Structure and Composition…………………………...56
5-4-2 Microstructure and Surface Morphology……………………..57
5-4-3 Electrical Properties of Zr0.8Sn0.2TiO4 Thin Films……………61
5-5 Conclusions…………………………………………………………63
Chapter 6 Planar Microstrip Bandpass Filter…………………………...65
6-1 Introduction…………………………………………………………65
6-2 Filter Structure and Resonance Conditions…………………………67
6-2-1 Analysis of Hairpin Filter Structure…………………………..67
6-2-2 Resonance Properties of Stepped Impedance
Hairpin resonator……………………………………………..68
6-3 Coupling Analysis…………………………………………………..72
6-4 Filter Design………………………………………………………...77
6-5 Performance of Experiment Filter…………………………………..83
Chapter 7 Conclusions and Future Works……………………………….87
7-1 Conclusions…………………………………………………………87
7-2 Future Works………………………………………………………..90
References………………………………………………………………….92
Tables……………………………………………………………………...101
Figures…………………………………………………………………….109
References
[1] R. D. Richtmyer, “Dielectric Resonators,” J. Appl. Phys., 10 (1939) 391-398.
[2] T. Konoike and H. Yamura, “Dielectric ceramic composition for microwave frequencies,” U. S. Patent No. 4,585,774, 1986.
[3] H. Tamura, T. Konoike, Y. Sakabe and K. Wakino, “Improved high-Q dielectric resonator with complex perovskite structure,” J. Am. Cerm. Soc., 67 (1984) C59-61.
[4] S. Kawashima, M. Nishida, I. Ueda and K. Ouchi, in Inst. Electronics Comm. Engers. Japan MW 80-29 (1980) 1.
[5] M. Onoda, K. Kuwata, K. Kaneta, K. Yoyama and S. Nomura, “Ba(Zn1/3Nb2/3)O3-Sr(Zn1/3Nb2/3)O3 solid solution ceramics with temperature stable high dielectric constant and low microwave loss,” Jpn. J. Appl. Phys., 21 (1982) 1707-1710.
[6] Y. C. Heiao, L. Wu and C. C. Wei, “Microwave dielectric properties of (Zr,Sn)TiO4 ceramics,” Mat. Res. Bull., 23 (1988) 1687-1692.
[7] S. Nishigaki, H. Kato, S. Yano and R. Kamimura, “Microwave dielectric properties of (Ba,Sr)O-Sm2O3-TiO2 ceramics,” Am. Ceram. Soc. Bull., 66 (1987) 1405-1410.
[8] K. Wakino, K. Minai and H. Tamura, “Microwave characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 dielectric resonator,” J. Am. Ceram. Soc., 67 (1984) 278-281.
[9] J. M. Wu and M. C. Chang, “Reaction sequence and effects of calcinations and sintering on microwave properties of (Ba,Sr)O-Sm2O3-TiO2 ceramics.” J. Am. Ceram. Soc., 73 (1990) 1599-1605.
[10] S. Kawashima, M. Nishida, I. Ueda and H. Ouchi, in the 87th Annual Meeting of the American Ceramic Society, Cincinnati, OH, 1985 (Electronics Division, paper No. 15-E-85).
[11] IEEE Standard Definition of Primary Ferroelectric Terms, ANSI/IEEE std. 180-1986.
[12] G. H. Haertiling and C. E. Land, “Hot-Pressed (Pb,La)(Zr,Ti)O3 Ferroelectric Ceramic for Electrooptic Applications,” J. Am. Ceram. Soc., 54 (1971) 1-11.
[13] G. H. Haertiling, “Improved Hot-Pressed Electrooptic Ceramics in the (Pb,La)(Zr,Ti)O3,” J. Am. Ceram. Soc., 54 (1971) 303-309.
[14] C. E. Land and P. S. Peercy, “Photoferroelectric Effects in PLZT Ceramics,” 22 (1978) 667-679.
[15] R. C. Buchanan, Ceramic Materials for Electronics, Marcel. Dekker. Inc., NewYork and Baesl, 1986.
