(3.235.41.241) 您好!臺灣時間:2021/04/15 05:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林青楠
研究生(外文):Ching-Nan Lin
論文名稱:分子動力學研究銅薄膜之準分子雷射燒蝕
論文名稱(外文):Investigation of Excimer Laser Ablation of Copper Thin Film using Molecular Dynamics
指導教授:翁政義翁政義引用關係
指導教授(外文):Cheng-I Weng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:102
中文關鍵詞:銅薄膜緊束勢能分子動力學準分子雷射燒蝕
外文關鍵詞:Excimer Laser AblationMolecular DynamicsTight-binding potentialCopper Thin Film
相關次數:
  • 被引用被引用:2
  • 點閱點閱:197
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
本研究以分子動力學觀察奈米金屬薄膜經雷射加工時,雷射與材料間互相作用後,對薄膜產生燒蝕及原子冷卻後的排列情形等的物理機制,所探討的製程參數是針對雷射參數,其中包含雷射能量及脈衝時間寬度。在模擬中是以脈衝時間寬度為 2 ps 及 500 fs、波長為 248 nm的脈衝雷射探討在不同的雷射能量下對金屬薄膜的刻除率,以及材料在雷射燒蝕後產生熱衝擊波以及應力波的動態過程、暫態的表面溫度,並且觀察暫態原子的相變化過程。由雷射加工模擬的結果可知,雷射能量低時只會造成材料的熱膨脹及震盪並無刻除的現象,而雷射能量較高時即會有刻除的現象且雷射能量越高材料的刻除率會愈高,且材料結構產生應力集中導致破裂現象;而在熱衝擊波及應力波傳播的振幅和速度會隨著時間增加而降低,並傳播到材料內部,且當應波傳播接近固體狀態時其傳播速度比銅的聲速稍大。最後我們提出分子動力學方法的瓶頸及改進方法,作為今後努力的目標。
This study is focused on the investigation of the physical mechanisms about the excimer laser ablation of copper thin film using molecular dynamics. After laser material interacting, the physical mechanisms of ablating thin film and arrangement of cooling atoms, the process parameters in the simulation are aimed at laser parameters, including laser energy and pulse duration. The pulse duration is 2 picosecond and 500 femtosecond, and wavelength is 248 nanometer in the parameters of pulse laser in simulation. We discuss the ablation rate of metal thin film in differential laser energy, and after ablating, the material produces the dynamic process of thermal shock wave and stress wave and transient surface temperature and an observation of transient phase change process of atoms after laser heating. From the simulated results about the laser ablation, the material produces thermal expansion and vibration when laser energy lower, ablating phenomenon produce when laser energy higher and the ablation rate increases when the laser energy rises and the structure of material produce concentration of stress to procure phenomenon of crack. The velocity of wave and amplitude decrease with the time rise. The velocity of the stress wave in two difference laser pulses both were larger than the sound velocity in Cu. Finally, the bottlenecks of the molecular dynamics simulation will be carried out, and the state-of-the-art ways overcoming these bottlenecks are also shown to be our future works.
中文摘要.........................................................I
英文摘要.......................................................................II
誌謝..........................................................................III
目錄...........................................................................IV
表目錄........................................................................VII
圖目錄.......................................................................VIII
符號說明.....................................................................XIII
第一章 緒論.....................................................................1
1-1 雷射製程技術簡介............................................................1
1-2 研究動機與目的..............................................................6
1-3 分子動力學雷射加工模擬文獻回顧.............................................10
1-4 本文架構...................................................................13
第二章 分子動力學理論..........................................................14
2-1 雷射加工物理模型...........................................................14
2-2 勢能函數...................................................................20
2-3 邊界條件...................................................................24
2-4 初始條件...................................................................26
2-5 運動方程式.................................................................28
2-6 Gear五階預測修正算法.......................................................29
2-7 雷射加工模擬流程圖.........................................................32
第三章 分子動力學數值模擬方法..................................................34
3-1 物理參數與無因次化.........................................................34
3-2 原子級應力表示式...........................................................37
3-4 截斷半徑法.................................................................40
3-4-1 Verlet表列法.........................................................40
3-4-2 Cell link表列法......................................................41
3-4-3 Verlet表列法結合Cell link表列法......................................42
3-5 熱平衡.....................................................................45
3-6 雷射光能的計算.............................................................46
第四章 模擬結果分析與討論......................................................48
4-1 薄膜結構分析...............................................................48
4-2 雷射能量對加工區域之影響...................................................51
4-2-1 薄膜原子運動分析.....................................................51
4-2-2 溫度波及應力波分析...................................................52
4-2-3 結構破裂分析.........................................................55
4-2-4 材料刻除分析.........................................................56
4-3 脈衝時間寬度對加工區域之影響...............................................73
4-3-1 薄膜原子運動分析.....................................................73
4-3-2 溫度波及應力波分析...................................................74
4-3-3 結構破裂分析.........................................................75
4-3-4 材料刻除分析.........................................................76
第五章 結論與建議..............................................................91
5-1 結論.......................................................................91
5-2 建議與未來展望.............................................................93
參考文獻....................................................................94
自述..........................................................................101
著作..........................................................................102
[1] J. Jersch, F. Demming, J. Hildenhagen, K. Dickmann,“Nano-material processing with laser radiation in the near field of a scanning probe tip,”Opt. Laser Technol., Vol. 29, pp. 433-437, 1997.
