|
1.J. Morlet, G. Arens, I. Fourgeau, and D. Giard, 1982, ‘‘Wave Propagation and Sampling Theory,’’ Geophysics, Vol. 47, pp. 203-236. 2.J. Morlet, 1983, ‘‘Sampling Theory and Wave propagation,’’ NATO ASI Series, Issues in Acoustic Signal / Image Processing and Recognition, Vol. I, pp. 233-261. 3.A. Grossmann, and J. Morlet, 1984, ‘‘Decomposition of Hardly Functions into Square Integrable wavelets of constant shape,’’ SIAM J. Math. Anal. , Vol. 15, pp. 723-736. 4.I. Daubechies, 1988, ‘‘Orthogonal Based of Compactly Supported Wavelets,’’ Comm. Pure Appl. Math. , Vol. 41, pp. 909-996. 5.Y. Meyer, 1985, ‘‘Principe D’ incertitude Bases Hilbertienes et Algebres Doperateurs ”, Seminaire Bourbaki, No. 662 6.C. De Boor, R. A. DeVore and A. Ron, 1993, ‘‘On the Construction of Multivariate (pre) wavelets,’’ Constr. Approx., Vol. 9, pp. 123-166. 7.S. D. Riemenschneider and Z. Shen, 1992, ‘‘Wavelets and Pre-Wavelets in Low Dimensions,’’ J. Approx. Theory, Vol. 71, pp. 18-38. 8.Ph. Tchamitchian, 1987, ‘‘Biothogonalite et Theory des Operateurs,’’ Rev. Math. Iberoamer, Vol. 3, pp. 123-152. 9.A. Cohen, ‘‘Bi-orthogonal Wavelets,’’ in Wavelets: A Tutorial in Theory and Applications, pp. 123-152. 10.A. Karoui and Vaillancourt, 1994, ‘‘Families of Bi-orthogonal Wavelets,’’ Computer Math Appl , Vol. 28, pp. 25-39. 11.A. Cohen, I. Daubechies and J. Feauveau, 1992, ‘‘Bi-orthogonal Bases of Compactly Supported Wavelets,’’ Comm. Pure Appl. Math. , Vol. 45, pp. 485-560. 12.Y. Meyer, 1986, ‘‘Ondettes et Functions Splines,’’ Lectures given at the University of Torino, Italy. 13.Y. Meyer, 1986, ‘‘Ondettes , Functions Splines et Analyses Graduees,’’ Seminaire EDP , Ecole Polytechnique , Paris , France. 14.S. G. Mallat, 1988, ‘‘A Theory for Multiresolution Signal Decomposition: The Wave Representation,’’ Comm. Pure Appl. Math. , Vol. 41, pp. 674-693. 15.I. Daubechies, 1992, ‘‘Ten Lectures on Wavelets,’’ SIAM. , Philadelphia 16.C. K. Chui and J. Z. Wang, 1991, ‘‘A Cardinal Spline Approach to Wavelets,’’ Proc. Amer. Math. Soc., Vol. 113, pp. 785-793. 17.S. Jaffard, 1992, ‘‘Wavelet Methods for Fast Resolution of Elliptic Problems,’’ SIAM J. Numer. Anal. , Vol.29 No.4, pp. 965-986. 18.C. Zhiqian and E. Weinan, 1992, ‘‘Hierarchical Method for Elliptic Problems Using Wavelets,’’ Comm. In Appl. Numer. Methods, Vol. 8, pp. 819-825. 19.E. Bacry, S. Mallat and G. Papanicolaou, 1992, ‘‘A Wavelets Based Space-time Numerical Method for Partial Differential Equations,’’ Mathematical Modeling and Numerical Analysis, Vol. 26, pp. 793-834. 20.J. C. Xu and W. C. Shann, 1992, ‘‘Wavelet-Galerkin Methods for Two-Point Boundary Value Problems,’’ Numer. Math., Vol. 63, pp. 123-144. 21.S. Qian and J. Weiss, 1993, ‘‘Wavelets and the Numerical Solution of Boundary Value Problems,’’ Appl. Math. Lett. , Vol. 6, pp. 47-52. 