跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 04:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊壬
研究生(外文):Chun-Jen Chen
論文名稱:即時視覺伺服追蹤系統之運動偵測與估算
論文名稱(外文):Motion Detection and Estimation of a Real-Time Visual Servo Tracking System
指導教授:蔡明祺
指導教授(外文):Mi-Ching Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:70
中文關鍵詞:影像追蹤視覺伺服
外文關鍵詞:image trackingvisual servo
相關次數:
  • 被引用被引用:3
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在影像基準追蹤法中,微分法、運動能量法及區域比對法各有其優缺點與應用之場合,其中運動能量法與區域比對法應用在Pan-tilt影像追蹤架構中之追蹤效果較好,然此二法之限制為當目標物移動速度較快時,其動態攝影機所拍攝之影像會產生模糊現象,導致此二法無法有效地完成追蹤任務,因此本文嘗試提出以改良式SDG比對法配合具記憶模式之樣版更新及樣版遮罩來追蹤目標物,使移動目標物影像追蹤能更準確及強健。另外在伺服控制部分,採用具有較佳控制表現的視覺前饋補償控制架構,嘗試配合影像位置命令插值器來控制視覺追蹤系統,縮短系統之控制週期,使影像位置命令較為平滑,改善視覺伺服控制系統長取樣週期之缺點,以期達到較佳之影像追蹤響應。
A real-time visual servo tracking system consists of an image processing unit and a servo control unit. In this study, the image-based dynamic look-and-move visual servoing structure is adopted.
For the image processing unit, the tracking performances of three popular motion detection approaches ¾ differential techniques, motion energy methods and region-based matching methods, have been compared and discussed in this thesis. According to our study, it is found that the motion energy methods and the region-based matching methods are better than the differential techniques when applied to a real-time visual tracking task. However, when the target moves fast, the performances of the aforementioned methods deteriorate due to the reason that the images taken by the active camera tend to be unclear. As a result, the real-time visual tracking task likely will fail. To overcome this difficulty, an approach that combines the directed-region matching method with updating pattern and the mask of pattern is proposed in this study. Experimental results show that the proposed approach can lead to a good motion tracking result.
For the servo control unit, generally, the sampling rate of a visual control system is equal to the image frame rate that is often below 50 Hz. The low sampling rate makes the performance of a visual control system not desirable. To improve the system performance, a feed-forward type compensator is incorporated into the control structure. In addition, interpolation on servo commands is performed to increase the sampling rate. Experimental results indicate that our approach indeed improve the performance of the real-time visual tracking system developed in this study.
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VI
第一章 緒論 1
1.1研究動機與目的 1
1.2文獻回顧 5
1.3本文架構 7
第二章 微分法 8
2.1全域平滑限制 9
2.2小區域量測之最小平方法 12
2.3多重解析光流法 14
2.4偵測移動目標物 17
2.5結論 20
第三章 運動能量法 21
3.1角度偏差量誤差分析及型態學濾波器之影響 22
3.2改善背景補償誤差 25
3.3 SDG model之實現 30
3.4 SDG model實驗結果 30
3.5結論 37
第四章 區域比對法 39
4.1樣版之取得 40
4.2以直接比對法取代SSD法 42
4.3樣版更新 43
4.4樣版遮罩 45
4.5結論 49
第五章 影像位置命令插值控制 50
5.1影像位置命令插值器架構 51
5.2實驗與比較 54
第六章 結論與建議 59
參考文獻 61
附錄A背景補償公式推導 64
附錄B軟硬體設備概述 67
[1] S. Hutchinson, G. D. Hager and P. I. Corke, “A Tutorial on Visual Servo Control,” IEEE Trans. on Robotics and Automation, Vol. 12, No.5, pp.651-670, 1996.
[2] B. K. P. Horn and B. G. Schunck, “Determine Optical Flow,” Artificial Intelligence, Vol. 17, pp. 285-204, 1981.
[3] B. Lucas and T. Kanade, “An Iterative Image Registration Technique with an Application to Stereo Vision,” Proc. DARPA Image Understanding Workshop, pp. l21-130, 1981.
[4] V. Markandey, A. Reid and S. Wang, “Motion Estimation for Moving Target Detection,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 32, No. 3, pp.866-873, 1996.
[5] D. Murray and A. Basu, “Motion Tracking with an Active Camera”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 16, No. 5, pp. 449-459,1994.
[6] Y. Ren, C. S. Chua and Y. K. Ho, “Motion Detection with Non-stationary Background,” Proceedings of 11th International Conference on Image Analysis and Processing, pp.78 -83, 2001.
[7] P. Anandan, Measuring Visual Motion from Image Sequences, COINS Dept. Univ. of Massachusetts, Tech. Rep. COINS- TR-87-21, 1987.
[8] H. M. Jong, “Parallel Architectures for 3-Step Hierarchical Search Block - Matching Algorithm,” IEEE Trans. on Circuits and Systems for Video Technology, Vol. 4, No. 4, pp. 407-416, 1994.
[9] A. J. Lipton, H. Fujiyoshi and R. S. Patil, “Moving Target Classification and Tracking from Real-Time Video,” Proceeding of the Fourth IEEE Workshop on Application of Computer Vision, pp. 8-14, 1998.
[10] P. I. Corke and M. C. Good, “Dynamic Effects in Visual-Loop Systems,” IEEE Trans. on Robotics and Automation, Vol. 12, No. 5, pp.671-683, 1996
[11] P. I. Corke and M. C. Good, “Dynamic Effects in High-Performance Visual Servoing,” Proceeding of the IEEE International Conference on robotics and Automation, pp. 1838-1843, 1992.
[12] N. Papanikolopoulos, P. K. Khosla and T. Kanade, “Vision and Control Techniques for Robotic Visual Tracking,” Proceeding of the IEEE International Conference on robotics and Automation, pp. 857-864, 1991.
