(3.230.76.48) 您好!臺灣時間:2021/04/11 08:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林文全
研究生(外文):Wen-Chuan Lin
論文名稱:KrF準分子雷射再結晶非晶矽薄膜應用於太陽能電池之研究
論文名稱(外文):KrF Excimer Laser Recrystallization of Amorphous Silicon Thin Films for Solar Cells
指導教授:李驊登李驊登引用關係
指導教授(外文):Hwa-Teng Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:97
中文關鍵詞:準分子雷射結晶多晶矽太陽能電池爆炸結晶超級側向生長
外文關鍵詞:Solar CellExplosive CrystallizationSuper Lateral Growth (SLG)Excimer Laser CrystallizationPoly Silicon
相關次數:
  • 被引用被引用:3
  • 點閱點閱:154
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的是在開發低溫多晶矽(LTPS)製程以應用於太陽能電池,其中結合電漿輔助化學氣相沈積與KrF 248 nm準分子雷射結晶製作多晶矽薄膜。藉由改變準分子雷射的能量密度與雷射發數,分析這兩個實驗參數對多晶矽薄膜的影響,以及確定多晶矽薄膜剖面爆炸結晶與超級側向生長的機制,最後再討論實驗參數對側向晶粒尺寸的影響。
本實驗是採用電漿輔助化學氣相沈積厚1 μm的非晶矽薄膜,於常溫常壓下進行準分子雷射結晶製程,雷射之能量密度為250 mJ/cm2∼450 mJ/cm2,雷射發數為1∼5發。由實驗結果可以界定熔融非晶矽之能量密度門檻值Ft約為200 mJ/cm2,矽薄膜表面非晶矽之完全熔融能量密度Fc約為350 mJ/cm2;當實驗參數為350 mJ/cm2-5 shots可將矽薄膜表面之非晶矽幾乎完全熔融,而獲得最大的平均側向晶粒尺寸約為190 nm。當能量密度為250∼350 mJ/cm2時,晶粒尺寸會隨能量密度的增加而增加;當能量密度超過350 mJ/cm2時,晶粒尺寸的增加趨勢趨於和緩甚至縮小;但是當實驗參數為350 mJ/cm2-5 shots時,可以獲得1.3 μm超級側向生長的晶粒。
矽薄膜經準分子雷射結晶後,剖面微結構可以清楚的區分為三層,最表層是經由液相結晶所生成的多晶矽,其次是熔融矽激冷所造成的微細晶粒,最底層則是未熔融的非晶矽。晶粒的超級側向生長會發生於非晶矽近乎完全熔融的狀態,以完全熔融區周圍的小晶粒為晶種,持續往熔融區中央生長,當晶界會合於熔融區中央時則終止生長。
The purpose of this study is to develop a low temperature poly silicon (LTPS) process for solar cell. It combines plasma enhanced chemical vapor deposition (PECVD) with KrF 248 nm Excimer laser crystallization to produce poly silicon thin film. By controlling the fluence and shots of Excimer laser, we can examine the influence of these two parameters on poly silicon thin film and analyze the mechanism of Explosive Recrystallization and Super Lateral Growth (SLG). At the end of the paper, we will discuss the relationship between the parameters and the grain size.
Amorphous silicon thin film of 1 μm in thickness has been deposited by PECVD on Croning 1737 glass. Excimer laser crystallization processes are in air and at room temperature. The fluence range is from 250 to 450 mJ/cm2, and the shot of laser is from 1 shot to 5 shots. Defined by experimental results, the threshold fluence is about 200 mJ/cm2, and the completely melting one is about 350 mJ/cm2. When the parameter of process is 350 mJ/cm2- 5 shots, the surface of amorphous silicon thin film would be almost completely melted. Then we can get the maximum grain size about 190 nm. When the fluence is from 250 to 350 mJ/cm2, the grain size would grow larger. But the grain size enlarges more slowly, even becomes smaller when the fluence is over 350 mJ/cm2. Under the condition of 350 mJ/cm2- 5 shots, the SLG grain of 1.3 μm could be observed.
After the Excimer laser crystallization, the cross-section microstructure of silicon film clearly shows that the large polycrystalline region transformed from liquid phase is on the top and the under is the fine polycrystalline region caused by rapid cooling. The unmelting amorphous silicon is in the bottom. The Super Lateral Growth grain, which occurs in near-complete-melting region, utilizes small grain around complete-melting region as seeds that would grow toward the melting zone center until grain boundaries intersect there.