[2] V. Zafiropulos, C. Fotakis, M. Cooper, Eds,“In Laser Cleaning in Conservation: an Introduction ,”Butterworth Heinemann, Oxford, 1998.
[3] 張振燦編譯,雷射與加工,亞太圖書出版社,1985年。
[4] D. Bäuerle,“Laser Processing and Chemistry ,”Springer-Verlag, Berlin Heidelberg, 2000.
[5] M. Madou,“Fundamentals of Microfabrication,”CRC Press LLC, 1997.
[6] D. B. Chrisey, G. K. Hubler, Eds.,“Pulsed Laser Deposition of Thin films ,”Wiley-Interscience, New York, 1994.
[7] M. H. Niemz,“Laser-tissue Interaction: Fundamentals and Applications ,”Springer-Verlag: Berlin Heidelberg, 1996.
[8] Stephen Y. Chou, Chris Keimel, Jian Gu,“Ultrafast and direct imprint of nanostructures in silicon,”Nature, Vol. 417, pp. 835-837, 2002.
[9] Graciela B. Blanchet , Yueh-Lin Loo , J. A. Rogers, F. Gao, and C. R. Fincher,“Large area, high resolution, dry printing of conducting polymers for organic electronics,”Applied Physics Letters, Vol. 82, pp. 463-465, 2003.
[10] A. A. Puretzky, D. B. Geohegan, X. Fan, S. J.Pennycook,“Dynamics of single-wall carbon nanotube synthesis by laser vaporization,”Appl. Phys. A, Vol. 70, pp. 153-160, 2000.
[11] P. Ayyub, R. Chandra, P. Taneja, A. K. Sharma, R. Pinto,“Synthesis of nanocrytalline material by sputtering and laser ablation at low temperatures ,”Appl. Phys. A, Vol. 73, pp. 67-73, 2001.
[12] Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, S. T. Lee “Silicon nanowires prepared by laser ablation at high temperature,”Appl. Phys. Lett., Vol. 72, pp. 1835-1837, 1998.
[13] J. E. Andrew, P. E. Dyer, R. D. Greenough, and P. H. Key,“Metal Film Removal and Patterning using a XeCl Laser,”Appl. Phys. Lett., Vol. 43, pp. 1076-1078, 1983.
[14] H. Hayashi, I. Miyamoto,“Process of Thin Cu Film Removal by KrF Excimer Laser,”Proc. Laser Materials Processing Conf., ICALEO ¢95, J. Mazumder et al., eds., Laser Institute of America, Orlando, 80, pp. 391-400, 1995.
[15] D. J. Ehrlich, and J. Y. Tsao,“A Review of Laser-Microchemical Processing,”J. Vac. Sci. Technol. B, Vol. 1, pp. 969-984, 1983.
[16] J. Ihlemann, B. Wolff, and P. Simon,“Nanosecond and Femtosecond Excimer Laser Ablation of Fused Silica,”Appl. Phys. A, Vol. 54, pp. 363-368, 1992.
[17] J. Ihlemann, A. Scholl, H. Schimdt, and B. Wolff-Rottke,“Nanosecond and Femtosecond Excimer Laser Ablation of Oxide Ceramics,”Appl. Phys. A, Vol. 60, pp. 411-417, 1995.
