(34.239.150.57) 您好!臺灣時間:2021/04/18 22:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王琳麒
研究生(外文):Lin-Chi Wang
論文名稱:污染源及大氣中戴奧辛/呋喃之特徵
論文名稱(外文):Characteristics of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans from Emission Sources and in the Atmosphere
指導教授:李文智李文智引用關係
指導教授(外文):Wen-Jhy Lee
學位類別:博士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:240
中文關鍵詞:排放係數大氣煙道戴奧辛/呋喃氯含量
外文關鍵詞:chlorine contentemission factoratmospherestack flue gasPCDD/Fs
相關次數:
  • 被引用被引用:66
  • 點閱點閱:553
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:127
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對污染源及大氣中戴奧辛/呋喃(PCDD/Fs)之特徵進行探討,參考世界各主要工業國家其最大之PCDD/Fs排放源,並考量國內社會與經濟之活動,選擇台灣地區本土13座大型都市垃圾焚化爐、5座醫療廢棄物焚化爐、4座燒結爐、4座電弧爐、4座二次鋁精煉廠與2座火葬場進行PCDD/Fs排放之研究,以建立國內重要PCDD/Fs排放源之排放係數並推估臺灣地區PCDD/Fs之年排放量。此外亦以主要成分分析法探討廢棄物中氯含量與PCDD/Fs生成機制之關係。最後評估都市垃圾焚化爐所排放PCDD/Fs對大氣環境之影響。所得結論歸納如下:1.都市垃圾焚化爐、醫療廢棄物焚化爐、使用SCR之燒結爐、無SCR之燒結爐、電弧爐、二次鋁精煉廠及火葬場煙道廢氣PCDD/Fs之排放係數分別為0.0961、20.0、0.970、3.13、1.82、21.5 μg I-TEQ/ton-(waste or feedstock)及9.86 μg I-TEQ/body。2.台灣都市垃圾焚化爐、醫療廢棄物焚化爐、燒結爐、電弧爐、二次鋁精煉廠及火葬場等重要PCDD/Fs排放源之年排放量分別為0.750、0.369、44.7、19.9、9.52與0.838 g I-TEQ/year。在台灣地區這六種重要排放源排放PCDD/Fs至大氣之年排放量合計為76.1 g I-TEQ/year。若考慮其佔總固定污染源排放量之60∼80%,則每年台灣地區固定污染源排放PCDD/Fs至大氣之量預估約為95.1∼127 g I-TEQ/year。本研究結果亦顯示,台灣都市垃圾焚化爐之PCDD/Fs年排放量與金屬冶煉業之值比較起來顯的非常小,此現象與其他先進國家不同。其原因為台灣地區對都市垃圾焚化爐實施嚴格之PCDD/Fs排放標準(0.1 ng I-TEQ/Nm3)。3. 以質量與毒性之觀點來看,選擇性觸媒轉換器(SCR)對總PCDD/Fs之去除率分別為75.4%與69%。大部分的PCDD/Fs已被SCR分解而不僅是將PCDD/Fs去氯化作用。4. 都市垃圾焚化爐與醫療廢棄物焚化爐之指標PCDD/Fs分別為OCDD、1,2,3,4,6,7,8-HpCDD、OCDF與1,2,3,4,7,8,9-HpCDF、1,2,3,7,8-PeCDF、OCDF;金屬冶煉之指標PCDD/Fs則為2,3,7,8-TeCDF、1,2,3,7,8-PeCDF、2,3,4,7,8- PeCDF。5. 當廢棄物中氯含量低於0.8% - 1.1%閥值時,PCDDs具有生成之優勢,然而,當廢棄物中氯含量高於0.8% - 1.1%閥值時,PCDFs具有生成之優勢,原因可能與當PCDD/Fs由PAHs生成時,PCDFs之生成速率高於PCDDs有關。6. 國家空氣品質背景監測站大氣中PCDD/Fs濃度為0.00634 pg I-TEQ/Nm3。7. 火葬場對周遭大氣之影響較焚化廠來的顯著,其原因為缺乏空氣污染防治設備及煙囪高度太低,使煙道廢氣擴散不佳所致。8. 台灣南部地區七座空氣品質監測站大氣PCDD/Fs平均濃度為0.0931 pg I-TEQ/Nm3,與KC與KS焚化廠最大著地濃度處大氣PCDD/Fs平均濃度相近,但約為大氣PCDD/Fs背景濃度之15倍。此結果顯示台灣南部地區具有PCDD/Fs之污染排放源。9. 由主要成份分析、階層集群分析與指標PCDD/Fs可知,台灣南部地區大氣之主要疑似PCDD/Fs污染源為金屬冶煉,而交通污染源對大氣中PCDD/Fs之影響亦不可忽視。
This study investigates the characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from emission sources and in the atmosphere. By consulting the PCDD/F inventories of other countries, 13 municipal solid waste incinerators (MSWIs), five medical waste incinerators (MWIs), four sinter plants, four electric arc furnaces (EAFs), four secondary aluminum smelters (secondary ALSs) and two crematories were chosen to investigate after considering the social and industrial activities in Taiwan. The emission factors of PCDD/Fs from the stack flue gases of these emission sources were determined and the overall PCDD/F emission quantities to the atmosphere in Taiwan is estimated. In addition, this study attempts to clarify the effects of chlorine content in the waste on the formation mechanisms of PCDD/Fs in full scale incinerators by using the principal component analysis (PCA) to compare the congener profiles of PCDD/Fs in the stack flue gases. Finally, the influence by the emission of MSWIs on the atmosphere are assessed. The conclusions of this study are summarized as follows. 