|
References [1] R. D. Richtmyer, “Dielectric Resonators,” J. Appl. Phys., 10 (1939) 391-398. [2] T. Konoike and H. Yamura, “Dielectric ceramic composition for microwave frequencies,” U. S. Patent No. 4,585,774, 1986. [3] H. Tamura, T. Konoike, Y. Sakabe and K. Wakino, “Improved high-Q dielectric resonator with complex perovskite structure,” J. Am. Cerm. Soc., 67 (1984) C59-61. [4] S. Kawashima, M. Nishida, I. Ueda and K. Ouchi, in Inst. Electronics Comm. Engers. Japan MW 80-29 (1980) 1. [5] M. Onoda, K. Kuwata, K. Kaneta, K. Yoyama and S. Nomura, “Ba(Zn1/3Nb2/3)O3-Sr(Zn1/3Nb2/3)O3 solid solution ceramics with temperature stable high dielectric constant and low microwave loss,” Jpn. J. Appl. Phys., 21 (1982) 1707-1710. [6] Y. C. Heiao, L. Wu and C. C. Wei, “Microwave dielectric properties of (Zr,Sn)TiO4 ceramics,” Mat. Res. Bull., 23 (1988) 1687-1692. [7] S. Nishigaki, H. Kato, S. Yano and R. Kamimura, “Microwave dielectric properties of (Ba,Sr)O-Sm2O3-TiO2 ceramics,” Am. Ceram. Soc. Bull., 66 (1987) 1405-1410. [8] K. Wakino, K. Minai and H. Tamura, “Microwave characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 dielectric resonator,” J. Am. Ceram. Soc., 67 (1984) 278-281. [9] J. M. Wu and M. C. Chang, “Reaction sequence and effects of calcinations and sintering on microwave properties of (Ba,Sr)O-Sm2O3-TiO2 ceramics.” J. Am. Ceram. Soc., 73 (1990) 1599-1605. [10] S. Kawashima, M. Nishida, I. Ueda and H. Ouchi, in the 87th Annual Meeting of the American Ceramic Society, Cincinnati, OH, 1985 (Electronics Division, paper No. 15-E-85). [11] IEEE Standard Definition of Primary Ferroelectric Terms, ANSI/IEEE std. 180-1986. [12] G. H. Haertiling and C. E. Land, “Hot-Pressed (Pb,La)(Zr,Ti)O3 Ferroelectric Ceramic for Electrooptic Applications,” J. Am. Ceram. Soc., 54 (1971) 1-11. [13] G. H. Haertiling, “Improved Hot-Pressed Electrooptic Ceramics in the (Pb,La)(Zr,Ti)O3,” J. Am. Ceram. Soc., 54 (1971) 303-309. [14] C. E. Land and P. S. Peercy, “Photoferroelectric Effects in PLZT Ceramics,” 22 (1978) 667-679. [15] R. C. Buchanan, Ceramic Materials for Electronics, Marcel. Dekker. Inc., NewYork and Baesl, 1986. [16] W. D. Smith and C. E. Land, “Scattering-Mode Ferroelectric-Photoconductor Image Storage and Display Devices,” Appl. Phys. Lett., 20 (1972) 169-171. [17] M. Ishiad, S. Tsuida, K. Kimura, H. Matsunami and T. Tanaka, “Epitaxial Growth of Ferroelectric PLZT (Pb,La)(Zr,Ti)O3 Thin Films,” J. Cryst. Growth, 45 (1978) 393-398. [18] G. H. Haertiling and C. B. McCampbell, “New Longtitudinal Display Mode for Ceramic Electrooptical Device,” Proc. IEEE, 60 (1972) 450-451. [19] J. R. Maldonado and A. H. Meitzler, “Ferroelectric Ceramic Light Gates Operated in a Voltage-Controlled Mode,” IEEE Tran. Electron Devices, 17 (1970) 148-157. [20] S. G. Varnado and W. D. Smith, “Electrooptic Ceramics as Wavelength Selection Devices in Dye Lasers,” IEEE J. Quantum Electronics, (1972) 88-89. [21] R. E. Newnham, ”Crystal Structure of ZrTiO4,” J. Am. Ceram. Soc., 55 (1967) 409-413. [22] F. J. Wu, T. Y. Tseng, ”Highly Oriented (Zr0.7Sn0.3)TiO4 Thin Films Grown by rf Magnetron Sputtering,” J. Am. Ceram. Soc., 81 (1998) 439-443. [23] O. Nakagawara, Y. Toyota, M. Kobayashi, Y. Yoshino, and Y. Katayama, “Electrical Properties of (Zr,Sn)TiO4 dielectric Thin Film Prepared by Pulsed Laser Deposition,” J. Appl. Phys., 80 (1996) 388-392. [24] Robert B.van Dover, L.F. Schneemeyer, “Deposition of Uniform Zr-Sn-Ti-O Films by On-Axis Reactive Sputtering,” IEEE. Elec. Dev. Lett., 