(3.236.100.6) 您好!臺灣時間:2021/04/24 01:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王宏洲
研究生(外文):Horng-Jou Wang
論文名稱:含拘束阻尼層圓板的振動與動態穩定性
論文名稱(外文):Vibration and Dynamic Stability of Circular Plates with Constrained Damping Layer
指導教授:陳聯文
指導教授(外文):Lien-Wen Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:109
中文關鍵詞:有限元素法動態穩定性振動圓板拘束阻尼層
外文關鍵詞:dynamic stabilityfinite element methodvibrationconstrained damping layercircular plate
相關次數:
  • 被引用被引用:2
  • 點閱點閱:125
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究含拘束阻尼層三明治圓板之自由振動、阻尼行為以及動態穩定特性。三明治圓板系統的數學統制方程式是以離散層環狀有限元素法推導而成,而該有限元素包含有橫向剪力的效應可同時適用於薄板與厚板的問題。圓板系統中等向與線性阻尼黏彈層的材料性質是以複數的型式來加以描述,並且是幾乎不可壓縮的。靜置與旋轉圓板系統的自由振動以及動態穩定性是本文所探討的重點。文中,旋轉和外加平面內負荷對圓板系統造成的初始應力分佈是藉由靜態問題中之平衡位移進一步求解,接著系統的幾何剛性矩陣是由該應力分佈對應變能之貢獻項獲得。導出具複數係數的統制方程式後,由複數型式的特徵值問題即可解得系統之自然頻率、模態損失因子以及動態穩定與不穩定區域間的邊界。
本文探討了數種參數,例如拘束層與阻尼層的材料性質和厚度、貼覆面積與旋轉速度等,對三明治圓板系統之自然頻率、模態損失因子以及動態不穩定區域的影響。從數值分析的結果顯示,較厚阻尼層或較大面積的貼覆並不見得可以得到較佳的阻尼特性。系統的模態損失因子將隨著旋轉速度的增大而變小。此外,在圓板系統上貼覆有拘束阻尼層將使系統變得更為穩定。
Vibration, damping and dynamic stability of sandwich circular plates with constrained damping layer are investigated. The governing equations of sandwich circular plate system are derived by a discrete layer annular finite element method. The transverse shear effects are included in the finite element, and it is convenient to handle the thick or thin plate problem. The material properties of isotropic, linear and incompressible viscoelastic materials in damping layer are described by complex representations. The free vibration and dynamic stability of stationary and rotational sandwich circular plates are the focus of this thesis. In the mathematical modeling, initial stress distribution induced by rotational and external load effects are obtained from the solutions of static problems and are taken into account in the strain energy expression to calculate the geometry stiffness matrices. The governing equations with complex coefficients are derived, and natural frequencies, modal loss factors and boundaries between dynamic stability region and instability region can be solved.
The effects of many design parameters, such as stiffness and thickness of the damping and constraining layers, treatment sizes and rotational speeds, are discussed. Numerical results are shown that the thicker damping layer or the larger treatment size is not always provided better damping properties of plate systems. The modal loss factors of systems are decreased with increasing of rotational speeds. Moreover, the effects of the constrained damping layer tend to stabilize circular plate systems.