1. The emission factors of PCDD/Fs from the stack flue gases of MSWIs, MWIs, sinter plants with selective catalytic reduction (SCR), sinter plants without SCR, EAFs, secondary ALSs and crematories are 0.0961、20.0、0.970、3.13、1.82、21.5 μg I-TEQ/ton-(waste or feedstock) and 9.86 μg I-TEQ/body, respectively. 2. In Taiwan, the annual emissions of PCDD/Fs from MSWIs, MWIs, sinter plants, EAFs, secondary ALSs and crematories are 0.750、0.369、44.7、19.9、9.52 and 0.838 g I-TEQ/year; the estimated total annual emission of PCDD/Fs from these six important sources is 76.1 g I-TEQ/year. Considering that it represents 60-80% of the total PCDD/F emissions, the total PCDD/F emissions into the atmosphere in Taiwan is estimated as 95.1-127 g I-TEQ/year. These results reveal that the annual emissions of PCDD/Fs from MSWIs are very minor to those of metallurgical processes since strict emission limit have been applied to MSWIs in Taiwan. 3. PCDD/Fs are indeed decomposed (75.5% and 69% on ng and ng TEQ bases, respectively) by SCR and not only reduced in degree of chlorination. 4. The indicatory PCDD/Fs of MSWIs and MWIs are OCDD, 1,2,3,4,6,7,8-HpCDD, OCDF and 1,2,3,4,7,8,9-HpCDF, 1,2,3,7,8-PeCDF, OCDF, respectively; while those of metallurgical processes are 2,3,7,8-TeCDF, 1,2,3,7,8-PeCDF and 2,3,4,7,8- PeCDF. 5. When the chlorine level in the feeding waste is below the threshold value at 0.8% - 1.1%, the formation of PCDDs dominates. While the chlorine level in the feeding waste exceeds this threshold, the rates of formation of PCDFs increase faster than those of PCDDs, probably because when PCDD/Fs are formed from PAHs, the formation rates of PCDFs are higher than those of PCDDs. 6. The PCDD/Fs concentration in the atmosphere of background area is 0.00634 pg I-TEQ/Nm3. 7. The impact of the crematories to the surrounding environment was greater than that of MSWIs because the crematory had a low stack and installed without appropriate air pollution control devices. 8. The mean PCDD/Fs concentration of air quality monitoring stations was 0.0931 pg I-TEQ/Nm3, which was close to that of maximum ground concentrations of MSWIs and 15 times higher than that of background area. It revealed that PCDD/Fs emission sources existed in southern Taiwan. 9. By using PCA, cluster analysis and indicatory PCDD/Fs, the metallurgical processes were identified as the dominating PCDD/Fs emission sources in southern Taiwan, meanwhile, the influence of mobile sources can not be ignored.