[18] Z. Ball, T. Feurer, D. L. Callahan, and R. Sauerbrey,“Thermal and Mechanical Coupling between Successive Pules in KrF-Excimer-Laser Ablation of Polyimide,”Appl. Phys. A, Vol. 62, pp. 203-211, 1996.
[19] Douglas J. Krajonovich,“Incubation and Photoablation of Poly(methylmethacrylate) at 248 nm. New Insight into the Reaction Mechanics using Photofragment Translational Spectroscopy,”J. Phy. Chem. A, Vol. 101, pp. 2033-2039, 1997.
[20] 林三寶編著,雷射原理與應用,全華圖書公司,台北,1997年。
[21] James Brannon,“Excimer Laser Ablation and Etching,”American Vacum Society, 1993.
[22] J. C. Miller, and R. F. Haglund,“Laser Ablation and Desorption,”Academic Press, 1998.
[23] M. Gad-el-Hak,“The fluid mechanics of microdevices-the freeman scholar lecture,”ASME Journal of Fluids, Vol. 121, pp. 5-33, 1999.
[24] M. Ciofalo, M. W. Collins, and T. R. Hennessy,“Modeling nanoscale fluid dynamics and transport in physiological flows,”Med. Eng. Phys., Vol. 18, pp. 437-451, 1996.
[25] S. Kotake,“Molecular mechanical engineering,”JSME International Journal Series B:Fluids and Thermal Engineering, Vol. 38, pp. 1-7, 1995.
[26] G. Kurdi, J. Klebniczki; M. Csatari, I. N. Ross,“High gain amplification of femtosecond UV laser pulses,”Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, Vol. 1, pp. 67-68, 2002.
[27] J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, John Wiley & Sons, Inc., New York, 1992.
[28] D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London, 1997.
[29] J. M. Goodfellow et al., Molecular dynamics, CRC Press, Boston, 1990.
[30] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford Science, London, 1991.
[31] D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, San Diego, 1996.
[32] D. W. Heermann, Computer Simulation Method, Springer-Verlag, Berlin, 1990.
[33] W. Eckstein,“Computer Simulation of Ion-Solid interaction,”Springer-Verlag, Berlin, 1991.
[34] M. P. Allen et al.,“Computer Simulation in Chemical Physics,”Series C: Mathematical and Physical Sciences, Vol. 397, Kluwer Academic, Dordrecht, 1992.
[35] M. Meyer et al.,“Computer Simulation in Material Science,”Series E: Applied Sciences, Vol. 205, Kluwer Academic, Dordrecht, 1991.
[36] S. Kotake,“Molecular engineering problems in heat and mass Transfer,”ASME Thermal Engineering Proceedings, Vol. 4, pp. 33-40, 1991.
[37] S. Kotake, and M. Kuroki,“Molecular dynamics study of solid melting and vaporization by laser irradiation,”Int. J. Heat Mass Transfer., Vol. 36, NO. 8, pp. 2061-2067, 1993.
[38] R. F. W. Herrmann, J. Gerlach, E. E. B. Campbell,“Ultrashort pulse laser ablation of silicon: an MD simulation study,”Appl. Phys. A, Vol. 66, pp. 35-42, 1998.
[39] H. Wakabayashi, Y. Shimazu, T. Furuta, T. Makino,“Numerical Simulation on Melting Behavior of an Atomic Layer Irradiated by Thermal Radiation,”日本機械協會論文集(B編) 59卷563號(1993-7).
[40] E. Ohmura and I. Fukumoto,“Molecular Dynamics Simulation on Laser Ablation of fcc Metal,”Int. J. Japan Soc. Prec. Eng., Vol. 30, NO. 2, pp. 128-133, 1996.
[41] J. I. Etcheverry, and M. Mesaros,“Molecular dynamics simulation of the production of acoustic waves by pulsed laser irradiation,”Physical Review B, Vol. 60, NO. 13, pp. 9430-9434, 1999.
[42] X. Wang, and X. Xu,“Molecular Dynamics Simulation of Heat Transfer and Phase Chang During Laser Material Interaction,”Transactions of the ASME, Journal of Heat Transfer, Vol. 124, pp. 265-274, 2002.