19 (1998) 329-331. [25] C. L. Huang and C. S. Hsu, “Fabrication of ZnO-Doped Zr0.8Sn0.2TiO4 Thin Films by RF Magnetron Sputtering,” J. Vac. Soc. Technol. A, 18 (2000) 2327. [26] D. A. Chang, “Fabrication and Study of ZrTiO4-Based Dielectric Thin Films,” National Chiao Tung University, Dissertation for Doctor of Philosophy, (1995). [27] T. Nakagawa, J. Yamaguchi, T. Usuki, Y. Matsui, M. Okuyama and Y. Hamakawa, “Ferroelectric Properties of RF Sputtered PLZT Thin Film,” Jpn. J. Appl. Phys., 18 (1979) 897-902. [28] S.Y. Lee, “Design of Miniaturized Microwave Planar Filters with Extra Transmission Zeros,” National Cheng-Kung University, Dissertation for Doctor of Philosophy, (2000) [29] S. B. Cohn, “Parallel-Coupled Transmission-Line-Resonator Filters,“ IRE Trans. Microwave Theory Tech., MTT-6 (1958) 223-231. [30] E. G. Cristal and S. Frankel, “Hairpin-Line and Hybrid Hairpin-Line/Half-Wave Parallel-Coupled-line Filters,” IEEE Trans. Microwave Theory Tech., MTT-20 (1972) 719-728. [31] A. E. Williams, “A Four-Cavity Elliptic Waveguide Filter,” IEEE Trans. Microwave Theory Tech., MTT-18 (1970) 1109-1114. [32] R. Levy, “Filters with Single Transmission Zeros at Real or Imaginary Frequencies,” IEEE Trans. Microwave Theory Tech., MTT-24 (1976) 172-181. [33] J. S. Hong and M. J. Lancaster, “Couplings of Microstrip Square Open-Loop Resonators for Cross-Coupled Planar Microwave Filters,” IEEE Trans. Microwave Theory Tech., MTT-44 (1996) 2099-2109. [34] J. S. Hong and M. J. Lancaster, “Cross-Coupled Microstrip Hairpin-Resonator Filters,” IEEE Trans. Microwave Theory Tech., MTT-46 (1998) 118-122. [35] M. Makimoto and S. Yamashita, “Bandpass Filters using Parallel Coupled Stripline Stepped Impedance Resonators,” IEEE Trans. Microwave Theory Tech., MTT-28 (1980) 1413-1417. [36] M. Sagawa, K. Takahashi and M. Makimoto, “Miniaturized hairpin resonator Filters and Their Application to Receiver Front-End MIC’s,” IEEE Trans. Microwave Theory Tech., MTT-37 (1989) 1991-1997. [37] J. S. Hong and M. J. Lancaster, “Theory and Experiment of Novel Microstrip Slow-Wave Open-Loop Resonator Filters,” IEEE Trans. Microwave Theory Tech., MTT-45 (1997) 2358-2365. [38] S. B. Cohn, “Direct-Coupled-Resonator Filters,” Proceedings of the IRE, 45 (1957) 187-196. [39] E. G. Cristal, “Tapped-Line coupled Transmission Lines with Applications to Interdigital and Combline Filters,” IEEE Trans. Microwave Theory Tech., MTT-23 (1975) 1007-1012. [40] J. S. Wong, “Microstrip Tapped-Line Filter Design,” IEEE Trans. Microwave Theory Tech., MTT-27 (1979) 44-50. [41] T. Ishizaki and T. Uwano, “A Stepped Impedance Comb-Line Filter Fabricated by using Ceramic Lamination Technique,” 1994 IEEE MTTs International Microwave Symposium Digest, 2, pp. 617-620. [42] G. L. Matthaei, N. O. Fenzi, R. J. Forse and S. M. Rohlfing, “Hairpin-Comb Filters for HTS and Other Narrow-Band Applications,” IEEE Trans. Microwave Theory Tech., MTT-45 (1997) 1226-1231. [43] H. J. Lee, K. S. Hong, S. J. Kim and I. T. Kim, “Dielectric Properties of AB2O6 Compounds at Microwave Frequencies (A=Ca, Mg, Mn, Co, Ni, Zn, and B=Nb, Ta),” Jpn. J. Appl. Phys., 36 (1997) L1318. [44] W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “ Introduction to Ceramics,” 2nd edition, Wiley, New York, (1986). [45] G. Burns, “Solid State Physics,” (1985) 461. [46] B. D. Silvermann, “Microwave Absorption in cubic Strontium Titanate,” Phys. Rev., 125 (1962) 1921-1930. [47] C. H. Perry, D. J. McCarthy and G. Rupprecht, “Dielectric