總目錄
授權書 I
中文摘要 III
英文摘要 V
總目錄 VII
圖目錄 XII
表目錄 XVI
第一章 前言 1
第二章 文獻回顧 3
2-1 PCDD/Fs之物理化學性質 3
2-2 PCDD/Fs對人體健康及環境的可能影響 4
2-3 PCDD/Fs之形成機制 8
2-3-1 de Novo合成反應 8
2-3-2 經由前驅物質之異相觸媒合成 11
2-3-3 PCDDs與PCDFs形成機制之相異處 11
2-4 環境中PCDD/Fs之來源 12
2-4-1 都市垃圾焚化爐 17
2-4-2 醫療廢棄物焚化爐 18
2-4-3 燒結爐 19
2-4-4 電弧爐 21
2-4-5二次鋁精煉廠 23
2-4-6 火葬場 25
2-4-7 廢棄物中之氯含量及其對PCDD/Fs生成之影響 25
2-5 焚化爐中PCDD/Fs之分佈與宿命 27
2-6 PCDD/Fs生成之控制技術 32
2-6-1 去除煙道廢氣中之PCDD/Fs 32
2-6-2 避免PCDD/Fs在焚化爐之後燃燒區生成 35
2-7 大氣中之PCDD/Fs 42
2-7-1 影響大氣中PCDD/Fs濃度之因子 42
2-7-2 大氣中PCDD/Fs之趨勢 42
2-7-3 大氣中PCDD/Fs之濃度與特徵 43
2-8 受體模式 45
2-8-1 受體模式之基本理論 45
2-8-2特徵分析(Signature Analyses) 45
第三章 實驗設備與方法 51
3-1 採樣規劃 51
3-1-1 PCDD/Fs排放源 51
3-1-2 周界大氣 57
3-2 採樣設備及方法 64
3-2-1 煙道採樣 64
3-2-1-1 PCDD/Fs煙道廢氣採樣設備 64
3-2-1-2 煙道PCDD/Fs採樣器抽氣體積之計算 66
3-2-1-3 PCDD/Fs煙道廢氣採樣方法 69
3-2-2 大氣採樣 74
3-2-2-1 PS-1高量空氣採樣器 74
3-2-2-2 氣固相採樣模組 74
3-2-2-3 流量校正 78
3-2-2-4 PCDD/Fs大氣採樣方法 83
3-2-2-5 PCDD/Fs大氣採樣之標準流量與體積 84
3-3 PCDD/Fs樣品之前處理 86
3-3-1 煙道氣樣品之前處理 86
3-3-2 大氣樣品之前處理 89
3-4 儀器分析 91
3-5結果處理 95
第四章 品質保證與品質控制 98
4-1 實驗藥品與試劑 98
4-2 採樣品質保證與品質控制之執行 103
4-2-1 煙道採樣 103
4-2-2 大氣採樣 105
4-3 PCDD/Fs樣品分析前處理品質保證與品質控制之執行 107
4-3-1 煙道PCDD/Fs樣品 107
4-3-2 大氣PCDD/Fs樣品 107
4-3-3 實驗室PCDD/Fs測試能力範圍 108
4-4 高解析度氣相層析儀與高解析度質譜儀 110
4-5質譜圖鑑定準則 112
4-6實驗室品管程序 112
第五章 結果與討論 114
5-1 PCDD/Fs排放源 114
5-1-1都市垃圾焚化爐 114
5-1-1-1都市垃圾焚化爐煙道廢氣PCDD/Fs之濃度 114
5-1-1-2都市垃圾焚化爐煙道廢氣PCDD/Fs之特徵剖面 114
