(3.227.235.183) 您好!臺灣時間:2021/04/20 09:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許耀臣
研究生(外文):Yao-Cnen Hsu
論文名稱:304L不銹鋼電漿電弧銲接件在不同溫度及應變速率下的機械性質與破壞行為
論文名稱(外文):The Mechanical Properties and Fracture Behaviour of Plasma Arc Welded 304L Stainless Steel under Different Temperature and Strain Rate Conditions.
指導教授:李偉賢李偉賢引用關係
指導教授(外文):Woei-Shyan Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:108
中文關鍵詞:溫度電漿電弧銲接麻田散鐵304L不□鋼應變速率
外文關鍵詞:strain ratetemperaturemartensite304L stainless steelPAW
相關次數:
  • 被引用被引用:5
  • 點閱點閱:285
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:77
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討304L不□鋼電漿電弧銲接件在不同溫度與應變速率下的機械性質與破壞行為。經固溶化處理的304L不□鋼以定電流及脈衝電流兩種模式進行對頭銲接後,加工成標距長度內包含銲道、熱影響區及母材的板狀拉伸試件。試件以萬能材料試驗機測試,受測溫度分別為-100℃、-50℃、25℃、300℃、500℃與應變速率為10-3s-1、10-2s-1、10-1s-1。並使用肥粒鐵分析儀(Ferrite Scope)及OM技術,界定變形後試件之麻田散鐵生成量,以釐清其與機械性質之相關性。最後藉由SEM以觀察試件的破壞形貌特徵及機制。
實驗結果顯示,304L不□鋼銲接件的機械性質受溫度與應變速率的影響非常顯著,其塑流應力值隨著溫度的降低及應變速率的增加而上升,在不同的溫度與應變速率條件下,材料之加工硬化率、應變速率敏感性、熱活化體積、破斷伸長量皆有明顯的變化。磁性量測顯示,兩模式銲接件的母材在 -100℃、-50℃及25℃變形後,皆會有麻田散鐵生成,其生成量隨著溫度的降低而增加。在塑性變形過程中,麻田散鐵的生成造成塑流應力值、加工硬化率及破斷伸長量的增加,而在-50℃及-100℃時,其效應尤其強烈。比較定電流與脈衝電流銲接件的機械性質,得知相同條件下,脈衝電流銲接件有較高的塑流應力值、加工硬化率、應變速率敏感性係數,較低的熱活化體積、破斷伸長量及麻田散鐵生成量。
不論是定電流或脈衝電流銲接件,在-100℃、-50℃及25℃時,各個應變速率下的拉伸測試,均斷於銲道,而在300℃、500℃時,則皆斷於母材,由斷裂試件斷口之頸縮外觀及斜向破壞與試件斷口上之韌窩(dimple)形貌,判斷定電流、脈衝電流銲接件在實驗各個條件下的破壞模式皆屬延性破壞,且韌窩之大小隨溫度與應變速率之提高而增大,比較定電流與脈衝電流銲接件的韌窩大小,相同條件下之脈衝電流銲接件的韌窩尺寸比較大。
藉由Zerilli-Armstrong 構成方程式以及實驗所得的材料參數,可以精確地描述304L不□鋼定電流及脈衝電流銲接件在測試條件下之塑性行為,其可作為工程分析與模擬之用。
The study investigates the mechanical properties and fracture behavior of the plasma arc welded 304L stainless steel under different temperature and strain rate conditions. Annealed 304L stainless steel is welded by continuous current (CC) and pulsed current (PC) plasma arc welding, then machined as rectangular tensile specimens which will be tested at strain rate of 10-3s-1, 10-2s-1 and 10-1s-1, and at temperature of -100℃, -50℃, 25℃, 300℃ and 500℃ with a MTS machine. A ferritescope is used to determine the amount of magnetic martensite after plastic deformation. The experimental results show that temperature and strain rate have an obvious effect on the mechanical properties and fracture behavior of the material. Flow stress increases with increasing strain rate, but decreases with increasing temperature. The work hardening rate, strain rate sensitivity, activation volume and fracture elongation change with strain, strain rate and temperature levels. Microscopic observations show that martensitic transformation increases with decreasing temperature and strain rate. The formation of martensite during plastic deformation causes an increase in flow stress, work hardening rate, and fracture elongation. And its effect is especially strong at temperature of -100℃and -50℃. The flow stress, work hardening rate, strain rate sensitivity of PC weldments are higher than those of CC weldments in the same condition, but activation volume, fracture elongation, and the formation of martensite are lower. All tested specimens rupture at weldment between 25℃and -100℃, and at base metal above 25℃. SEM observations of the ruptured specimen surfaces reveal dimple morphology appears, the dimple size increases with increasing temperature and strain rate. Compared to the dimple size of CC and PC weldments indicate that CC weldments exist smaller dimple in the same condition. The Zerrilli-Armstrong constitutive equation with the experimentally determined specific material parameters successfully describes the flow stress of the tested weldments for the range of test conditions.
