跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 13:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭俊儀
研究生(外文):Chi-I Kuo
論文名稱:發展新型光纖式同調斷層掃描術於同時量測樣本折射率與厚度之研究
論文名稱(外文):Developing New Optical Fiber Coherence Tomography to Simultaneous Measure the Refractive Index and the Thickness of Sample
指導教授:羅裕龍
指導教授(外文):Yu-Lung Lo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:85
中文關鍵詞:共焦顯微術厚度折射率光學同調性斷層掃描術
外文關鍵詞:Refractive IndexThicknessConfocal OpticsOptical Coherence Tomography (OCT)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光學同調性斷層攝影術是近年來發展相當快速的一種光學造影方法。其造影的方式為利用同調光子閘截技術來取得具有影像資訊的光子。此種方式在半透明樣本下已可測量在組織深度2cm下的影像。
近年來,此技術藉由其量測光程差的能力結合共焦顯微術的技術,以此用來做為量測樣品折射率和厚度的有用工具。為了達到更精確的量測能力,具有高精密度的伺服定位平台是不可或缺的。然而此種機構將提高產品的價格。
本實驗將針對一般光學斷層掃描術的架構加以改良,除了以光纖式的結構降低外界環境的干擾之外,同時利用光纖元件的特性,設計出不需要高精密伺服定位平台的架構。最後以自製的樣本來測試本系統的可行性。
Optical coherence tomography (OCT) is an optical imaging technique that allows high-resolution cross-sectional imaging of tissue microstructure. OCT such as x-ray radiography, magnetic resonance imaging, computed tomography, and ultrasonography have allowed the noninvasive cross-sectional imaging of internal structures.
Recently, there have been reports of the measurement of refractive index n and thickness t by the use of OCT combined with confocal optics. These methods need to record two parameters from stage controller to solve the t and n. In order to improve accuracy of the measurement, the highly precise scanning stage is essential. However, it is not cheap.
We develop a new structure to simultaneously measure the thickness and refractive index of an optical sample without implementing highly precise scanning stages by using optical fiber techniques. The system is demonstrated by two home-made samples.
Abstract IV
Acknowledgements V
Table of Contents VI
List of Figures IX
List of Tables XIII
Chapter 1 Introduction 1
1.1 The Destinations and Motivations of the Research 1
1.2 Historical review of OCT and OCT in Measure Refractive Index 1
1.3 Overview of Chapters 3
Chapter 2 Theoretical Analysis 6
2.1 Principle of OCT 6
2.1.1 Interferometric Principle 6
2.1.2 Axial Resolution 7
2.1.3 Lateral Resolution 8
2.1.4 Sensitivity 9
2.2 OCT and Optical Coherence Microscopy (OCM)10
2.2.1 The Principle of the Confocal Optics10
2.2.2 Optical Coherence Microscopy (OCM)11
2.2.3 Distinction in OCT and OCM 11
2.3 Light in Bulk Matter 12
2.3.1 Scattering and Absorption 12
2.3.2 Dispersion and Refractive Index 13
2.3.3 The Phase Velocity and the Group Velocity14
2.3.4 Discussion 15
2.4 Determine the Refractive Index and Thickness of the Sample 16
2.4.1 The Structure of the Measure System16
2.4.2 Principle of Measurement 17
2.4.3 Discussion 18
Chapter 3 Signal Modulation and Demodulation Techniques 28
3.1 Modulation and Demodulation by Using Piezo Mounded on the Scanning Stage 29
3.1.1 Theory 29
3.1.2 Simulation 31
3.1.3 Experiment 32
3.2 Modulation and Demodulation by Using Only Scanning Stage 33
3.2.1 Theory 33
3.2.2 Simulation by Math Software MATLAB34
3.2.3 Experiment 35
3.3 Discussion 35
Chapter 4 New OCT to Measure Refractive Index and Thickness 47
4.1 New Structure 47
Chapter 5 Experiment with our New Structure53
5.1 Introduction 53
5.2 Experiment Hardware and Software 53
5.2.1 System Configuration 53
5.2.2 Signal Process and Peak Detection 54
5.3 Experiment steps 54
5.3.1 Calibration 54
5.3.2 Adjust Focal Point on the Surface of the Sample 55
5.3.3 Moving the Scanning Stage and Record Data from Photodetector 55
5.3.4 Signal Process and Result 55
5.4 Experiment Samples 55
5.4.1 The Result of the Single-layer Sample56
5.4.2 The Result of the Multi-layer Sample56
5.5 Conclusion and Discussion 56
Chapter 6 Conclusion and Future Work 78
6.1 Conclusions and Discussions 78
6.2 Future Work 79
6.2.1 Take Dispersion into Account 79
6.2.2 New OCT Combined Commercial Microscopy79
6.2.3 Powerful Instruments 79
6.2.4 Optimal Interferometer Designs 79
6.2.5 Measurement in Three Dimension 80
Bibliography 81
Autobiography 85
Abramowitz, M. and Stegum, I. A.,Handbook of Mathematical Function., Washington DC:Nat. But. Standards., 1963.
Brigham, E. O., “The fast fourier transform and its applications,” Prentice Hall., 1988.
Chinn, S. R., and Swanson, E. A., “Blindness limitation in optical coherence domain reflectometry,” Elec. Lett., vol. 29, pp. 2025-2027, 1993.
Fukano, T., and Yamaguchi, I., “Simultaneous measurement of thickness and refractive indices of multiple layers by a low coherence confocal microscope,” Opt. Lett., vol. 21, pp. 1942-1944, 1996.
Giniunas, L., Juskaitis, R., and Shatalin, S. V., “Scanning fiber-optic microscope,” Elec. Lett., vol. 27, pp. 724-726, 1991.