摘要v
英文摘要vii
符號說明ix
表目錄xv
圖目錄xvii
第一章 緒論1
1-1 前言1
1-2 文獻回顧2
1-2-1 單材料圓/環板的自由振動2
1-2-2 靜態挫曲與動態穩定性6
1-2-3 表面阻尼貼覆7
1-2-4 具黏彈材料結構的動態穩定性10
1-3 本文架構10
第二章 靜置圓板系統的自由振動13
2-1 系統統制方程式的推導13
2-1-1 基本離散層有限元素13
2-1-2 應力-應變與應變-位移關係式15
2-1-3 元素的質量與剛性矩陣16
2-1-4 有限元素堆疊、邊界條件及求解17
2-2 數值結果與討論18
2-2-1 與文獻的比對和無因次化參數的引進18
2-2-2 阻尼層與拘束層材料特性的影響19
2-2-3 阻尼層與拘束層厚度的影響19
2-2-4 拘束阻尼貼覆尺寸的影響20
2-2-5 主圓板之外徑與厚度比的影響20
2-3 結論21
第三章 旋轉圓板系統的軸對稱自由振動35
3-1 系統統制方程式的推導35
3-1-1 軸對稱離散層環狀有限元素35
3-1-2 應力-應變與應變-位移關係式36
3-1-3 元素的質量與剛性矩陣37
3-1-4 有限元素組合、邊界條件與求解39
3-1-5 元素節點平衡位移向量的求得40
3-2 數值結果與討論40
3-2-1 與文獻的比對和無因次化參數的引進40
3-2-2 阻尼層與拘束層材料特性的影響41
3-2-3 阻尼層與拘束層厚度的影響42
3-2-4 邊界條件及局覆貼覆的效應43
3-3 結論43
第四章 靜置圓板系統的動態穩定性57
4-1 系統統制方程式的推導57
4-1-1 運動方程式57
4-1-2 外加負荷所致之元素節點平衡位移向量的求解59
4-1-3 動態穩定性分析59
4-2 結果與討論62
4-2-1 無因次化參數的定義以及和文獻的比對62
4-2-2 靜態與動態負荷的影響62
4-2-3 黏彈材料特性的效應63
4-2-4 拘束阻尼貼覆厚度與面積的影響63
4-3 結論64
第五章 旋轉圓板系統的動態穩定性75
5-1 數學推導75
5-1-1 有限元素方程式推導75
5-1-2 元素平衡位移向量的求解76
5-1-3 動態穩定性分析77
5-2 結果與討論80
5-2-1 靜態負荷對無因次化頻率的影響80
5-2-2 靜態與動態負荷對動態不穩定區的影響80
5-2-3 旋轉速度對動態不穩定區的影響81
5-3 結論81
第六章 綜合結論與建議87
6-1 綜合結論87
6-2 未來研究方向與建議88
參考文獻91
附錄A101
附錄B103
附錄C107
自述109
[ 1]Rao, S.S., Mechanical Vibrations, Addison-Wesley, New York (1995).
[ 2]Nashif, D., Jones, D.I.G., and Henderson, J.P., Vibration Damping, John Wiley & Sons, New York (1985).
[ 3]Ugural, A.C., Mechanics of Materials, McGraw-Hill, New York (1991).
[ 4]Bolotin, V.V., The Dynamic Stability of Elastic Systems, Holden-Day, San Francisco (1964).
[ 5]Leissa, A.W., "Recent research in plate vibrations: classical theory," The Shock and Vibration digest, Vol.9, pp.13-24 (1978).
[ 6]Leissa, A.W., "Plate vibration research, 1976-1980: classical theory," The Shock and Vibration digest, Vol.13, pp.11-22 (1981).
[ 7]Leissa, A.W., "Recent studies in plate vibrations: 1981-1985, part I. classical theory," The Shock and Vibration digest, Vol.19, pp.11-18 (1987).
[ 8]Mindlin, R.D., "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates," Journal of Applied Mechanics, Vol.18, pp.31-38 (1951).
[ 9]Mindlin, R.D., and Deresiewicz, H., "Thickness-shear and flexural vibrations of a circular disk," Journal of Applied Physics, Vol.25, pp.1329-1332 (1954).
[10]Rao, S.S., and Prasad, A.S., "Vibrations of annular plates including the effects of rotatory inertia and transverse shear deformation," Journal of Sound and Vibration, Vol.42, pp.305-324 (1975).
[11]Irie, T., Yamada, G., and Aomura, S., "Natural frequencies of Mindlin circular plates," Journal of Applied Mechanics, Vol.47, pp.652-655 (1980).