Dispersion of Some Pervoskite Zirconate,” Phys. Rev., 126 (1962) 1710-1721. [48] K. Wakino, M. Murata and H. Tamura, “Far-Infrared Reflection Spectra of Ba(Zn,Ta)O3-BaZrO3 Dielectric Resonator Material.” J. Am. Ceram. Soc., 69 (1986) 34-37. [49] W. E. Courtney, “Analysis and Evaluation of Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators,” IEEE Trans. Microwave Theory Tech., MTT-18 (1970) 476-485. [50] David K. Cheng, “Field and Wave Electromagnetics” 2nd edition, Addison Wesley, New York (1989) 406-410. [51] B.W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive in the Millimeter Range,” IEEE Trans. Microwave Theory Tech., MTT-16 (1985) 402-406. [52] Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Trans. Microwave Theory Tech., MTT-33 (1985) 586-592. [53] B. A. Movchan and A. V. Demshishin, “Fizika Metal, 28 (1969) 653. [54] J. A. Thornton, “The Microstructure of Sputtered- Deposited Coating,” J. Vac. Sci. Technol. A 4, (1986) 3059-3065. [55] R. C. Ross and R. Messier, “Microstructure and Properties of RF-Sputtered Amorphous Hydrogenated Silicon Film,” J. Appl. Phys., 52 (1981) 5329-5339. [56] R. Messier and R. C. Ross, “Evolution and Microstructure in Amorphous hydrogenated Silicon,” J. Appl. Phys., 53 (1982) 6220-5225. [57] R. Messier and R. C. Ross, “Revised Structure Zone Model for Thin Film Physical Structure,” J. Vac. Sci. Technol. A, 2 (1984) 500-503. [58] Y. P. Wang, “Fabrication and Properties of rf-Sputtered Dielectric (Ba,Sr)TiO3 Thin Films and ZnO Varistors,” National Chiao Tung University, Dissertation for Doctor of Philosophy, (1998). [59] S. M. Sze, Physics of Semiconductor Devices, 2nd, Wiley, New York, (1981). [60] J. O’Dwyer, Theory of Electrical Conduction and Breakdown in Solid Dielectric, Clarendon, Oxford, England, (1973). [61] P. Li and T. M. Lu, “Conduction Mechanism in BaTiO3 Thin Films,” Physical Review B, 43 (1991) 14261-14264. [62] T. Mihara and H. Watanbe, “Electronic Conduction Characteristics of Sol-Gel Ferroelectric Pb(Zr0.4Ti0.6)O3 Thin film Capacitors: Part-I,” Jpn. J. Appl. Phys., 34 (1995) 5664. [63] A. Grove, B. E. Deal, E. H. Show and C. T. Sah, “Investigation of Thermally Oxidised Silicon Surfaces Using Metal-Oxide-Semiconductor Structures,” Solid-State Electronics, 18 (1965) 145-163. [64] D. G. Ong, Modern MOS Technology: Process, Devices and Design, McGraw-Hill Inc., (1994). [65] G. Matthaei, L. Young and E. M. T Jones, “Microwave Filters, Impedance-Matching Networks and Coupling structures,” McGraw-Hill, New York, (1964). [66] J. R. Montejo and J. Zapata, “Full-Wave Design and Realization of Multicoupled Dual-Mode Circular Waveguide Filters,” IEEE Trans. Microwave Theory Tech., MTT-43 (1995) 1290-1297. [67] S. B. Cohn, “Dissipation Loss in Multi-Coupled Resonator Filters,” Proc. IRE, 47 (1957) 1342-1348. [68] T. Takada, S. F. Wang, S. Yoshikawa, S. J. Jang and R. E. Newnham, “Effect of Glass Additions on BaO-TiO2-WO3 Microwave Ceramics,” J. Am. Ceram. Soc., 77 (1994) 1909-1916. [69] H. Ikawa, A. Iwai, H. Kazayuki, Shimojima, K. Urabe and S. Udagawa, “Phase Transformation and Thermal Expansion of Zirconium and Hafnium Titinates and Their Solid Solutions,” J. Am. Ceram. Soc., 71 (1988) 120. [70] G. Wolfram, H.E. Gobel, “Existance Range, Structural and Dielectric Properties of ZrxTiySnzO4 Ceramics (x+y+z=2),” Mater. Res. Bull., 16 (1981) 1455. [71] R. Christoffersen, P.K. Davies, X. Wei, “Effect of Sn Substitution on Cation Ordering in (Zr1-xSnx)TiO4 Microwave Dielectric