[13] N. P. Papanikolopoulos and P. K. Khosla, “Adaptive Robotic Visual Tracking: Theory and Experiments,” IEEE Trans. on Automatic Control, Vol. 38, No. 3, pp. 429-445, 1993.
[14] C. Cedras and M. Shah, “Motion-Based Recognition: A survey,” Image and Vision Computing, Vol. 13, pp. 129-154, 1995.
[15] J. Feddema and O. Mitchell, “Vision-guided Servoing with Feature-Based Trajectory Generation,” IEEE Trans. on Robotics and Automation, Vol. 5, pp. 691-700, 1989.
[16] N. P. Papanikolopoulos, P. K. Khosla and T. Kanade, “Visual Tracking of a Moving Target by a Camera Mounted on a Robot: A Combination of Control and Vision,” IEEE Trans. on Robotics and Automation, Vol. 9, No. 1, pp. 14-35, 1993.
[17] J. Gangloff, M.d. Mathelin and A. Gabriel, “6 DOF High Speed Dynamic Visual Servoing Using GPC Controllers,” Proceedings of the 1998 IEEE International Conference on Robotics & Automation, pp. 2008-2013, 1998.
[18] R. Kelly, R. Carelli, O. Nasisi, B. Kuchen and F. Reyes, “Stable Visual Servoing of Camera-in-Hand Robotic Systems,” IEEE/ ASME Trans. on Mechatronics, Vol.5, No.1, pp. 39-48, 2000.
[19] J. Stavnitzky and D. Capson, “Multiple Camera Model-Based 3-D Visual Servo,” IEEE Trans. on Robotics and Automation, Vol.16, No.6, pp. 732-739, 2000.
[20] A. D .Jepson, D. J. Fleet and T. F. EI-Maraghi, “Robust Online Appearance Models for Visual Tracking,” IEEE Conference on Computer Vision and Pattern Recognition, Kauai, Vol.I, pp. 415-422, 2001.
[21] J. L. Barron, D. J. Fleet, S. S Beauchemin and T.A Burkitt, “Performance of Optical Flow Techniques,” Proceedings of 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 236-242, 1992.
[22] L. E. Weiss, A. C. Sanderson and C. P. Neuman, “Dynamic Sensor-Based Control of Robots with Visual Feedback,” IEEE Trans. on Robotics and Automation, Vol. RA-3, No. 5, pp. 404-417, 1987.
[23] R. Yang and Z. Zhang, “Model-Based Head Pose Tracking With Stereovision,” IEEE International Conference on Automatic and Gesture Recognition, Vol. 20-21, pp. 242-247,2002.
[24] D. Kragic and H. I. Christensen, “Cue Integration for Visual Servoing,” IEEE Trans. on Robotics and Automation, Vol. 17, No. 1, pp. 18-27, 2001.
[25] P. Y. Oh and P. K. Allen, “Visual Servoing by Partitioning Degrees of Freedom,” IEEE Trans. on Robotics and Automation, Vol. 17, No. 1, pp. 1-17, 2001.
[26] R. Y. Tsai, “A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf Cameras and Lenses,” IEEE Trans. on Robotics and Automation, Vol. 3, No. 4, pp. 323-344, 1987.
[27] Z. Zhang, “Flexible Camera Calibration By Viewing a Plane From Unknown Orientations,” Proceeding of the IEEE International Conference on Computer Vision, Vol. 1, pp. 666-673, 1999.
[28] H. H. Nagel, “Formation of an Object Concept by Analysis of Systematic Time Variations in the Optically Perceptible Environment,” Computer Graphic and Image Processing, Vol. 7, pp. 149-194, 1978.
[29] D. V. Papadimitriou and T. J. Dennis, “Epipolar Line Estimation and Retification for Stereo Image Pairs,” IEEE Trans. on Image Processing, Vol. 5, No. 4, pp.672-676, 1996.
[30] W. J. Jong, A Real-Time Image Tracking System Based on Optical Flow Computation, Master Thesis, Dept. of Elec., NCKU, Taiwan, 2001.
[31] K. I. Chen, Design and Implementation of a Real-Time Visual Servo Tracking System, Master Thesis, Dept. of Mech., NCKU, Taiwan, 2002.
[32] R. Li, B. Zeng and M. Liou, “A New Three-Step Search Algorithm for Block Motion Estimation,” IEEE Trans. on Circuits and Systems for Video Technology, Vol. 4, No. 4, pp.438-442, 1994.
[33] L. M. Po and W. C. Ma, “A Novel Four-Step Search Algorithm for Fast Block Motion Estimation,” IEEE Trans. on Circuits and Systems for Video Technology, Vol. 6, No. 3, pp.313-317, 1996.
[34] M. Nemani, T. C. Tsao and S. Hutchinson, “Multi-Rate Analysis and Design of Visual Feedback Digital Servo-Control System,” Trans. of the ASME, Journal of Dynamic Systems, Measurement, and Control, Vol.116, pp.47-55, 1994.
[35] H. Fujimoto and Y. Hori, “Visual Servoing Based on Multirate Sampling Control-Application of Perfect Disturbance Rejection Control-,” Proceedings of 2001 IEEE, International Conference on Robotics and Automation Seoul, Korea May 21-26, pp.711-716,2001.
[36] J. P. Barreto, J. Batista and H. Araujo.“Solutions for Visual Control of Motion: Active Tracking Applications,” Proceedings of the 8th IEEE Mediterranean Conference on Control and Automation(MED 2000) Rio Patras, GREECE, pp.-,2000.
[37] G. F. Franklin and J. D. Powell, Digital Control of Dynamic Systems, Reading, MA: Addison-Wesley, 1980.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top