(18.206.177.17) 您好！臺灣時間：2021/04/11 03:33

### 詳目顯示:::

:

• 被引用:4
• 點閱:187
• 評分:
• 下載:34
• 書目收藏:0
 本文主要研究如何將小波理論導入有限元素法，並且應用在結構振動的分析。在傳統的有限元素法中，使用多項式當作內插函數來近似結構的位移，單位元素的自由度會被多項式的階數所限制，因而對於要解結構局部高變化梯度的問題，就必需提高多項式階數或增加分析的單位元素數目，這都將使計算上更為複雜。 在小波有限元素法架構中，將小波尺度函數作為內插函數，小波係數作為單位元素自由度。因為單位元素建構在小波空間，需要建構一空間轉換矩陣將單位元素的自由度轉為節點位移場，才能處理單位元素之間的連接和邊界條件的代入。 文中選擇的 Daubechies小波函數具有正交化、緊密支撐及優秀的頻域及時域局部定位解析特性，導入有限元素法後應用在桿結構振動分析，驗證小波有限元素法的可行性和優於傳統有限元素法的收斂性。再將小波有限元素法推展到樑結構的動態特性分析，驗證小波有限元素法在不同結構的適用性。
 The objective of this dissertation is to study the construction of the wavelet-finite element method. In traditional finite element methods, polynomials are used as interpolation functions to construct an element; the degrees of freedom are restricted by the order of polynomial. When the problem with local high gradient is analyzed by using traditional finite element methods, the higher order polynomial or denser mesh must be employed to ensure the accuracy. In the wavelet-finite element method, wavelet functions are employed as interpolation functions and wavelet coefficients are employed as the degrees of freedom. We must construct the space transform matrix to transform wavelet coefficients to nodal displacements and rotations, because elements are constructed in wavelet space. By using the transform matrix, neighboring elements can be connected and processing boundary conditions can be processed directly. Daubechies scaling functions possess elegant properties of orthonormal, compact support and time-frequency localization. The wavelet-element is introduced into the finite element procedure and the dynamic problems of a bar structure. The accuracy and the convergence rate are verified. Then same dynamic problems of a beam structure are solved by the present wavelet-element modal.
 摘要I Abstract II 誌謝III 目錄V 表目錄VII 圖目錄VIII 符號說明X 第一章緒論 1-1研究背景1 1-2文獻回顧2 1-3本文架構4 第二章Debauchies 小波函數 2-1 小波函數簡介5 2-2 Debauchies 尺度函數及其小波函數之計算8 2-3 尺度函數微分值10 2-4 尺度函數動量值11 2-5 Debauchies 小波函數之聯結係數13 第三章小波有限元素法在桿結構的應用 3-1 桿結構的運動方程式24 3-2 有限元素法25 3-3 小波有限元素法27 3-4 結果與討論30 3-5 結論31 第四章小波有限元素法在樑結構的應用 4-1 樑結構的運動方程式42 4-2 有限元素法43 4-3 小波有限元素法45 4-4 結果與討論51 4-5 結論51 第五章綜合結論與建議 5-1 綜合討論60 5-2 未來研究方向與建議61 參考文獻62
 1.J. Morlet, G. Arens, I. Fourgeau, and D. Giard, 1982, ‘‘Wave Propagation and Sampling Theory,’’ Geophysics, Vol. 47, pp. 203-236.2.J. Morlet, 1983, ‘‘Sampling Theory and Wave propagation,’’ NATO ASI Series, Issues in Acoustic Signal / Image Processing and Recognition, Vol. I, pp. 233-261.3.A. Grossmann, and J. Morlet, 1984, ‘‘Decomposition of Hardly Functions into Square Integrable wavelets of constant shape,’’ SIAM J. Math. Anal. , Vol. 15, pp. 723-736.4.I. Daubechies, 1988, ‘‘Orthogonal Based of Compactly Supported Wavelets,’’ Comm. Pure Appl. Math. , Vol. 41, pp. 909-996.5.Y. Meyer, 1985, ‘‘Principe D’ incertitude Bases Hilbertienes et Algebres Doperateurs ”, Seminaire Bourbaki, No. 6626.C. De Boor, R. A. DeVore and A. Ron, 1993, ‘‘On the Construction of Multivariate (pre) wavelets,’’ Constr. Approx., Vol. 9, pp. 123-166.7.S. D. Riemenschneider and Z. Shen, 1992, ‘‘Wavelets and Pre-Wavelets in Low Dimensions,’’ J. Approx. Theory, Vol. 71, pp. 18-38.8.Ph. Tchamitchian, 1987, ‘‘Biothogonalite et Theory des Operateurs,’’ Rev. Math. Iberoamer, Vol. 3, pp. 123-152.9.A. Cohen, ‘‘Bi-orthogonal Wavelets,’’ in Wavelets: A Tutorial in Theory and Applications, pp. 123-152.10.A. Karoui and Vaillancourt, 1994, ‘‘Families of Bi-orthogonal Wavelets,’’ Computer Math Appl , Vol. 28, pp. 25-39.11.A. Cohen, I. Daubechies and J. Feauveau, 1992, ‘‘Bi-orthogonal Bases of Compactly Supported Wavelets,’’ Comm. Pure Appl. Math. , Vol. 45, pp. 485-560.12.Y. Meyer, 1986, ‘‘Ondettes et Functions Splines,’’ Lectures given at the University of Torino, Italy.13.Y. Meyer, 1986, ‘‘Ondettes , Functions Splines et Analyses Graduees,’’ Seminaire EDP , Ecole Polytechnique , Paris , France.14.S. G. Mallat, 1988, ‘‘A Theory for Multiresolution Signal Decomposition: The Wave Representation,’’ Comm. Pure Appl. Math. , Vol. 41, pp. 