Ceramics,” J Am Ceram Soc 77 (1994) 1441. [72] T. Takada, S. F. Wang, S. Yoshikawa, S. J. Jang and R. E. Newnham, “Effect of Glass Additions on (Zr,Sn)TiO4 for Microwave Applications,” J. Am. Ceram. Soc., 77 (1994) 2485. [73] N. Michiura, T. Tatekawa, Y. Higuchi and H. Tamara, “Role of Donor and Acceptor Ions in the Dielectric Loss Tangent of (Zr0.8Sn0.2)TiO4 Dielectric Resonator Material,” J. Am. Chem. Soc., 78 (1995) 1793. [74] R. Kudesia, A.E. Mchale, R.L. Snyder, “Effect of La2O3/ZnO Additions on Microstructure and Microwave Dielectric Properties of Zr0.8Sn0.2TiO4 Ceramics with Additives,” J Am Ceram Soc 77 (1994) 3215. [75] C. L. Huang, M. H. Weng and H. L. Chen, “Effect of Additives on Microstructures and Microwave Dielectric Properties of (Zr,Sn)TiO4 Ceramics,” Mater. Chem. and Phys., 8996 (2001) 1-6. [76] C.L. Huang, M.H. Weng, “Effect of CuO Addition on (Zr,Sn)TiO4 Microwave Dielectric Ceramics,” Mater. Res. Bull., 35 (2000) 1881-1888. [77] C.L. Huang, C.C. You, B.C. Shen, “Microwave Dielectric Resonator Using Doped (Zr,Sn)TiO4 Ceramics ,” J Wave Mater Int., 10 (1995) 1-14. [78] S. Ananta, R. Brydson and N. W. Thomas, “Synthesis Formation and Characterisation of MgNb2O6 Powder in a Columbite-like Phase,” J. Euro. Ceram. Sco., 19 (1999) 355-362. [79] S. I. Hirno, Takashi, Hayashi, A. Hattori, “Chemical Processing and Microwave Characteristics of (Zr,Sn)TiO4 Microwave Dielectric,” J. Am. Ceram. Soc., 74 (1991) 1320. [80] V. Tolmer, G. Desqardin, J. Am. Ceram. Soc., 80 (1997) 1981. [81] W. S. Kim, T. H. Hong, E. S. Kim, and K. H. Yoon, “Microwave Dielectric Properties and Far Infrared reflectively Spectra of the (Zr0.8Sn0.2)TiO4 Ceramics with Additives,” Jpn. J. Appl. Phys., 37 (1998) 5367. [82] C. L. Huang and C. S. Hsu, “Improved High-Q Microwave Dielectric Resonator Using ZnO and WO3-doped Zr0.8Sn0.2TiO4 Ceramics.” Mater. Res. Bull., 36 (2001) 1985-1993. [83] C. L. Huang, M. H. Weng, C. C. Wu and C. C. Wei, "The Microwave Dielectric Properties and the Microstructures of V2O5 Modified Zr0.8Sn0.2TiO4 Ceramics," Jpn. J. Appl. Phys., 40, (2001) 698-702. [84] A. E. Mchale and R. S. Roth, “Low-Temperature Phase Relationships in the System ZrO2-TiO2,” J. Am. Ceram. Soc., 69 (1986) 827-832. [85] A. E. Mchale and R. S. Roth, “Investigation of the Phase Transition in ZrTiO4 and ZrTiO4-SnO2 Solid Solution,” J. Am. Ceram. Soc., 66 (1983) C-18-C-20. [86] S. J. Chae, S. S. Park and S. G. Yoon, “Characterization of (Pb1-xLax)TiO3 Thin Films Grown by Radio-Frequency Magnetron Sputtering and Their Electrical Properties,” Integrated Ferroelectrics, 10 (1995) 63-72. [87] Y. Fukuda, K. Aoki, K. Numata and A. Nishimura, “Current-Voltage Characteristics of Electron-Cyclotron-Resonance Sputter-Deposited SrTiO3 Thin Films,” Jpn. J. Appl. Phy., 33 (1994) 5255-5258. [88] G. I. Zysman and A. K. Johnson, “Coupled Transmission Line Networks in an Inhomogeneous Dielectric Medium,” IEEE Trans. Microwave Theory Tech., MTT-17 (1969) 753-759. [89] B. I. Bleaney and B. Bleaney, Electricity and Magnetism, 3rd edition, Oxford, (1976). [90] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, 1st edition, Wiley, (2001) [91] J. S. Hong and M. J. Lancaster, “Design of Highly Selective Microstrip Bandpass Filter With a Single Pair of Attenuation Poles at Finite Frequencies,” IEEE Trans. Microwave Theory Tech., MTT-48 (2000) 1098-1107. [92] R. M. Kurzok, “General Four-Resonator Filters at Microwave Frequencies,” IEEE Trans. Microwave Theory Tech., MTT-14 (1966) 295-296.
|