ABSTRACT III
誌謝 IV
總目錄 V
表目錄 IX
圖目錄 X
圖目錄 X
符號說明 XVI
符號說明 XVI
第一章 前言 1
第二章 理論與文獻回顧 3
2-1電漿電弧銲接法 3
2-1-1簡介 3
2-1-2原理 3
2-2銲接參數 4
2-2-1定電流電漿電弧銲接 4
2-2-2脈衝電流電漿電弧銲接 4
2-3 銲接理論 6
2-3-1銲道與熱影響區 6
2-3-2組成過冷理論與凝固模式 6
2-3-3沃斯田鐵不□鋼之凝固過程 8
2-4肥粒鐵組織對沃斯田鐵不□鋼的影響 9
2-5麻田散鐵的影響 10
2-6材料塑性變形行為之特性 12
2-7材料變形構成方程式 13
2-8理論推導 15
第三章 實驗方法與步驟 23
3-1 實驗方法 23
3-1-1 304L不□鋼之熱處理 23
3-1-2 實驗流程 23
3-2實驗儀器與設備 23
3-2-1電漿銲接設備 23
3-2-2拉伸試驗機 24
3-2-3磁性量測設備 24
3-2-4光學顯微鏡(OM) 24
3-2-5掃瞄式電子顯微鏡(SEM) 24
3-3實驗方法與步驟 24
3-3-1銲接檢查 24
3-3-2銲接試件備製 25
3-3-3電漿電弧銲接的參數設計 25
3-3-4拉伸試件取樣及試件尺寸 26
3-3-5微硬度實驗 26
3-3-6肥粒鐵相量測 26
3-3-7拉伸試驗 26
3-3-8試件金相之觀察(OM) 27
3-3-9破斷面之觀察(SEM) 28
第四章 實驗結果與討論 34
4-1變形前304L不□鋼銲接件之基本性質分析 34
4-1-1肥粒鐵含量分析 34
4-1-2金相分析 34
4-1-3微硬度值分析 35
4-2變形後304L不□鋼銲接件機械性質分析 36
4-2-1應力-應變曲線圖之分析 36
4-2-2加工硬化率之分析 37
4-2-3應變速率敏感性之分析 38
4-2-4熱活化體積之分析 39
4-2-5溫度效應之分析 40
4-2-6破斷伸長量之分析 40
4-2-7磁性增加量之分析 41
4-3麻田散鐵的證明與對機械性質之影響 42
4-3-1 麻田散鐵生成的證明 42
4-3-2 麻田散鐵對機械性質的影響 43
4-4材料變形構成方程式 45
4-5破壞行為與特徵分析 46
第五章 結論 100
參考文獻 102
自述 108
1.W. S. Lee and G. W. Yeh, “The Plastic Deformation Behaviour of AISI 4340 Alloy Steel Subjected to High Temperature and High Srain Rate Loading Conditions”, Journal of Materials Processing Technology, pp. 224-234, 1997.
2.W. S. Lee and C. F. Lin, “Impact Property and Mircostructure Evolution of 304L Stainless Steel”, Materials Science and Engineering, Vol. A308, pp. 124-135, 2001.
3.W. S. Lee and C. F. Lin, “The Morphologies and Characteristics of Impact-Induced Martensite in 304L Stainless Steel”, Scripta Materialia, Vol 43, pp. 777-782, 2000.

4.S. L. Semiatin, J. H. Holbrook, “Plastic Flow Phenomenology of 304L Stainless Steel”, Metallurgical Transactions, Vol. 14A, pp. 1681-1695, 1983.
5.S. Venugopal, S. L. Mannan and Y. V. R. K. Prasad, “Influence of Strain Rate and State-of-Stress on the Formation of Ferrite in Stainless Steel Type AISI 304 During Hot Working”, Materials Letters, pp. 161-165, 1996.