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
符號 X
一、前言 1
二、文獻回顧 4
2.1 傳統多晶矽板製造法 7
2.2 高溫化學氣相沈積 11
2.3 固相結晶法 12
2.3.1 高溫爐管之固相結晶法 12
2.3.2 光熱回火 12
2.4 Ar+雷射區域熔融再結晶 13
2.5 準分子雷射結晶 15
2.5.1 爆炸再結晶 16
2.5.2 超級側向生長 17
2.5.3表面粗糙度 21
三、實驗規劃與方法 24
3.1 實驗規劃 24
3.2 實驗步驟 27
3.2.1 玻璃基板之清洗步驟 27
3.2.2 製備非晶矽薄膜 27
3.2.3 準分子雷射結晶 28
3.2.4矽薄膜粗糙度之量測 29
3.2.5分析試片之製備 29
3.2.6 側向晶粒尺寸量測 31
3.3 實驗設備 32
3.3.1 電漿輔助化學氣相沈積 32
3.3.2 準分子雷射 33
3.3.3表面粗度儀-Alpha Step與三維粗度儀 35
3.3.4 多功能X光薄膜繞射儀 35
3.3.5 掃瞄式電子顯微鏡 36
四、結果與討論 38
4.1 非晶矽薄膜經加工後之巨觀分析 38
4.2 X-ray繞射分析 43
4.3 多晶矽薄膜未腐蝕之表面形貌分析 48
4.3.1 多晶矽薄膜表面形貌分析 48
4.3.2 多晶矽薄膜表面粗糙度分析 55
4.4 多晶矽薄膜之晶粒微結構分析 62
4.4.1 表面形貌分析 63
4.4.2 剖面之爆炸結晶 70
4.4.3晶粒之側向生長機制 74
4.5多晶矽薄膜之側向晶粒尺寸 79
4.5.1 平均側向晶粒尺寸 79
4.5.2 最大側向晶粒 83
4.5.3 能量密度與平均側向晶粒寸的關係 85
五、結論 89
六、未來研究發展方向 91
七、參考文獻 92
1.溫志中, “ 太陽能電池極高純度多晶矽之發展現況,” 工業材料, Vol. 193, pp.144-152, 2003.
2.莊嘉琛編譯, “ 太陽能工程(太陽電池編),” 全華科技圖書股份有限公司, 台灣, 2000.
3.Donald A. Neamen, “ Semiconductor Physics and Devices,” McGraw-Hill, New York, 1997.
4.許巧玲, “ 二十一世紀的新能源-太陽電池,” 工業材料, Vol. 192, pp.89-95, 2002.
5.黃崇傑, “ 太陽電池研究發展近況,” 工業材料, Vol. 146, pp.92-99, 1999.
6.方季達, “ 太陽電池產業發展現況,” OPTOLINK, Vol. 26, pp.22-26, 2000.
7.H. Azuma, A. Takeuchi, T. Ito, H. Fukushima, T. Motohiro and M. Yamaguchi, “ Pulsed KrF Excimer Laser Annealing of Silicon Solar Cell,” Solar Energy Materials & Solar Cells, Vol. 74, pp.289-294, 2002.
8.黃惠良, “ 低溫多晶矽薄膜電晶體的發展,” 中文半導體技術雜誌, Flat Panel Display特輯, pp.24-27.
9.L. Mariucci, A. Pecora, R. Carluccio and G. Fortunato, “ Advanced Excimer Laser Crystallization Techniques,” Thin Solid Films, Vol. 383, pp.39-44, 2001.
10.B. Rezek, C. E. Nebel and M. Stutzmann, “ Local Photoconductivity Correlation with Granular Structure of Microcrystalline Silicon Thin Films,” Journal of Non-Crystalline Solids, Vol. 266-269, pp.315-318, 2000.
11.Do-Hyun Choi, Kazuhiro Shimizu, Osamu Sugiura and Masakiyo Matsumura, “ Drastic Enlargement of Grain Size of Excimer-Laser -Crystallized Polysilicon Films,” Japanese Journal of Applied Physics, Part 1, Vol. 31, No. 12B, pp.4545-4549, 1992.
12.Cheon-Hong Kim, In-Hyuk Song, Woo-Jin Nam and Min-Koo Han, “ Excimer Laser Recrystallization of Selectively Floating a-Si Thin Film,” Journal of Non-Crystalline Solids, Vol. 299-302, pp.721-725, 2002.