[12]Irie, T., Yamada, G., and Takagi, K., "Natural frequencies of thick annular plates," Journal of Applied Mechanics, Vol.49, pp.633-638 (1982).
[13]Hinton, E., "The dynamic transient analysis of axisymmetric circular plates by the finite element method," Journal of Sound and Vibration, Vol.46, pp.465-472 (1976).
[14]Raju, K.K., and Rao, G.V., "Axisymmetric vibrations of circular plates including the effects of geometric non-linearity, shear deformation and rotary inertia," Journal of Sound and Vibration, Vol.47, pp.179-184 (1976).
[15]Wilson, G.J., and Kirkhope, J., "Vibration analysis of axial flow turbine disks using finite elements," Journal of Engineering for Industry, Vol.98, pp.1008-1013 (1976).
[16]Mota Soares, C.A, and Petyt, M., "Finite element dynamic analysis of practical discs," Journal of Sound and Vibration, Vol.61, pp.547-560 (1978).
[17]Doong, J.L., Nonlinear analysis of thick plates, Ph.D. thesis, National Cheng Kung University, Taiwan (1983). (in Chinese)
[18]Hwang, J.R., Vibration and Stability of Thick Circular Plates, Ph.D. Thesis, National Cheng Kung University, Taiwan (1988). (in Chinese)
[19]Wah, T., "Vibration of circular plates," Journal of the Acoustical Society of America, Vol.34, pp.275-281 (1962).
[20]Ramaiah, G.K., and Vijayakumar, K., "Axisymmetric flexural vibrations of annular plates under uniform internal compressions," Journal of Sound and Vibration, Vol.57, pp.460-463 (1978).
[21]Ramaiah, G.K., "Flexural vibrations of annular plates under uniform in-plane compressive forces," Journal of Sound and Vibration, Vol.70, pp.117-131 (1980).
[22]Ramaiah, G.K., "Flexural vibrations and elastic stability of annular plates under uniform in-plane tensile forces along the inner edge," Journal of Sound and Vibration, Vol.72, pp.11-23 (1980).
[23]Majima, O., and Hayashi, K., "Elastic buckling and flexural vibration of annular plates under axisymmetric in-plane forces," Bulletin JSME, Vol.27, pp.2088-2094 (1984).
[24]Rosen, A., and Libai, A., "Transverse vibrations of compressed annular plates," Journal of Sound and Vibration, Vol.40, pp.149-153 (1975).
[25]Rosen, A., and Libai, A., "Stability and behavior of an annular plates under uniform compression," Experimental Mechanics, Vol.16, pp.461-467 (1976).
[26]Mei, C., "Free vibrations of circular membranes under arbitrary tension by the finite-element method," Journal of the Acoustical Society of America, Vol.43, pp.693-700 (1969).
[27]Narita, Y., "Vibration and stability of circular plates under partially distributed or concentrated in-plane loads," Journal of Applied Mechanics, Vol. 53, pp.549-552 (1985).
[28]Narita, Y., "The effect of non-uniform in-plane loading on vibrations of circular plates," Journal of Sound and Vibration, Vol.104, pp.165-168 (1986).
[29]Rim, K.H., and Lee, C.W., "Free vibration of outer-clamped annular plates subjected to arbitrary in-plane force," Journal of Sound and Vibration, Vol.166, pp.237-253 (1993).
[30]Chen, L.W., and Doong, J.L., "Vibrations of an initially stressed transversely isotropic circular thick plates," International Journal of Mechanical Science, Vol.26, pp.252-263 (1984).
[31]Doong, J.L., and Chen, L.W., "Axisymmetric vibration of an initially stressed bimodulus thick circular plates," Journal of Sound and Vibration, Vol.94, pp.461-468 (1984).