[43] X. Wang, and X. Xu,“Molecular dynamics simulation of thermal and thermomechanical phenomena in picosecond laser material interaction,”International Journal of Heat and Mass Transfer, Vol. 46, pp. 45-53, 2003.
[44] L. V. Zhigilei, P. B. S. Kodali, and B. J. Garrison,“Molecular Dynamics Model for Laser Ablation and Desorption of Organic Solids,”J. Phys. Chem. B, Vol. 101, pp. 2028-2037, 1997.
[45] L. V. Zhigilei, B. J. Garrison,“Computer simulation study of damage and ablation of submicron particles from short-pulse laser irradiation,”Applied Surface Science, Vol. 127-129, pp. 142-150, 1998.
[46] 丁勝懋編著,雷射工程導論-第四版,中央圖書公司,台北,1995年。
[47] S. Erkoc,“Annual Reviews of Computational IX,”World Scientific Publishing Company, Singapore, pp. 1-103, 2001.
[48] H. Rafii-Tabar,“Modelling the nano-scale phenomena in condensed matter physics via computer-Based numerical simulations,”Physics Reports, Vol. 325, pp. 239-310, 2000.
[49] R. Smith et al.,“Atomic & Ion Collisions in Solids and at Surfaces,”Cambridge University Press, London, 1997.
[50] G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham,“Intermolecular Forces,”Oxford University Press, London, 1987.
[51] P. L. Huyskens et al.,“Intermolecular Forces,”Springer-Verlag, Berlin, 1991.
[52] M. Rigby, E. B. Smith, W. A. Wakeham, and G. C. Maitland,“The Forces between Molecules,”Oxford University Press, London, 1986.
[53] V. Rosato, M. Guillope, and B. Legrand,“Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model,”Philosophical Magazine A, Vol. 59, No. 2, pp. 321-336, 1989.
[54] M. S. Daw, and M. I. Baskes,“Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals,”Phys. Rev.B, Vol. 50, pp. 6443—6453, 1984.
[55] S. M. Foiles, M. I. Baskes, and M. S. Daw,“Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,”Phys. Rev. B, Vol. 33, pp. 7983-7991, 1986.
[56] F. Cleri, and V. Rosato,“Tight-binding potentials for transition metals and alloys,”Physical Review B, Vol. 48, No. 1, pp. 22-33, 1993.
[57] M. J. Mehl, and D. A. Papaconstantopoulos,“Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surface of monatomic metals,”Phys. Rev. B , Vol. 54, No. 7, pp. 4519-4530, 1996.
[58] T. Iwaki,“Molecular Dynamics Study on Stress-strain in Very Thin Film (Size and Location of Region for Defining Stress and Strain),”JSME Int. J. Series A, Vol. 39, No. 3, pp. 346-353, 1996.
[59] 小竹進,熱流體之分子動力學,丸善株式會社,日本,1998。
[60] N. Miyazaki and Y. Shiozaki,“Calculation of Mechanical Properties of Solids Using Molecular Dynamics Method,”JSME Int. J. Series A, Vol. 39, No. 4, 1996.
[61] J. F. Lutsko, J. Appl. Phys, Vol. 64, No. 3, 1988.
[62] 劉國雄,林樹均,李勝隆,鄭晃忠,葉均蔚編著,工程材料科學,全華圖書公司,台北,1996年。
[63] S. Kotake, and S. Wakuri,“Molecular dynamics study of heat conduction in solid materials,”JSME Int. J. Series B, Vol. 37, NO. 1, pp. 103-108, 1994.
[64] 陳皇鈞譯著,陶瓷材料概論,曉園出版社,台北,1988。
[65] M. Shibahara, S. Kotake,“Quantum molecular dynamics study on light-to-heat absorption mechanics: Two metallic atom system,”Int. J. Heat Mass Transfer, Vol. 40, pp. 3209-3222, 1997.
[66] M. Shibahara, S. Kotake,“Quantum molecular dynamics study on light-to-heat absorption mechanics in atom systems,”Int. J. Heat Mass Transfer, Vol. 41, pp. 839-849, 1998.
[67] L. V. Zhigilei, A. M. Dongare,“Multiscale Modeling of Laser Ablation: Applications to Nanotechnology,”CMES, Vol. 3, No. 5,pp. 539-555, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