[16] W. D. Smith and C. E. Land, “Scattering-Mode Ferroelectric-Photoconductor Image Storage and Display Devices,” Appl. Phys. Lett., 20 (1972) 169-171.
[17] M. Ishiad, S. Tsuida, K. Kimura, H. Matsunami and T. Tanaka, “Epitaxial Growth of Ferroelectric PLZT (Pb,La)(Zr,Ti)O3 Thin Films,” J. Cryst. Growth, 45 (1978) 393-398.
[18] G. H. Haertiling and C. B. McCampbell, “New Longtitudinal Display Mode for Ceramic Electrooptical Device,” Proc. IEEE, 60 (1972) 450-451.
[19] J. R. Maldonado and A. H. Meitzler, “Ferroelectric Ceramic Light Gates Operated in a Voltage-Controlled Mode,” IEEE Tran. Electron Devices, 17 (1970) 148-157.
[20] S. G. Varnado and W. D. Smith, “Electrooptic Ceramics as Wavelength Selection Devices in Dye Lasers,” IEEE J. Quantum Electronics, (1972) 88-89.
[21] R. E. Newnham, ”Crystal Structure of ZrTiO4,” J. Am. Ceram. Soc., 55 (1967) 409-413.
[22] F. J. Wu, T. Y. Tseng, ”Highly Oriented (Zr0.7Sn0.3)TiO4 Thin Films Grown by rf Magnetron Sputtering,” J. Am. Ceram. Soc., 81 (1998) 439-443.
[23] O. Nakagawara, Y. Toyota, M. Kobayashi, Y. Yoshino, and Y. Katayama, “Electrical Properties of (Zr,Sn)TiO4 dielectric Thin Film Prepared by Pulsed Laser Deposition,” J. Appl. Phys., 80 (1996) 388-392.
[24] Robert B.van Dover, L.F. Schneemeyer, “Deposition of Uniform Zr-Sn-Ti-O Films by On-Axis Reactive Sputtering,” IEEE. Elec. Dev. Lett., 19 (1998) 329-331.
[25] C. L. Huang and C. S. Hsu, “Fabrication of ZnO-Doped Zr0.8Sn0.2TiO4 Thin Films by RF Magnetron Sputtering,” J. Vac. Soc. Technol. A, 18 (2000) 2327.
[26] D. A. Chang, “Fabrication and Study of ZrTiO4-Based Dielectric Thin Films,” National Chiao Tung University, Dissertation for Doctor of Philosophy, (1995).
[27] T. Nakagawa, J. Yamaguchi, T. Usuki, Y. Matsui, M. Okuyama and Y. Hamakawa, “Ferroelectric Properties of RF Sputtered PLZT Thin Film,” Jpn. J. Appl. Phys., 18 (1979) 897-902.
[28] S.Y. Lee, “Design of Miniaturized Microwave Planar Filters with Extra Transmission Zeros,” National Cheng-Kung University, Dissertation for Doctor of Philosophy, (2000)
[29] S. B. Cohn, “Parallel-Coupled Transmission-Line-Resonator Filters,“ IRE Trans. Microwave Theory Tech., MTT-6 (1958) 223-231.
[30] E. G. Cristal and S. Frankel, “Hairpin-Line and Hybrid Hairpin-Line/Half-Wave Parallel-Coupled-line Filters,” IEEE Trans. Microwave Theory Tech., MTT-20 (1972) 719-728.
[31] A. E. Williams, “A Four-Cavity Elliptic Waveguide Filter,” IEEE Trans. Microwave Theory Tech., MTT-18 (1970) 1109-1114.
[32] R. Levy, “Filters with Single Transmission Zeros at Real or Imaginary Frequencies,” IEEE Trans. Microwave Theory Tech., MTT-24 (1976) 172-181.
[33] J. S. Hong and M. J. Lancaster, “Couplings of Microstrip Square Open-Loop Resonators for Cross-Coupled Planar Microwave Filters,” IEEE Trans. Microwave Theory Tech., MTT-44 (1996) 2099-2109.