[32]Chen, L.W., and Hwang, J.R., "Vibrations of initially stressed thick circular and annular plates based on a high-order plate theory," Journal of Sound and Vibration, Vol.122, pp.79-95 (1988).
[33]Chen, L.W., and Juang, D.P., "Axisymmetric vibration of bimodulus thick circular and annular plates," Computers and Structures, Vol.25, pp.759-764 (1987).
[34]Chen, L.W., and Hwang, J.R., "Finite element analysis of thick annular plates under internal forces," Computers and Structures, Vol.32, pp.63-68 (1989).
[35]Chen, L.W., and Chen, C.C., "Asymmetric vibration and dynamic stability of bimodulus thick annular plates," Computers and Structures, Vol.31, pp.1013-1022 (1989).
[36]Chen, L.W., and Doong, J.L., "Large-amplitude vibration of an initially stressed thick circular plate," American Institute of Aeronautics and Astronautics Journal, Vol.9, pp.1317-1324 (1983).
[37]Lamb, H, and Southwell, R.V., "The vibrations of a spinning disk," Proceedings of the Royal Society of London, Vol.99, pp.272-280 (1921).
[38]Southwell, R.V., "On the free transverse vibration of a uniform circular disk clamped at its center; and on the effects of rotation," Proceedings of the Royal Society of London, Vol.101, pp.133-153 (1922).
[39]Eversman, W., and Dodson, R.O., "Free vibration of a centrally clamped spinning circular disk," American Institute of Aeronautics and Astronautics Journal, Vol.7, pp.2010-2013 (1969).
[40]Barasch, S., and Chen, Y., "On the vibration of a rotating disk," Journal of Applied Mechanics, Vol.39, pp.1143-1144 (1972).
[41]Sinha, S.K., "Determination of natural frequencies of a thick spinning annular disk using a Rayleigh-Ritz''s trial function," Journal of the Acoustical Society of America, Vol.81, pp.357-369 (1987).
[42]Mignolet, M.P., Eick, C.D., and Harish, M.V., "Free vibration of flexible rotating disks," Journal of Sound and Vibration, Vol.196, pp.537-547 (1996).
[43]Pardoen, G.C., "Deflection function for the symmetrical bending of circular plates," American Institute of Aeronautics and Astronautics Journal, Vol.10, pp.239-240 (1972).
[44]Pardoen, G.C., "Deflection function for the asymmetrical bending of circular plates," American Institute of Aeronautics and Astronautics Journal, Vol.11, pp.1341-1342 (1973).
[45]Pardoen, G.C., "Static, vibration and buckling analysis of axisymmetric circular plates using finite elements," Computers and Structures, Vol.3, pp.355-375 (1973).
[46]Pardoen, G.C., "Asymmetric bending of circular plates using the finite element method," Computers and Structures, Vol.5, pp.197-202 (1975).
[47]Pardoen, G.C., "Asymmetric vibration and stability of circular plates," Computers and Structures, Vol.9, pp.89-95 (1978).
[48]Kirkhope, J., and Wilson, G.J., "Vibration of circular and annular plates using finite elements," International Journal for Numerical Methods in Engineering, Vol.4, pp.181-193 (1972).
[49]Kirkhope, J., and Wilson, G.J., "Vibration and stress analysis of thin rotating discs using annular finite elements," Journal of Sound and Vibration, Vol.44, pp.461-474 (1976).
[50]Kennedy, W., and Gorman, D., "Vibration analysis of variable thickness discs subjected to centrifugal and thermal stresses," Journal of Sound and Vibration, Vol.53, pp.83-101 (1977).
[51]Nigh, G.L., Olson, M.D., "Finite element analysis of rotating disks," Journal of Sound and Vibration, Vol.77, pp.61-78 (1981).
[52]Good, J.K., and Lowery, R.L., "The finite element modeling of the free vibration of a read/write head floppy disk system," Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol.107, pp.329-333 (1985).