5-1-1-3 都市垃圾焚化爐煙道廢氣PCDD/Fs之排放係數 121
5-1-2 醫療廢棄物焚化爐 121
5-1-2-1 醫療廢棄物焚化爐煙道廢氣PCDD/Fs之濃度 121
5-1-2-2 醫療廢棄物焚化爐煙道廢氣PCDD/Fs之特徵剖面 121
5-1-2-3 醫療廢棄物焚化爐煙道廢氣PCDD/Fs之排放係數 125
5-1-2-4 醫療廢棄物焚化爐底灰、飛灰與文式洗滌塔廢水中之PCDD/Fs 125
5-1-2-5 醫療廢棄物焚化爐底灰、飛灰與文式洗滌塔廢水中PCDD/Fs之特徵剖面 129
5-1-3 批次廢棄物焚化爐煙道廢氣中PCDD/Fs之記憶效應 133
5-1-4 燒結爐 135
5-1-4-1 燒結爐煙道廢氣PCDD/Fs之濃度 135
5-1-4-2 燒結爐煙道廢氣PCDD/Fs之特徵剖面 137
5-1-4-3 燒結爐煙道廢氣PCDD/Fs之排放係數 139
5-1-4-4 SCR對PCDD/Fs之去除率 139
5-1-5 電弧爐 143
5-1-5-1 電弧爐煙道廢氣PCDD/Fs之濃度 143
5-1-5-2 電弧爐煙道廢氣PCDD/Fs之特徵剖面 143
5-1-5-3 電弧爐煙道廢氣PCDD/Fs之排放係數 146
5-1-6 二次鋁精煉廠 146
5-1-6-1 二次鋁精煉廠煙道廢氣PCDD/Fs之濃度 146
5-1-6-2 二次鋁精煉廠煙道廢氣PCDD/Fs之特徵剖面 146
5-1-6-3 二次鋁精煉廠煙道廢氣PCDD/Fs之排放係數 151
5-1-7 火葬場 151
5-1-7-1 火葬場煙道廢氣PCDD/Fs之濃度 151
5-1-7-2火葬場煙道廢氣PCDD/Fs之特徵剖面 151
5-1-7-3火葬場煙道廢氣PCDD/Fs之排放係數 156
5-1-7-4 袋式集塵器對PCDD/Fs之去除率 156
5-2 指標PCDD/Fs 159
5-3 重要PCDD/Fs排放源之年排放量 163
5-4 廢棄物中氯含量對所排放PCDD/Fs之影響 165
5-4-1 PCDD/Fs排放源之基本資料 165
5-4-2 廢棄物中之氯含量 167
5-4-3 煙道廢氣(尾氣)中PCDD/Fs之特徵剖面 167
5-4-4 燃燒室、空氣污染防治設備與廢棄物之含氯量對PCDD/Fs生成之影響 173
5-4-5 廢棄物含氯量對PCDD/Fs生成之影響 173
5-5 大氣中PCDD/Fs之特徵 177
5-5-1 空氣品質背景監測站大氣中PCDD/Fs之特徵 177
5-5-2 台灣南部地區KC及KS焚化廠周界大氣PCDD/Fs之特徵 177
5-5-3 火葬場KA周界大氣PCDD/Fs之特徵 184
5-5-4 KC焚化廠與KA火葬場對其周界大氣PCDD/Fs之影響 184
5-5-5 KC及KS焚化廠最大著地濃度處大氣PCDD/Fs之特徵 191
5-5-6 台灣南部地區空氣品質監測站之大氣PCDD/Fs特徵 200
5-5-7 台灣南部地區大氣PCDD/Fs濃度分佈 200
5-6 台灣南部地區大氣中PCDD/Fs污染源之鑑定 210
5-6-1 主要成份分析與階層集群分析 210
5-6-2大氣中之指標PCDD/Fs 213