6.O. Kamiya, K. Kumagai, “Effect of Microstructure on Impact Fracture Behavior of SUS304L SAW Joint at Low Temperature”, Journal of Materials Science, pp. 2017-2024, 1990.
7.M. P. Miller, D. L. McDowell, “The Effect of Stress-State on the Large Strain Inelastic Deformation Behavior of 304L Stainless Steel”, Journal of Engineering Materials and Technology, Vol. 118, pp. 28-36, 1996.
8.M. G. Stout, P. S. Follansbee, “Strain Rate Sensitivity, Strian Hardening, and Yield Behavior of 304L Stainless Steel”, Journal of Engineering Materials and Technology, Vol. 108, pp. 344-353, 1986.
9.黃錦鐘,”不□鋼的銲接(五)-不□鋼的高能量密度銲接”,機械月刊,23卷,6期,頁378-383,民國86年6月。
10.蔡履文,陳鈞,鄭勝文,“穿孔模態電漿銲接”,銲接與切割, 3卷,3期,頁1-19,民國82年。
11.E. Craig, “The Plasma Arc Process-A Review”, Welding Journal, Vol. 67, No. 2, pp. 19-25, 1988.
12.H. B. Cary, Modern Welding Technology, Prentice Hall, 1979.
13.J. Martikainen, “Conditions for Achieving High-Quality Welds in The Plasma-Arc Keyhole Welding of Structural Steels”, Journal of Materials Processing Technology, Vol. 52, pp. 68-75, 1995.
14.王振欽,銲接學,登文書局,民國74年。
15.姜志華,蔡金峯,銲接冶金概論,徐氏基金會,民國76年。
16.曾光宏,周長彬,”銲接參數對304不□鋼變形之影響”,機械技術雜誌,頁 144-150,民國88年。
17.黃錦鐘,”不□鋼的銲接(一)-不□鋼的銲接凝固現象”,機械月刊,23卷,2期,頁227-233,民國86年。
18.J. A. Brooks and A. W. Thompson, “Microstructural Development and Solidification Cracking Susceptibility of Austenitic Stanless Steel Welds”, International Materials Reviews, Vol. 36, No. 1, pp. 16-37, 1991.
19.T. Takalo, N. Suutala and T. Moisio, “ Austenitic Solidification Mode in Austenitic Stainless Steel Welds”, Metallurgical Transactions A, Vol. 10A, pp. 1173-1181, 1979.
20.P. Bilmes and A. Gonzalez, “Effect of Ferrite Solidification Morphology of Austenitic Stainless Steel Weld Metal on Properties of Welded Joints”, Welding International, Vol.10, pp. 18-29, 1996.
21.S. F. Peterson, M. C. Mataya, and D. K. Matlock, “The Formability of Austenitic Stainless Steels”,Journal of Metals, pp. 54-58, 1997.
22.J. Y. Choi and W. Jin, “Strain Induced Martensite Formation and its Effect on Strain Hardening Behaviour in the Cold Drawn 304 Austenitic Stainless Steels” Scripta Materialia, Vol. 36, No. 1, pp. 99-107, 1997.
23.S. Ganesh S. Raman, K. A. Padmanabhan, “Tensile Deformation-induced Martensitic Transformation in AISI 304LN Austenitic Stainless Steel”, Journal of Materials Science Letteres, pp. 389-392, 1994.
24.B. Cina, “A Transitional HCP Phase in the Transformaion in Certain Fe-base Alloys”, Acta Metallurgical, Vol. 6, pp. 748-762, 1958.
25.F. Lecroisey, A. Pineau, “Martensitic Transformation Induced by Plastic Deformaion in the Fe-Ni-Cr-C System”,Metallurgical Transactions, Vol. 3, pp. 387-396, 1972.
26.S. S. Kecker, M. G. Stout, K. P. Staudhammer, and J. L. Smith, “Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel:Part 1. Magnetic Measurement and Mechanical Behavior”, Metallurgical Transactions, Vol. 13A, pp. 619-626, 1982.
27.R. Lagneborg, “The Martensite Transformation in 18%Cr-8%Ni Steels”, Metallurgical Transactions, Vol. 12, pp. 823-843, July 1994.
28.X. F. Fang, W. Dahl, “Strian Hardening and Transformation Mechanism of Deformation-Induced Martensite Transformation in Metastable Austenitic Stainless Steel”, Materials Science and Engineering, pp. 189-198, 1991.
29.G. Thomas, “Structure and Properties of Thermal-Mechanically Treated 304 Stainless Steel”, Metallurgical Transactions, Vol. pp. 1583-1579, 1970.