[34] J. S. Hong and M. J. Lancaster, “Cross-Coupled Microstrip Hairpin-Resonator Filters,” IEEE Trans. Microwave Theory Tech., MTT-46 (1998) 118-122.
[35] M. Makimoto and S. Yamashita, “Bandpass Filters using Parallel Coupled Stripline Stepped Impedance Resonators,” IEEE Trans. Microwave Theory Tech., MTT-28 (1980) 1413-1417.
[36] M. Sagawa, K. Takahashi and M. Makimoto, “Miniaturized hairpin resonator Filters and Their Application to Receiver Front-End MIC’s,” IEEE Trans. Microwave Theory Tech., MTT-37 (1989) 1991-1997.
[37] J. S. Hong and M. J. Lancaster, “Theory and Experiment of Novel Microstrip Slow-Wave Open-Loop Resonator Filters,” IEEE Trans. Microwave Theory Tech., MTT-45 (1997) 2358-2365.
[38] S. B. Cohn, “Direct-Coupled-Resonator Filters,” Proceedings of the IRE, 45 (1957) 187-196.
[39] E. G. Cristal, “Tapped-Line coupled Transmission Lines with Applications to Interdigital and Combline Filters,” IEEE Trans. Microwave Theory Tech., MTT-23 (1975) 1007-1012.
[40] J. S. Wong, “Microstrip Tapped-Line Filter Design,” IEEE Trans. Microwave Theory Tech., MTT-27 (1979) 44-50.
[41] T. Ishizaki and T. Uwano, “A Stepped Impedance Comb-Line Filter Fabricated by using Ceramic Lamination Technique,” 1994 IEEE MTTs International Microwave Symposium Digest, 2, pp. 617-620.
[42] G. L. Matthaei, N. O. Fenzi, R. J. Forse and S. M. Rohlfing, “Hairpin-Comb Filters for HTS and Other Narrow-Band Applications,” IEEE Trans. Microwave Theory Tech., MTT-45 (1997) 1226-1231.
[43] H. J. Lee, K. S. Hong, S. J. Kim and I. T. Kim, “Dielectric Properties of AB2O6 Compounds at Microwave Frequencies (A=Ca, Mg, Mn, Co, Ni, Zn, and B=Nb, Ta),” Jpn. J. Appl. Phys., 36 (1997) L1318.
[44] W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “ Introduction to Ceramics,” 2nd edition, Wiley, New York, (1986).
[45] G. Burns, “Solid State Physics,” (1985) 461.
[46] B. D. Silvermann, “Microwave Absorption in cubic Strontium Titanate,” Phys. Rev., 125 (1962) 1921-1930.
[47] C. H. Perry, D. J. McCarthy and G. Rupprecht, “Dielectric Dispersion of Some Pervoskite Zirconate,” Phys. Rev., 126 (1962) 1710-1721.
[48] K. Wakino, M. Murata and H. Tamura, “Far-Infrared Reflection Spectra of Ba(Zn,Ta)O3-BaZrO3 Dielectric Resonator Material.” J. Am. Ceram. Soc., 69 (1986) 34-37.
[49] W. E. Courtney, “Analysis and Evaluation of Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators,” IEEE Trans. Microwave Theory Tech., MTT-18 (1970) 476-485.
[50] David K. Cheng, “Field and Wave Electromagnetics” 2nd edition, Addison Wesley, New York (1989) 406-410.
[51] B.W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive in the Millimeter Range,” IEEE Trans. Microwave Theory Tech., MTT-16 (1985) 402-406.
[52] Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Trans. Microwave Theory Tech., MTT-33 (1985) 586-592.
[53] B. A. Movchan and A. V. Demshishin, “Fizika Metal, 28 (1969) 653.
[54] J. A. Thornton, “The Microstructure of Sputtered- Deposited Coating,” J. Vac. Sci. Technol. A 4, (1986) 3059-3065.
[55] R. C. Ross and R. Messier, “Microstructure and Properties of RF-Sputtered Amorphous Hydrogenated Silicon Film,” J. Appl. Phys., 52 (1981) 5329-5339.