13.Hiroyuki Kuriyama, Tomoyuki Nohda, Satoshi Ishida, Takashi Kuwahara, Shigeru Noguchi, Seiichi Kiyama, Shinya Tsuda and Shoichi Nakano, “ Lateral Grain Growth of Poly-Si Films with a Specific Orientation by an Excimer Laser Annealing Method,” Japanese Journal of Applied Physics, Part 1, Vol. 32, No. 12B, pp.6190-6195, 1993.
14.R. B. Bergmann, J. Kohler, R. Dassow and C. Zaczek, “ Nucleation and Growth of Crystalline Silicon Film on Glass for Solar Cells,” phys. stat. sol.(a), Vol.166, pp.587-601, 1998.
15.G. Fortunato, L. Mariucci, R. Carluccio, A. Pecora and V. Foglietti, “ Excimer Laser Crystallization Techniques for Polysilicon TFTs,” Applied Surface Science, Vol. 154-155, pp.95-104, 2000.
16.Dyer T. E., Marshall, J. M. Pickin, W. Hepburn, A. R. Davies and J. F. Davies, “ Optoelectronic and Structural Properties of Polysilicon Produced by Excimer Laser and Furnace Crystallization of Hydrogenated Amorphous Silicon (a-Si:H),” IEE Proceedings: Circuits, Devices and Systems, Vol. 141, No. 1, pp.15-18, 1994.
17.Mitsutoshi Miyasaka and John Stoemenos, “ Excimer Laser Annealing of Amorphous and Solid-Phase-Crystallized Silicon Films,” Journal of Applied Physics, Vol. 86, No. 10, pp.5556-5565, 1999.
18.C. T. Angelis, C. A. Dimitriadis, M. Miyasaka, F. V. Farmakis, G. Kamarinos, J. Brini and J. Stoemenos, “ Effect of Excimer Laser Annealing on the Structural and Electrical Properties of Polycrystalline Silicon Thin-Film Transistors,” Journal of Applied Physics, Vol. 86, No. 8,
pp.4600-4606, 1999.
19.R. Carluccio, S. Cina, G. Fortunato, S. Friligkos and J. Stoemenos, “ Structure of Poly-Si Films Obtained by Laser Annealing,” Thin Solid Films, Vol. 296, pp.57-60, 1997.
20.Y. Ishikawa, K. Nishioka, Y. Yamamoto, Y. Uraoka and T. Fuyuki, “ Thin Film Poly-Si Solar Cells with Film Thickness of 10 microns Fabricated by Direct Deposition using APCVD Method,” IEEE Photovoltaic Specialists Conference, 29th, pp.20-24, 2002.
21.A. Slaoui, S. Bourdais, G. Beaucarne, J. Poortmans and S. Reber, “ Polycrystalline Silicon Solar Cells on Mullite Substrates,” Solar Energy Materials & Solar Cells, Vol. 71, pp.245-252, 2002.
22.Song Jia, Huichun Ge, Xinhua Geng and Zongpan Wang, “ Preparation of Thin Film Polycrystalline Silicon on Glass by Photo-Thermal Annealing,” Solar Energy Materials & Solar Cells, Vol.62, pp.201-205, 2000.
23.G. Andra, J. Bergmann, F. Falk and E. Ose, “ Preparation of Thick Polycrystalline Silicon Layers on Glass by Laser Irradiation,” Thin Solid Films, Vol. 318, pp.42-45, 1998.
24.G. Andra, J. Bergmann, F. Falk and E. Ose, “ In-Situ Diagnostics for Preparation of Laser Crystallized Silicon Films on Glass for Solar Cells,” Thin Solid Films, Vol. 337, pp.98-100, 1998.
25.G. Andra, J. Bergmann, F. Falk and E. Ose, “ Preparation of Single Crystalline Regions in Amorphous Silicon Layers on Glass by Ar+ Laser Irradiation,” Applied Surface Science, Vol. 154-155, pp.123-129, 2000.
26.G. Andra, J. Bergmann, F. Falk, E. Ose, and H. Stafast, “ Laser Induced Crystallization of Amorphous Silicon Films on Glass for Thin Film Solar Cells,” phys. stat. sol.(a), Vol. 166, pp.629-634, 1998.
27.Ngo Duong Sinh, Gudrun Andra, Fritz Falk, Ekkehart Ose and Joachim Bergmann, “ Optimization of Layered Laser Crystallization for Thin-Film Crystalline Silicon Solar Cells,” Solar Energy Materials & Solar Cells, Vol. 74, pp.295-303, 2002.