[53]Liu, C.F., Lee, J.F., and Lee, Y.T., "Axisymmetric vibration analysis of rotating annular plates by a 3D finite element," International Journal of Solids and Structures, Vol.37, pp.5813-5827 (2000).
[54]Shen, I.Y., "Vibration of Flexible Rotating Disks," The Shock and Vibration Digest, Vol.32, pp.267-272 (2000).
[55]Bryan, G.H., "Buckling of plates," Proceedings of the London Mathematical Society, Vol.22, pp.54-67 (1891).
[56]Yamaki, N., "Buckling of a thin annular plate under uniform compression," Journal of Applied Mechanics, Vol.25, pp.267-273 (1958).
[57]Ku, A.B., "The elastic buckling of circular plates," International Journal of Mechanical Science, Vol.20, pp.593-597 (1978).
[58]Pardoen, G.C., "Vibration and buckling analysis of axisymmetric polar orthotropic circular plates," Computers and Structures, Vol.4, pp.951-960 (1974).
[59]Majumdar, S., "Buckling of a thin annular plate under uniform compression," American Institute of Aeronautics and Astronautics Journal, Vol.9, pp.1701-1707 (1971).
[60]Doong, J.L., and Chen, L.W., "Buckling of a thick circular plate," Journal of the Chinese Society of Mechanical Engineers, Vol.5, pp.107-112 (1984).
[61]Juang, D.P., and Chen, L.W., "Axisymmetric buckling of bimodulus thick circular plates," Computers and Structures, Vol.25, pp.175-182 (1987).
[62]Chen, L.W., and Chen, C.C., "Asymmetric buckling of bimodulus thick annular plates," Computers and Structures, Vol.29, pp.1063-1074 (1988).
[63]Evan-Iwanowski, R.M., "On the parametric response of structures," Journal of Applied Mechanics, Vol. 18, pp. 699-702 (1965).
[64]Brown, J.E., Hutt, J.M., and Salama, A.E., "Finite element solution to dynamic stability of bars," American Institute of Aeronautics and Astronautics Journal, Vol. 6, pp. 1423-1425 (1968).
[65]Iwatsubo, T., Saigo, M., and Sugiyama, Y., "Parametric instability of clamped-clamped and clamped-simply supported columns under periodic axial load," Journal of Sound and Vibration, Vol. 30, pp. 65-77 (1973).
[66]Evan-Iwanowski, R.M., Resonance Oscillations in Mechanical Systems, Elsevier, Amsterdam (1976).
[67]Thomas, J., and Abbas, B.A.H., "Dynamic stability of Timoshenko beams by finite element method," Journal of Engineering for Industry, Vol. 98, pp. 1145-1151 (1976).
[68]Shastry, B.P., and Rao, G.V., "Dynamic stability of bars considering shear deformation and rotatory inertia," Computers and Structures, Vol. 19, pp. 823-827 (1984).
[69]Bodner, V.A., "The stability of plates subjected to longitudinal periodic forces," Priklandnaia Matematika I Mekhanika, Vol.2, pp.87-104 (1938).
[70]Tani, J., and Nakamura, T., "Dynamic stability of annular plates under periodic radial loads," Journal of the Acoustical Society of America; Vol.64, pp.827-831 (1978).
[71]Tani, J., and Nakamura, T., "Parametric resonance of annular plates under pulsating uniform internal and external loads with different periods," Journal of Sound and Vibration, Vol.60, pp.289-297 (1978).
[72]Tani, J., and Nakamura, T., "Dynamic stability of annular plates under pulsating torsion," Journal of Applied Mechanics, Vol.47, pp.595-600 (1980).
[73]Tani, J., "Dynamic stability of orthotropic annular plates under pulsating torsion," Journal of the Acoustical Society of America, Vol.69, pp.1688-1694 (1981).
[74]Tani, J., and Doki, H., "Dynamic stability of orthotropic annular plates under pulsating radial loads," Journal of the Acoustical Society of America, Vol.72, pp.845-850 (1982).