22.M. Q. Chen, C. Hwang and Y. P. Shih, 1994, ‘‘A Wavelet-Galerkin Method for Solving population balance equations,’’ Computers & Chem. Engineering. 23.M. Q. Chen, C. Hwang and Y. P. Shih, 1995, ‘‘A Wavelet-Galerkin Method for Solving Stefan Problems,’’ J. Chinese Inst. Chem. Engrs, Vol. 26, No. 2, pp. 103-117. 24.M. Q. Chen, C. Hwang and Y. P. Shih, 1995, ‘‘Identification of A Linear Time-Varying System by A Wavelet-Galerkin Method,’’ Proc. of NSC, ROC-Part A: Physical Science and Engineering. 25.H. L. Resnikoff, 1989, ‘‘Compactly Supported Wavelets and The Solution of Partial Differential Equations,’’ Tech. Report AD890926, Aware, Inc., Cambridge, USA., Vol. 26, pp. 1-9. 26.S. Jaffard and Ph. Laurecot, 1992,‘‘Orthonormal Wavelets, Analysis of Operators, and Applications to Numerical Analysis,’’ In C. K. Chui (ed), Wavelets-A Tutorial in Theory and Applications, pp. 543-601. 27.C. Zhiqian and E. Weinan, 1992,‘‘Hierarchical Method for Elliptic Problems Using Wavelet,’’ Communication in Applied Numerical Methods, Vol. 8, pp. 819-825. 28.W. Dahmen and C. A. Micchelli, 1993,‘‘Using the Refinement Equation for Evaluating Integrals of Wavelets,’’ SIAM J. Math. Anal. , Vol. 30, No. 2, pp. 507-537. 29.G. Beylkin, 1992,‘‘On the Representation of Operators in Bases of Compactly Supported Wavelets,’’ SIAM J. Math. Anal. , Vol. 29, No. 6, pp. 1716-1740. 30.A. Lotto, H. L. Resnikoff and E. Tenenbaum, June 1991,‘‘The Evaluation of Connection Coefficients of Compactly Supported Wavelets,’’ in Y. Maday(ed), Proc. of the French-USA Workshop on Wavelets and Turbulence, Princeton University, New York, Springer-Verlag. 31.K. Amaratunga, J. R. Williams, S. Qian and J. Weiss, 1994,‘‘Wavelet-Galerkin Solutions for One-Dimensional Partial Differnetial Equations,’’ Int. J. for Num. Methods in Engineering, Vol. 37, pp. 2703-2716. 32.J. Ko, A. J. Kurdial and M. S. Pilant, 1995,‘‘A Class of Finite Element Methods Based Orthonormal, Compactly Supported Wavelets,’’ Computational Mechanics, Vol. 16, pp. 235-244. 33.F. Jin and T.Q. Ye, 1999,‘‘Instability Analysis of Prismatic Members by Wavelet Galerkin Method,’’ Advances in Engineering Software, Vol. 30, pp. 361-367. 34.O. C. Zienkiewicz and J. P. De, S. R. Gago and D. W. Kelly, 1983,‘‘The Hierarchical Concept in Finite Element Analysis,’’ Computer and Structures, Vol. 16, pp. 53-65. 35.O. C. Zienkiewicz and J. Z. Zhu, 1992,‘‘The Super-convergent Patch Recovery and A Posteriori Error Estimates. Part 1: The Recovery Technique,’’ Int. J. for Numerical Methods in Engineering, Vol. 33, pp. 1331-1364. 36.G. Strange, 1989,‘‘ Wavelets and Dilation Equation: A Brief Introduction,’’ SIAM Review 31 , pp. 614-627. 37.S. Rao, 1995, Mechanics vibrations, 3rd ed., Addison-Wesley, USA
|