Goodman, J. W., Statistical Optics. New York, NY: John Wiley and Sons: 1985.
Groot ,P. D., “Chromatic dispersion effects in coherent absolute ranging,” Opt. Lett., vol. 17, pp. 898-900, 1992.
Gu, M., Sheppard, C. J. R., and Gan, X., “Image formation in a fiber-optical confocal scanning microscope,” J. Opt. Soc. Am. A., vol. 8, pp. 1755-1761, 1991.
Hartl, I., Li, X.D., Chudoba, C., Ghanta ,R. K., Ko ,T. H., Fujimoto ,J. G., Ranka, J. K. and Windleler ,R. S., “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett., vol. 26, pp. 608-610, 2001.
Haruna, M., Ohmi, M., Mitsuyama, T., Tajiri, H., Maruyama, H., and Hashimoto, M., "Simultaneous measurement of the phase and group indices and thickness of transparent plates by low-coherence interferometry", Opt. Lett., vol. 23, pp. 966-968, 1998.
Hecht, Eugene., Optics, Addison Wesley, third edition, 1998.
Hee ,M. R., Izatt ,J. A., Swanson ,E. A., Huang, D., Schuman ,J. S., Lin ,C. P., Puliafito ,C. A., and Fujimoto ,J. G., “Optical Coherence Tomography for Ophthalmic Imaging,” IEEE Eng. Med. Bio., pp. 67-76, 1995.
Hoeling, B.M., Fernandez ,A.D., Haskell ,R.C., Huang, E., Myers ,W.R., Petersen ,D.C., Ungersma ,S.E., R Wan,g. and Williams ,M.E., “An optical coherence microscope for 3-dimensional imaging in developmental biology,” Optics Express. vol. 6, pp. 136-146, 2000.
Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W .G., Chang, W., Hee, M.R., Flotte, T., Gregory, K., Puliafito, C. A. and Fujimoto, J. G. “Optical coherence tomography,” Science, vol. 254, pp. 1178—1181, 1991.
Izatt, J. A., Hee, M. R., Owen, G. M., Swanson, E. A., and Fujimoto, J. G.,“Optical coherence microscopy in scattering media,” Opt. Lett., vol. 19, pp. 590—592, 1994.
Izatt, J. A., Kulkarni, M. D., Wang, H. W., Kobayashi, K., and Sivak, M. V.,“Optical coherence tomography and microscopy in gastrointestinal tissues,”IEEE J. Select. Topics Quantum Electron., vol. 2, pp. 1017—1028, 1996.
Kam, Z., Agard, D. A., and Sedat, J. W., “Three-dimensional microscopy in thick biological samples: A fresh approach for adjusting focus and correcting spherical aberration,” Bioimaging, vol. 5, pp. 40-49, 1997.
Kimura, S., and Wilson, T., “Confocal scanning optical microscope using signle-mode fiber for signal detection,” Appl. Opt., vol., 30, pp. 2143-2150, 1991.
Kwong, K. F., Yankelevich, D., Chu ,K. C., Heritage ,J. P., and Dienes, A., “400-Hz mechanical scanning optical delay ilne,” Opt. Lett., vol. 18, pp.558-560, 1993.
Lu, C.W., “Study of Optical Doppler Coherence Tomography,” National Taiwan University Master Thesis, 2001.
Maruyama, H., Inoue, S., Mitsuyama, T., Ohmi, M., and Haruna, M., “Low-coherence interferometer system for the simultaneous measurement of refractive index and thickness,” Appl. Opt., vol. 41, pp. 1315—1322, 2002.
Ohmi, M., ohnishi, Y., Yoden, K., and Haruna, M., “In Vitro Simultaneous Measurement of Refractive Index and Thickness of Biological Tissue by the Low Coherence Interferometry,” IEEE Trans. Biomed. Eng., vol. 47, pp. 1266—1270, 2000.
Profio, A. E., Doiron ,D. R.. “ Transport of light in tissue in photodynamic therapy of cancer,” Photochemistry and Photobiology., vol. 46, pp. 591-599, 1987.
Rollins, A. E., and Izatt, J. A., “Optimal interferometer designs for optical coherence tomography,” Opt. Lett., vol. 21, pp. 1484-1486, 1999.
Schmitt, J. M., “Optical Coherence Tomography (OCT) : A Review,” IEEE J. Select. Topics Quantum Electron., vol. 5, pp. 1205—1215, 1999.
Swanson, E. A., Huang, D., Hee ,M. R., Fujimoto ,J. G., C Lin,. P. and Puliafito, C. A., “High-speed optical coherence domain reflectometry,” Opt. Lett., vol. 17, pp. 151-153, 1992.
Takada, K., Yokohama, I., Chida, K., and Noda, J., “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt., vol. 26, pp. 1603—1606, 1987.
Tearney, G. J., Bouma ,B. E., and Fujimoto, J.G., “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett., vol. 22, pp. 1811-1813, 1997.
Tearney, G. J., Bouma, B.E., Boppart ,S. A Golubovic,., B., E Swanson,. A. and Fujimoto ,J. G., “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett., vol. 21, pp.1408-1410, 1996.
Tearney, G. J., Brezinski ,M.E., Southern ,J.F., Bouma ,B.E., Hee ,M.R., and Fujimoto ,J.G., “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett., vol. 20, pp. 2258—2261, 1995.
Wilson, T., ed. Confocal microscopy, Press, London, 1990.
Youngquist, R., Carr, C. S., and Davies, D. E. N., “Optical coherence domain reflectometry: A new optical evaluation technique,” Opt. Lett., vol. 12, pp. 158-160, 1987.
李冠卿, “近代光學”, 聯經出版事業有限公司, 1988.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top