[75]Chen, L.W., and Juang, D.P., "Axisymmetric dynamic stability of a bimodulus thick circular plate," Computers and Structures, Vol.26, pp.933-939 (1987).
[76]Chen, L.W., and Hwang, J.R., "Axisymmetric dynamic stability of transversely isotropic Mindlin circular plates," Journal of Sound and Vibration, Vol.121, pp.307-315 (1988).
[77]Chen, L.W., and Hwang, J.R., "Axisymmetric dynamic stability of polar orthotropic thick circular plates," Journal of Sound and Vibration, Vol.125, pp.555-563 (1988).
[78]Chen, L.W., Hwang, J.R., and Doong, J.L., "Asymmetric dynamic stability of thick annular plates based on a high-order plate theory," Journal of Sound and Vibration, Vol.130, pp.425-437 (1989).
[79]Mead, D.J., "The effect of certain damping treatments on the responses of idealized aeroplane structures excited by noise," Air Force Materials Laboratory Report, AFML-TR-65-284, WPAFB (1965).
[80]Kerwin, E.M., "Damping of flexural waves by a constrained viscoelastic layer," Journal of the Acoustical Society of America, Vol.31, pp.952-962 (1959).
[81]Ross, D., Ungar, E.E., and Kerwin, E.M., "Damping of plate flexural vibrations by means of viscoelastic laminate," Structure Damping, Sec.3, pp.49-88 (1959).
[82]DiTaranto, R.A., "Theory of vibratory bending for elastic and viscoelastic layered finite-length beams," Journal of Applied Mechanics, Vol.32, pp.881-886 (1965).
[83]DiTaranto, R.A., "Composite damping of vibrating sandwich beams," Journal of Engineering for Industry, Vol.89B, pp.633-638 (1967).
[84]Mead, D.J., and Markus, S., "The forced vibrations of a three-layer damped sandwich beam with arbitrary boundary conditions," Journal of Sound and Vibration, Vol.10, pp.163-175 (1969).
[85]Mead, D.J., and Markus, S., "Loss factors and resonant frequencies of damped sandwich beams," Journal of Sound and Vibration, Vol.12, pp.99-112 (1970).
[86]Lu, Y.P., and Douglas, B.E., "On the forced vibrations of three-layer damped sandwich beams," Journal of Sound and Vibration, Vol.32, pp.513-516 (1974).
[87]Douglas, B.E., and Yang, J.C.S., "Transverse compressional damping in the vibratory response of elastic-viscoelastic-elastic beams," American Institute of Aeronautics and Astronautics Journal, Vol.16, pp.925-930 (1978).
[88]Mead, D.J., "The damping properties of elastically supported sandwich plates," Journal of Sound and Vibration, Vol.24, pp.275-295 (1972).
[89]Rao, Y.V.K.S., and Nakra, B.C., "Theory of vibratory bending of unsymmetrical sandwich plates," Archives of Mechanics, Vol.25, pp.213-225 (1973).
[90]Rao, Y.V.K.S., and Nakra, B.C., "Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores," Journal of Sound and Vibration, Vol.34, pp.309-326 (1974).
[91]Ioannides, E., and Grootenhuis, P., "A finite element analysis of the harmonic response of damped three-layer plates," Journal of Sound and Vibration, Vol. 67, pp.203-218 (1979).
[92]Johnson, C.D., and Kienholz, D.A., "Finite element prediction of damping in structures with constrained viscoelastic layers," American Institute of Aeronautics and Astronautics Journal, Vol.20, pp.1284-1290 (1982).
[93]He, J.F., and Ma, B.A., "Analysis of flexural vibration of viscoelastically damped sandwich plates," Journal of Sound and Vibration, Vol.126, pp.37-47 (1988).
[94]Vinson, J.R., and Chou, T.W., Composite Materials and Their Use in Structures, Applied Science Publishers, London (1975).