28.D. Della Sala, S. Loreti, L. Fornarini, I. Menicucci, A. Santoni, P. Delli Veneri, C. Minarini, C. Privato and J. Lancock, “ Laser-Assisted Chemical Vapor Deposition of Thick Poly-Si Layers for Solar Cells,” Thin Solid Films, Vol. 403-404, pp.302-306, 2002.
29.Kee-Chan Park, Jae-Hong Jeon, Cheol-Min Park, Min-Cheol Lee and Min-Koo Han, “ The Grain Growth Blocking Effect of Polycrystalline Silicon Film by Thin Native Silicon Oxide Barrier During the Excimer Laser Recrystallization,” Applied Physics Letters, Vol. 75, No. 4, pp.460-462, 1999.
30.Seung-Jae Moon, Minghong Lee and Costas P. Grigoropoulos, “ Heat Transfer and Phase Transformations in Laser Annealing of Thin Si Films,” Journal of Heat Transfer, Vol. 124, pp.253-264, 2002.
31.A. Hadjadj, L. Boufendi, S. Huet, S. Schelz, P. Roca i Cabarrocas, H. Estrade-Szwarckopf and B. Rousseau, “ Role of the Surface Roughness in Laser Induced Crystallization of Nanostructured Silicon Films,” J. Vac. Sci. Technol., A 18(2), pp.529-535, 2000.
32.Takuo Tamura, Kiyoshi Ogata, Michiko Takahashi1, Kenkichi Suzuki1, Hironaru Yamaguchi and Satoru Todoroki, “ Crystal Growth of Laser Annealed Polycrystalline Silicon As a Function of Hydrogen Content of PrecursorsMaterials Research Society,” Materials Research Society, Vol. 621, pp.Q9.5.1-Q9.5.6, 2000.
33.J. S. Im, M. A. Crowder, R. S. Sposili, J. P. Leonard, H. J. Kim, J. H. Yoon, V. V. Gupta, H. Jin Song and H. S. Cho, “ Controlled Super-Lateral Growth of Si Films for Microstructural Manipulation and Optimization,” phys. stat. sol.(a), Vol. 166, pp.603-617, 1998.
34.J. Narayan, S. J. Pennycook, D. Fathy, and O. W. Holland, “ Explosive Recrystallization During Pulsed Laser Irradiation,” J. Vac. Sci. Technol., A2(4), pp.1495-1497, 1984.
35.James S. Im, H.J. Kim and Michael O. Thompson, “ Phase Transformation Mechanisms Involved in Excimer Laser Crystallization of Amorphous Sillicon Films,” Applied Physics Letters, Vol. 63, No. 14, pp.1969-1971, 1993.
36.P. delli Veneri, M. L. Addonizio, A. Imparato, C. Minarini, C. Privato and E. Terzini, “ Application of Nd:YLF Laser to Amorphous Silicon Crystallization Process,” Materials Science and Engineering B, Vol. 69-70, pp.227-231, 2000.
37.P. Ch. Van Der Wilt and R. Ishihara, “ Grain Location Control in Excimer-Laser Crystallization of Thin Silicon Films,” phys. stat. sol.(a), Vol. 166, pp.619-627, 1998
38.Jae-Hong Jeon, Kee-Chan Park, Min-Cheol Lee and Min-Koo Han, “ Two-Step Laser Recrystallization of Poly-Si for Effective Control of Grain Boundaries,” Journal of Non-Crystalline Solids, Vol. 266-269, pp.645-649, 2000.
39.B. Rezek, C. E. Nebel and M. Stutzmann, “ Laser Beam Induced Currents in Polycrystalline Silicon Thin Films Prepared by Interference Laser Crystallization,” Journal of Applied Physics, Vol. 91, pp.4220-4228, 2002.
40.Mutsuko Hatano, Seungjae Moon, Minghong Lee, Kenkichi Suzuki and Costas P. Grigoropoulos, “ In Situ and Ex Situ Diagnostics on Melting and Resolidification Dynamics of Amorphous and Polycrystalline Silicon Thin Films during Excimer Laser Annealing,” Journal of Non-Crystalline Solids, Vol. 266-269, pp.654-658, 2000.
41.M. Nerding, S. Christiansen, J. Krinke, R. Dassow, J. R. Kohler, J.-H. Werner and H.-P. Strunk, “ Grain Populations in Laser-Crystallised Silicon Thin Films on Glass Substrates,” Thin Solid Films, Vol.383, pp.110-112, 2001.