第六章 結論與建議 215
6-1 結論 215
6-2建議 219

參考文獻 220
自述 236

圖目錄
圖2-1 PCDD/Fs之結構 3
圖2-2 de Novo 合成過程所生成之含氯有機物 11
圖2-3 PCDDs經由2,4,5-TCP分子之直接縮合與經由自由基形成之反應路徑 13
圖2-4 推測之PCDD/Fs反應路徑圖 13
圖2-5 以半乾式洗滌塔及袋式集塵器為空氣污染防治設備之都市垃圾焚化爐煙道廢氣中PCDD/Fs之特徵剖面 17
圖2-6 醫療廢棄物焚化爐煙道廢氣中PCDD/Fs之特徵剖面 20
圖2-7 典型燒結爐之示意圖 21
圖2-8 燒結爐煙道廢氣中PCDD/Fs之特徵剖面 22
圖2-9 典型電弧爐生產鋼鐵之示意圖 22
圖2-10 電弧爐煙道廢氣中PCDD/Fs之特徵剖面 24
圖2-11 二次鋁精煉廠煙道廢氣中PCDD/Fs之特徵剖面 24
圖2-12 火葬場煙道廢氣中PCDD/Fs之特徵剖面 26
圖2-13 PCDD/Fs在鍋爐與袋式集塵器之質量平衡 29
圖2-14 PCDD/Fs在濕式洗滌塔與觸媒轉化器之質量平衡 29
圖2-15 經過濕式洗滌塔前後之煙道廢氣內PCDD/Fs比較(氣相部分) 30
圖2-16 歐基理得直線距離平方之取法 47
圖2-17 以階層集群分析法比較不同來源之PCDD/Fs特徵剖面 47
圖2-18 以PCA分析不同來源之PCDD/Fs剖面 50
圖3-1 KC及KS廠、火葬場與其周界大氣採樣點 60
圖3-2 都市垃圾焚化爐最大落地濃度大氣採樣點 62
圖3-3 空氣品質監測站大氣採樣點 63
圖3-4 PCDD/Fs煙道廢氣採樣設備 65
圖3-5 PS-1高量空氣採樣器 75
圖3-6 氣固相採樣模組 76
圖3-7 玻璃套筒及攜帶罐 77
圖3-8 以羅德斯表校正小孔流量計 79
圖3-9 PS-1採樣器現場校正圖 80
圖3-10 煙道氣PCDD/Fs樣品之前處理流程 90
圖4-1 品管程序流程圖 113
圖5-1 都市垃圾焚化爐(M1~M7)煙道廢氣PCDD/Fs之特徵剖面 118
圖5-2 醫療廢棄物焚化爐(H1~H5)煙道廢氣PCDD/Fs之特徵剖面 124
圖5-3 醫療廢棄物焚化爐底灰、飛灰與文式洗滌塔廢水中PCDD/Fs之特徵剖面 130
圖5-4 焚化爐H1與H2煙道廢氣中PCDD/Fs之濃度剖面 134
圖5-5 飛灰與煙道廢氣H11與H12 PCDD/Fs百分比組成之線性回歸分析 135
圖5-6 有SCR及無SCR之燒結爐煙道廢氣PCDD/Fs特徵剖面 138
圖5-7 電弧爐煙道廢氣中PCDD/Fs之特徵剖面 145
圖5-8 二次鋁精煉廠煙道廢氣中PCDD/Fs之特徵剖面 150
圖5-9 火葬場煙道廢氣中PCDD/Fs之特徵剖面 155
圖5-10 都市垃圾焚化爐、醫療廢棄物焚化爐、燒結爐、電弧爐、二次鋁精煉廠與火葬場之煙道廢氣特徵剖面 160
圖5-11 無鉛汽油車(UGFV)及柴油車(DFV)尾氣中PCDD/Fs特徵剖面 161
圖5-12 H1、H2、H3、H4與H5煙道廢氣中PCDD/Fs之特徵剖面 169
圖5-13 M1、M2、M3與M4煙道廢氣中PCDD/Fs之特徵剖面 170