[95]Craig, T.J., and Dawe, D.J., "Flexural vibration of symmetrically laminated composite rectangular plates including transverse shear effects," International Journal of Solids and Structures, Vol.22, pp.155-167 (1986).
[96]Soldatos, K.P., "Influence of thickness shear deformation on free vibrations of rectangular plates, cylindrical panels and cylinders of antisymmetric angle-ply construction," Journal of Sound and Vibration, Vol.119, pp.111-137 (1987).
[97]Rikards, R., Chate, A., and Barkanov, E., "Finite element analysis of damping the vibrations of laminated composites," Computers and Structures, Vol.47, pp.1005-1015 (1993).
[98]Cupial, P., and Niziol, J., "Vibration and damping analysis of a three-layered composite plate with a viscoelastic mid-layer," Journal of Sound and Vibration, Vol.183, pp.99-114 (1995).
[99]Jones, I.W., and Salerno, V.L., "The effect of structural damping on the forced vibrations of cylindrical sandwich shells," Journal of Engineering for Industry, Vol.88, pp.318-324 (1966).
[100]Pan, H.H., "Axisymmetrical vibrations of a circular sandwich shell with a viscoelastic core layer," Journal of Sound and Vibration, Vol.9, pp.338-348 (1969).
[101]Alam, N., and Asnani, N.T., "Vibration and damping analysis of a multilayered cylindrical shell, Part I: Theoretical analysis," American Institute of Aeronautics & Astronautics Journal, Vol.22, pp.803-810 (1984).
[102]Alam, N., and Asnani, N.T., "Vibration and damping analysis of a multilayered cylindrical shell, Part II: Numerical results analysis," American Institute of Aeronautics and Astronautics Journal, Vol.22, pp.975-981 (1984).
[103]Ramesh, T.C., and Ganesan, N., "Vibration and damping analysis of cylindrical shells with a constrained damping layer," Computers and Structures, Vol.46, pp.751-758 (1993).
[104]Ramesh, T.C., and Ganesan, N., "Orthotropic cylindrical shells with a viscoelastic core: a vibration and damping analysis," Journal of Sound and Vibration, Vol.175, pp.535-555 (1994).
[105]Ramesh, T.C., and Ganesan, N., "Finite element analysis of conical shells with a constrained viscoelastic layer," Journal of Sound and Vibration, Vol.171, pp.577-601 (1994).
[106]Saravanan, C., Ganesan, N., and Ramanurti, V., "Vibration and damping analysis of multilayered fluid filled cylindrical shells with constrained viscoelastic damping using modal strain energy method," Computers and Structures, Vol.75, pp.395-417 (2000).
[107]Saravanan, C., Ganesan, N., and Ramanurti, V., "Study on energy dissipation pattern in vibrating fluid filled cylindrical shells with a constrained viscoelastic layer," Computers and Structures, Vol.75, pp.575-591 (2000).
[108]Roy, P.K., and Ganesan, N.A., "Vibration and damping analysis of circular plates with constrained damping layer treatment," Computers and Structures, Vol.49, pp.269-274 (1993).
[109]Yu, S.C., and Huang, S.C., "Vibration of a three-layered viscoelastic sandwich circular plate," International Journal of Mechanical Sciences, Vol.43, pp.2215-2236 (2001).
[110]Seubert, S.L., Anderson, T.J., and Smelser, R.E., "Passive damping of spinning disks," Journal of Vibration and Control, Vol.6, pp.715-725 (2000).
[111]Nokes, D.S., and Nelson, F.C., "Constrained layer damping with partial coverage," Shock and Vibration Bulletin, Vol.38, pp.5-10 (1968).
[112]Lall, A.K., Asnani, N.T., and Nakra, B.C., "Vibration and damping analysis of rectangular plate with partially covered constrained viscoelastic layer," Journal of Sound, Acoustics, Stress, and Reliability in Design, Vol.109, pp.241-247 (1987).