42.Aaron Marmorstein, Apostolos T. Voutsas and Raj Solanki, “ A Systematic Study and Optimization of Parameters Affecting Grain Size and Surface Roughness in Excimer Laser Annealed Polysilicon Thin Films,” Journal of Applied Physics, Vol. 82, No. 9, pp.4303-4309, 1997.
43.Ichirou Asai, Noriji Kato, Mario Fuse and Toshihisa Hamano, “ Poly-Silicon Thin-Film Transistors with Uniform Performance Fabricated by Excimer Laser Annealing,” Japanese Journal of Applied Physics, Part 1, Vol. 32, No. 1B, pp.474-481, 1993.
44.Mutsuko Hatano, Seungjae Moon, Minghong Lee, Kenkichi Suzuki and Costas P. Grigoropoulos, “ Excimer Laser-Induced Temperature Field in Melting and Resolidification of Silicon Thin Films,” Journal of Applied Physics, Vol.87, No. 1, pp.36-43, 2000.
45.Minghong Lee, Seungjae Moon, Mutsuko Hatano, Kenkichi Suzuki and Costas P. Grigoropoulos, “ Relationship between Fluence Gradient and Lateral Grain Growth in Spatially Controlled Excimer Laser Crystallization of Amorphous Silicon Films,” Journal of Applied Physics, Vol.88, No. 9, pp.4994-4999, 2000.
46.James S. Im and H. J. Kim, “ On the Super Lateral Growth Phenomenon Observed in Excimer Laser-Induced Crystallization of Thin Si Film,” Applied Physics Letters, Vol.64, No. 17, pp.2303-2305, 1994.
47.S. Loreti, D. della Sala and M. Garozzo, “ Morphological and Structural Effects of Excimer Laser Treatment of Amorphous Silicon,” Micron, Vol. 31, pp.299-307, 2000.
48.G. Aichmayr, D. Toet, M. Mulato, P. V. Santos, A. Spangenberg, S. Christiansen, M. Albrecht and H. P. Strunk, “ Lateral Grain Growth during the Laser Interference Crystallization of a-Si,” phys. stat. sol.(a), Vol. 166, pp.659-666, 1998.
49.An Shih, Chao-Yu Meng and Si-Chen Lee and Ming-Yau Chern, “ Mechanism for Pillar-Shaped Surface Morphology of Polysilicon Prepared by Excimer Laser Annealing,” Journal of Applied Physics, Vol. 88 No. 6, pp.3725-3733, 2000.
50.D. K. Fork, G. B. Anderson, J. B. Boyce, R. I. Johnson and P. Mei, “ Capillary Waves in Pulsed Excimer Laser Crystallized Amorphous Silicon,” Applied Physics Letters, Vol. 68, No. 15, pp.2138-2140, 1996.
51.R. Carius, A. Wohllebe, L. Houben and H. Wagner, “ Pulsed Laser Crystallization of a-Si:H on Glass: A Comparative Study of 1064 and 532 nm Excitation,” phys. stat. sol.(a), Vol. 166, pp.635-641, 1998.
52.J. B. Boyce, P. Mei, R. T. Fulks and J. Ho, “ Laser Processing of Polysilicon Thin-Film Transistors: Grain Growth and Device Fabrication,” phys. stat. sol.(a), Vol. 166, pp.729-741, 1998.
53.http://www.corning.com.tw/tc/, 2003, 04
54.莊達人編著, “ VLSI製造技術,” 高立圖書有限公司, 台灣, 2002.
55.N. G. Basov, V. A. Danilychev, Y. M. Popov and D. D. Khodkevich, “ Laser Operating in the Vacuum Region of the Spectrum by Excitation of Liquid Xenon with an Electron Beam,” Journal of Experimental and Theoretical Physic Letters, Vol. 12, pp.329, 1970.
56.J. Brannon, “ Excimer Laser Ablation and Etching,” Education Committee, American Vacuum Society, 1993.
57.H. K. Tonshoff, D. Hesse and J. Mommsen, “ Micromachining Using Excimer Laser,” Ann. CIRP, Vol. 42, pp.247-251, 1993.
58.L. M. Galantucci, F. Giusti, “ Excimer Laser Cutting: Experimental Characterization and 3D Numerical Modeling for Polyester Resins,” Ann. CIRP, Vol. 47, pp.141-144, 1998.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