[56] R. Messier and R. C. Ross, “Evolution and Microstructure in Amorphous hydrogenated Silicon,” J. Appl. Phys., 53 (1982) 6220-5225.
[57] R. Messier and R. C. Ross, “Revised Structure Zone Model for Thin Film Physical Structure,” J. Vac. Sci. Technol. A, 2 (1984) 500-503.
[58] Y. P. Wang, “Fabrication and Properties of rf-Sputtered Dielectric (Ba,Sr)TiO3 Thin Films and ZnO Varistors,” National Chiao Tung University, Dissertation for Doctor of Philosophy, (1998).
[59] S. M. Sze, Physics of Semiconductor Devices, 2nd, Wiley, New York, (1981).
[60] J. O’Dwyer, Theory of Electrical Conduction and Breakdown in Solid Dielectric, Clarendon, Oxford, England, (1973).
[61] P. Li and T. M. Lu, “Conduction Mechanism in BaTiO3 Thin Films,” Physical Review B, 43 (1991) 14261-14264.
[62] T. Mihara and H. Watanbe, “Electronic Conduction Characteristics of Sol-Gel Ferroelectric Pb(Zr0.4Ti0.6)O3 Thin film Capacitors: Part-I,” Jpn. J. Appl. Phys., 34 (1995) 5664.
[63] A. Grove, B. E. Deal, E. H. Show and C. T. Sah, “Investigation of Thermally Oxidised Silicon Surfaces Using Metal-Oxide-Semiconductor Structures,” Solid-State Electronics, 18 (1965) 145-163.
[64] D. G. Ong, Modern MOS Technology: Process, Devices and Design, McGraw-Hill Inc., (1994).
[65] G. Matthaei, L. Young and E. M. T Jones, “Microwave Filters, Impedance-Matching Networks and Coupling structures,” McGraw-Hill, New York, (1964).
[66] J. R. Montejo and J. Zapata, “Full-Wave Design and Realization of Multicoupled Dual-Mode Circular Waveguide Filters,” IEEE Trans. Microwave Theory Tech., MTT-43 (1995) 1290-1297.
[67] S. B. Cohn, “Dissipation Loss in Multi-Coupled Resonator Filters,” Proc. IRE, 47 (1957) 1342-1348.
[68] T. Takada, S. F. Wang, S. Yoshikawa, S. J. Jang and R. E. Newnham, “Effect of Glass Additions on BaO-TiO2-WO3 Microwave Ceramics,” J. Am. Ceram. Soc., 77 (1994) 1909-1916.
[69] H. Ikawa, A. Iwai, H. Kazayuki, Shimojima, K. Urabe and S. Udagawa, “Phase Transformation and Thermal Expansion of Zirconium and Hafnium Titinates and Their Solid Solutions,” J. Am. Ceram. Soc., 71 (1988) 120.
[70] G. Wolfram, H.E. Gobel, “Existance Range, Structural and Dielectric Properties of ZrxTiySnzO4 Ceramics (x+y+z=2),” Mater. Res. Bull., 16 (1981) 1455.
[71] R. Christoffersen, P.K. Davies, X. Wei, “Effect of Sn Substitution on Cation Ordering in (Zr1-xSnx)TiO4 Microwave Dielectric Ceramics,” J Am Ceram Soc 77 (1994) 1441.
[72] T. Takada, S. F. Wang, S. Yoshikawa, S. J. Jang and R. E. Newnham, “Effect of Glass Additions on (Zr,Sn)TiO4 for Microwave Applications,” J. Am. Ceram. Soc., 77 (1994) 2485.
[73] N. Michiura, T. Tatekawa, Y. Higuchi and H. Tamara, “Role of Donor and Acceptor Ions in the Dielectric Loss Tangent of (Zr0.8Sn0.2)TiO4 Dielectric Resonator Material,” J. Am. Chem. Soc., 78 (1995) 1793.
[74] R. Kudesia, A.E. Mchale, R.L. Snyder, “Effect of La2O3/ZnO Additions on Microstructure and Microwave Dielectric Properties of Zr0.8Sn0.2TiO4 Ceramics with Additives,” J Am Ceram Soc 77 (1994) 3215.