30.J. A. Klostermann and W. G. Burgers, “Surface Martensite in Iron-Nickel”, Acta Metallurgical, Vol. 12, pp. 355-360, 1964.
31.T. Suzuki, H. Kojima, and M. Ichihara,”An Experimental Study of The Martensite Nucleation and Growth in 18/8 Stainless Steel”, Acta Metallurgical, Vol. 25, pp. 1151-1162, 1977.
32.J. R. Loureiro, “Effect of Heat Input on Plactic Deformation of Undermatched Welds”, Journal of Materials Processing Technology, Vol. 28, pp. 240-249, 2002.

33.曾光宏,“電漿電弧銲接之原理與應用”,銲接與切割,9卷,1期,頁38-44,民國88年。
34.園田弘文,”電漿電弧原理與電漿銲接之應用”,銲接與切割,七卷,四期,頁 46-55,民國86年。
35.曾光宏,周長彬,”銲接參數對304不□鋼變形之影響”,機械技術雜誌,頁140-150,民國88年。
36.W. C. Wang, L. W. Tasy, C. Chen and S. W. Cheng,“Study of Process Variables in Plasma Arc Welding”, Chinese Journal of Materials Science, Vol. 23, No. 2, pp. 108-114, 1991.
37.T. Mohandas and G. M. Reddy, “A Comparison of Continuous and Pulse Current Gas Tungsten Arc Welds of An Ultra High Strength Steel”, Journal of Materials Processing Technology, Vol. 69, pp. 222-226, 1997.
38.曾光宏,周長彬,”脈衝電流銲接對沃斯田鐵不□鋼銲件變形之影響”,銲接與切割,10卷,6期,頁69-75,民國89年。
39.K. Easterling, “Introduction to The Physical Metallrugy of Welding”, 2nd edn, p. 126, Butterworth Heinemann, 1992.
40.S. Kou, Welding Metallurgy, Wiley, New York, 1987.
41.E. Folkhard, G. Rabensteiner, E. Pertender and H. Schabereiter, Welding Metallurgy of Stainless Steel, Springer-Verlag, New York, 1984.
42.J. D. Campbell, “Dynamic Plasticity-macroscopic and microscopic aspects”, Materials Science and Engineering, Vol. 12, pp. 3-21, 1973.

43.J. D. Campbell and W. G. Ferguson, “The Temperature and Stran-rate Dependence of the Shear Strength of Mild Steel”, The Philosophical Magazine, Vol. 21, pp. 63-82, 1970.
44.W. Johnson, Impact Strength of Material, Edward Arnold, pp. 134-135, 1972.
45.J. D. Campbell, A. M. Eleiche and M. C. C. Tsao, “Fundamental Aspects of Structural Alloy Design”, Plenum Publishing Corp., New York, pp 545-563, 1977.
46.H. Kobayashi and B. Dodd, “A Numerical Analysis for The Formation of Adiabatic Shear Bands Including Void Nucleation and growth”, International Journal of Impact Engineering, Vol. 8, pp. 1-13, 1989.
47.F. J. Zerilli and R. W. Armstrong, “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations”, Journal of Applid Physics, Vol. 61, pp. 1816-1825, 1987.
48.F. J. Zerilli and R. W. Armstrong, “The Effect of Dislocation Drag on The Stress-Strain Behavior of FCC Metals”, Acta Metallurgical, Vol. 40, No. 8, pp. 1803-1808, 1992.
49.F. J. Zerilli and R. W. Armstrong, “Constitutive Equation for HCP Metals and High Strength Alloy Steels”, in High strain Rate Effects on Polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials, AD-Vol. 48, pp. 121-126, ASME 1995.
50.R. W. Klopp, R. J. Clifton and T. G. Shawki, Pressure Shear Impact and Dynamic Viscoplastic Response of Metals, Mechanics of Materials: an International Journal, Vol. 4, pp. 375-385, 1985.
51.M. Zhou, A. Needleman and R. J. Clifton, “Finite Element Simulations of Shear Localization in Plate Impact”, Journal of the Mechanics and Physics of Solids, Vol. 42, pp. 423-458, 1994.
52.D. L. Olson, “Prediction of Austenitic Weld Metal Microstructure and Properties”, Welding Research Supplement, pp. 281-292, 1985.
53.董基良,焊接學,25章,頁25-29,三民出版社,民國74年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