[113]Lall, A.K., Asnani, N.T., and Nakra, B.C., "Damping analysis of partially covered sandwich beams," Journal of Sound and Vibration, Vol.123, pp.247-259 (1988).
[114]Dewa, H., Okada, Y., and Nagai, B., "Damping characteristics of flexural vibration for partially covered beams with constrained viscoelastic layers," JSME International Journal Series III, Vol.34, pp.210-217 (1991).
[115]Levy, C., and Chen, Q., "Vibration analysis of a partially covered, double sandwich-type, cantilever beam," Journal of Sound and Vibration, Vol.177, pp.15-29 (1994).
[116]Chen, L.H., and Huang, S.C., "Vibration of a cylindrical shell with partially constrained layer damping (CLD) treatment," International Journal of Mechanical Science, Vol.41, pp.1485-1498 (1999).
[117]Kung, S.W., and Singh, R., "Vibration analysis of beams with multiple constrained layer damping patches," Journal of Sound and Vibration, Vol.212, pp.781-805 (1998).
[118]Kung, S.W., and Singh, R., "Complex eigensolutions of rectangular plates with damping patches," Journal of Sound and Vibration, Vol.216, pp.1-28 (1998).
[119]Kung, S.W., and Singh, R., "Development of approximate methods for the analysis of patch damping design concepts," Journal of Sound and Vibration, Vol.219, pp.785-812 (1999).
[120]Stevens, K.K., "On the parametric excitation of a viscoelastic column," American Institute of Aeronautics and Astronautics Journal, Vol.4, pp.2111-2116 (1966).
[121]Stevens, K.K., "Transverse vibration of a viscoelastic column with initial curvature under periodic axial load," Journal of Applied Mechanics, Vol.36, pp.814-818 (1969).
[122]Stevens, K.K., and Evan-Iwanowski, R.M., "Parametric resonance of viscoelastic columns," International Journal of Solids and Structures, Vol.5, pp.755-765 (1969).
[123]Dost, S., and Glockner, P.G., "On the dynamic stability of viscoelastic perfect columns," International Journal of Solids and Structures, Vol.18, pp.587-596 (1982).
[124]Cederbaum, G., and Mond, M., "Stability properties of a viscoelastic column under a periodic force," Journal of Applied Mechanics, Vol.59, pp.16-19 (1992).
[125]Cederbaum, G., and Mond, M., "On the dynamic stability of viscoelastic columns," Journal of Sound and Vibration, Vol.222, pp.329-330 (1999).
[126]Fung, R.F., Huang, J.S., and Chen, W.H., "Dynamic stability of a viscoelastic beam subjected to harmonic and parametric excitations simultaneously," Journal of Sound and Vibration, Vol.198, pp.1-16 (1996).
[127]Aboudi, J., Cederbaum, G., and Elishakoff, I., "Stability of viscoelastic plates by Lyapunov exponent," Journal of Sound and Vibration, Vol.139, pp.459-468 (1990).
[128]Cederbaum, G., Aboudi, J., and Elishakoff, I., "Dynamic stability of viscoelastic composite plates via the Lyapunov exponents," International Journal of Solids and Structures, Vol.28, pp.317-327 (1991).
[129]Touati, D., and Cederbaum, G., "Dynamic stability of nonlinear viscoelastic plates," International Journal of Solids and Structures, Vol.31, pp.2367-2376 (1994).
[130]Ilyasov, M.H., and Aköz, A.Y., "The vibration and dynamic stability of viscoelastic plates," International Journal of Engineering Science, Vol.38, pp.695-714 (2000).
[131]Lin, R.M., and Lim, M.K., "Complex eigensensitivity-based characterization of structures with viscoelastic damping," Journal of the Acoustical Society of America, Vol.100, pp.3182-3191 (1996).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