674-693.15.I. Daubechies, 1992, ‘‘Ten Lectures on Wavelets,’’ SIAM. , Philadelphia16.C. K. Chui and J. Z. Wang, 1991, ‘‘A Cardinal Spline Approach to Wavelets,’’ Proc. Amer. Math. Soc., Vol. 113, pp. 785-793.17.S. Jaffard, 1992, ‘‘Wavelet Methods for Fast Resolution of Elliptic Problems,’’ SIAM J. Numer. Anal. , Vol.29 No.4, pp. 965-986.18.C. Zhiqian and E. Weinan, 1992, ‘‘Hierarchical Method for Elliptic Problems Using Wavelets,’’ Comm. In Appl. Numer. Methods, Vol. 8, pp. 819-825.19.E. Bacry, S. Mallat and G. Papanicolaou, 1992, ‘‘A Wavelets Based Space-time Numerical Method for Partial Differential Equations,’’ Mathematical Modeling and Numerical Analysis, Vol. 26, pp. 793-834.20.J. C. Xu and W. C. Shann, 1992, ‘‘Wavelet-Galerkin Methods for Two-Point Boundary Value Problems,’’ Numer. Math., Vol. 63, pp. 123-144.21.S. Qian and J. Weiss, 1993, ‘‘Wavelets and the Numerical Solution of Boundary Value Problems,’’ Appl. Math. Lett. , Vol. 6, pp. 47-52.22.M. Q. Chen, C. Hwang and Y. P. Shih, 1994, ‘‘A Wavelet-Galerkin Method for Solving population balance equations,’’ Computers & Chem. Engineering.23.M. Q. Chen, C. Hwang and Y. P. Shih, 1995, ‘‘A Wavelet-Galerkin Method for Solving Stefan Problems,’’ J. Chinese Inst. Chem. Engrs, Vol. 26, No. 2, pp. 103-117.24.M. Q. Chen, C. Hwang and Y. P. Shih, 1995, ‘‘Identification of A Linear Time-Varying System by A Wavelet-Galerkin Method,’’ Proc. of NSC, ROC-Part A: Physical Science and Engineering.25.H. L. Resnikoff, 1989, ‘‘Compactly Supported Wavelets and The Solution of Partial Differential Equations,’’ Tech. Report AD890926, Aware, Inc., Cambridge, USA., Vol. 26, pp. 1-9.26.S. Jaffard and Ph. Laurecot, 1992,‘‘Orthonormal Wavelets, Analysis of Operators, and Applications to Numerical Analysis,’’ In C. K. Chui (ed), Wavelets-A Tutorial in Theory and Applications, pp. 543-601.27.C. Zhiqian and E. Weinan, 1992,‘‘Hierarchical Method for Elliptic Problems Using Wavelet,’’ Communication in Applied Numerical Methods, Vol. 8, pp. 819-825.28.W. Dahmen and C. A. Micchelli, 1993,‘‘Using the Refinement Equation for Evaluating Integrals of Wavelets,’’ SIAM J. Math. Anal. , Vol. 30, No. 2, pp. 507-537.29.G. Beylkin, 1992,‘‘On the Representation of Operators in Bases of Compactly Supported Wavelets,’’ SIAM J. Math. Anal. , Vol. 29, No. 6, pp. 1716-1740.30.A. Lotto, H. L. Resnikoff and E. Tenenbaum, June 1991,‘‘The Evaluation of Connection Coefficients of Compactly Supported Wavelets,’’ in Y. Maday(ed), Proc. of the French-USA Workshop on Wavelets and Turbulence, Princeton University, New York, Springer-Verlag.31.K. Amaratunga, J. R. Williams, S. Qian and J. Weiss, 1994,‘‘Wavelet-Galerkin Solutions for One-Dimensional Partial Differnetial Equations,’’ Int. J. for Num. Methods in Engineering, Vol. 37, pp. 2703-2716.32.J. Ko, A. J. Kurdial and M. S. Pilant, 1995,‘‘A Class of Finite Element Methods Based Orthonormal, Compactly Supported Wavelets,’’ Computational Mechanics, Vol. 16, pp. 235-244.33.F. Jin and T.Q. Ye, 1999,‘‘Instability Analysis of Prismatic Members by Wavelet Galerkin Method,’’ Advances in Engineering Software, Vol. 30, pp. 361-367.34.O. C. Zienkiewicz and J. P. De, S. R. Gago and D. W. Kelly, 1983,‘‘The Hierarchical Concept in Finite Element Analysis,’’ Computer and Structures, Vol. 16, pp. 53-65.35.O. C. Zienkiewicz and J. Z. Zhu, 1992,‘‘The Super-convergent Patch Recovery and A Posteriori Error Estimates. Part 1: The Recovery Technique,’’ Int. J. for Numerical Methods in Engineering, Vol. 33, pp. 1331-1364.36.G. Strange, 1989,‘‘ Wavelets and Dilation Equation: A Brief Introduction,’’ SIAM Review 31 , pp. 614-627.37.S. Rao, 1995, Mechanics vibrations, 3rd ed., Addison-Wesley, USA
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 小波有限元素法在旋轉葉片上的振動分析 2 以數值方法分析輪胎之振動與其所引起之噪音 3 薄型光碟機機構之振動分析與模擬 4 增進活塞熱傳效率之數值模擬 5 以有限元素法分析觸地輪胎之振動 6 應用電子斑點干涉術探討含裂縫及非均厚平板之振動特性 7 打樁引致地表振動的數值模擬 8 中頻結構噪音傳遞及輻射至水中噪音之預估 9 列車/軌道系統之垂直振動分析 10 電聯車轉向架之應力與振動分析 11 含拘束阻尼層圓板的振動與動態穩定性 12 高性能電動機之電磁特性分析與設計 13 有限元素法應用於梁在單層彈性基礎上之振動分析 14 工具機之模態測試與性能改善 15 高架軌道橋樑之減振防噪研究