[75] C. L. Huang, M. H. Weng and H. L. Chen, “Effect of Additives on Microstructures and Microwave Dielectric Properties of (Zr,Sn)TiO4 Ceramics,” Mater. Chem. and Phys., 8996 (2001) 1-6.
[76] C.L. Huang, M.H. Weng, “Effect of CuO Addition on (Zr,Sn)TiO4 Microwave Dielectric Ceramics,” Mater. Res. Bull., 35 (2000) 1881-1888.
[77] C.L. Huang, C.C. You, B.C. Shen, “Microwave Dielectric Resonator Using Doped (Zr,Sn)TiO4 Ceramics ,” J Wave Mater Int., 10 (1995) 1-14.
[78] S. Ananta, R. Brydson and N. W. Thomas, “Synthesis Formation and Characterisation of MgNb2O6 Powder in a Columbite-like Phase,” J. Euro. Ceram. Sco., 19 (1999) 355-362.
[79] S. I. Hirno, Takashi, Hayashi, A. Hattori, “Chemical Processing and Microwave Characteristics of (Zr,Sn)TiO4 Microwave Dielectric,” J. Am. Ceram. Soc., 74 (1991) 1320.
[80] V. Tolmer, G. Desqardin, J. Am. Ceram. Soc., 80 (1997) 1981.
[81] W. S. Kim, T. H. Hong, E. S. Kim, and K. H. Yoon, “Microwave Dielectric Properties and Far Infrared reflectively Spectra of the (Zr0.8Sn0.2)TiO4 Ceramics with Additives,” Jpn. J. Appl. Phys., 37 (1998) 5367.
[82] C. L. Huang and C. S. Hsu, “Improved High-Q Microwave Dielectric Resonator Using ZnO and WO3-doped Zr0.8Sn0.2TiO4 Ceramics.” Mater. Res. Bull., 36 (2001) 1985-1993.
[83] C. L. Huang, M. H. Weng, C. C. Wu and C. C. Wei, "The Microwave Dielectric Properties and the Microstructures of V2O5 Modified Zr0.8Sn0.2TiO4 Ceramics," Jpn. J. Appl. Phys., 40, (2001) 698-702.
[84] A. E. Mchale and R. S. Roth, “Low-Temperature Phase Relationships in the System ZrO2-TiO2,” J. Am. Ceram. Soc., 69 (1986) 827-832.
[85] A. E. Mchale and R. S. Roth, “Investigation of the Phase Transition in ZrTiO4 and ZrTiO4-SnO2 Solid Solution,” J. Am. Ceram. Soc., 66 (1983) C-18-C-20.
[86] S. J. Chae, S. S. Park and S. G. Yoon, “Characterization of (Pb1-xLax)TiO3 Thin Films Grown by Radio-Frequency Magnetron Sputtering and Their Electrical Properties,” Integrated Ferroelectrics, 10 (1995) 63-72.
[87] Y. Fukuda, K. Aoki, K. Numata and A. Nishimura, “Current-Voltage Characteristics of Electron-Cyclotron-Resonance Sputter-Deposited SrTiO3 Thin Films,” Jpn. J. Appl. Phy., 33 (1994) 5255-5258.
[88] G. I. Zysman and A. K. Johnson, “Coupled Transmission Line Networks in an Inhomogeneous Dielectric Medium,” IEEE Trans. Microwave Theory Tech., MTT-17 (1969) 753-759.
[89] B. I. Bleaney and B. Bleaney, Electricity and Magnetism, 3rd edition, Oxford, (1976).
[90] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications,
1st edition, Wiley, (2001)
[91] J. S. Hong and M. J. Lancaster, “Design of Highly Selective Microstrip Bandpass Filter With a Single Pair of Attenuation Poles at Finite Frequencies,” IEEE Trans. Microwave Theory Tech., MTT-48 (2000) 1098-1107.
[92] R. M. Kurzok, “General Four-Resonator Filters at Microwave Frequencies,” IEEE Trans. Microwave Theory Tech., MTT-14 (1966) 295-296.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top