 1 蕭明熙(1994)降膽固醇與抗動脈粥狀硬化藥物。中國化學會誌，52(4):442-453。 2 陳文章、林洲民、劉光哲，糖類基質饋料批式醱酵生產環狀糊精葡萄糖甘移轉酵素，中國農業化學會誌，第三十二期，第565-573頁(1994)。 3 王蘊蘭、洪哲穎、張勝善、簡宏堅、許文輝，篩選Monascus pilosus藥物抗性突變株以獲得Monacolin K高產菌株，中國農業化學會誌，第三十六期，第192-200頁(1998)。

 1 小波有限元素法在旋轉葉片上的振動分析 2 3-D模型重建及有限元素法軟體前處理發展 3 含裂縫移動樑之振動分析 4 輸入修正法於天車系統運動之振動抑制控制、實驗驗證與有限元素法結構動態分析 5 有限元素法圖形介面的發展及自動網格化 6 高速鐵路高架結構系統振動噪音調查與分析 7 電聯車轉向架之應力與振動分析 8 小波分析應用於奈米數位疊紋法之研究 9 自強號車體與齒輪箱振動分析與量測 10 以混合逆算法預測十二吋矽晶圓在快速熱製程中所加入的熱通量 11 IC封裝內金線偏移之研究 12 斜面和溝槽的準分子微細加工 13 非均勻厚度壓電超音波換能器之分析模擬、製作與特性量測 14 鋅鋁合金微壓印成形之研究 15 應用逆向工程技術於虛擬三次元量測系統之發展

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室