圖5-14 M5、M6、M7與M8煙道廢氣中PCDD/Fs之特徵剖面 171
圖5-15 UGFV、DFV、PVC1與PVC2煙道廢氣中PCDD/Fs之特徵剖面 172
圖5-16 以PCA進行分析17種PCDD/F 排放源所得之Score plot 174
圖5-17 PCA分析所得之correlation circle 175
圖5-18 大氣PCDD/Fs背景之特徵剖面 179
圖5-19 KC焚化廠周界大氣PCDD/Fs之特徵剖面 182
圖5-20 KS焚化廠周界大氣PCDD/Fs之特徵剖面 183
圖5-21 火葬場KA周界大氣PCDD/Fs之特徵剖面 186
圖5-22 KC與KS焚化廠煙道廢氣PCDD/Fs之特徵剖面 187
圖5-23 火葬場KA煙道廢氣之特徵剖面 188
圖5-24 KC焚化廠與火葬場KA煙道與其周界大氣PCDD/Fs之主要成分分析及階層集群分析189
圖5-25 焚化廠與火葬場周界大氣PCDD/Fs濃度值與風向之關係 190
圖5-26 KC焚化廠最大著地濃度處大氣PCDD/Fs之特徵剖面 194
圖5-27 KS焚化廠最大著地濃度處大氣PCDD/Fs之特徵剖面 195
圖5-28 KC及KS廠最大著地濃度點第一次採樣濃度值與風向之關係 196
圖5-29 KC及KS廠最大著地濃度點第二次採樣濃度值與風向之關係 197
圖5-30 KC及KS廠最大著地濃度點第三次採樣濃度值與風向之關係 198
圖5-31 KC及KS廠最大著地濃度點第四次採樣濃度值與風向之關係 199
圖5-32 空氣品質監測站大氣PCDD/Fs之特徵剖面 203
圖5-33 空氣品質監測站第一次採樣濃度值與風向之關係 205
圖5-34 空氣品質監測站第二次採樣濃度值與風向之關係 206
圖5-35 空氣品質監測站第三次採樣濃度值與風向之關係 207
圖5-36 空氣品質監測站第四次採樣濃度值與風向之關係 208
圖5-37 台灣南部地區大氣PCDD/Fs之等濃度分佈曲線 209
圖5-38 大氣與KC廠、KS廠及其他PCDD/Fs污染源煙道廢氣之主要成份分析 211
圖5-39 大氣與KC廠、KS廠及其他PCDD/Fs污染源煙道廢氣之階層集群分析 212


表目錄
表2-1 PCDD/Fs之物化性質 4
表2-2 PCDD/Fs毒性當量因子(Toxic Equivalency Factor, TEF) 7
表2-3 PCDD/Fs生成之文獻 9
表2-4 PCDD/Fs之生成速率 10
表2-5 美國境內不同來源之PCDD/Fs年排放量推估表 14
表2-6 最重要之PCDD/Fs排放源與其所佔總排放量之百分比 16
表2-7 煙道廢氣之PCDD/Fs濃度(乾燥氣,11%含氧量) 28
表2-8 固體與液體殘留物之PCDD/Fs之含量 28
表2-9 焚化爐之燃燒區中PCDD/Fs之平衡 (11座焚化爐之平均值) 30
表2-10 焚化爐之後燃燒區中PCDD/Fs之平衡 (11座焚化爐之平均值) 31
表2-11 焚化爐中PCDD/Fs之平衡 (11座焚化爐之平均值) 31
表2-12 經由洗滌塔、袋式集塵器及活性碳吸附之組合來去除煙道氣中之PCDD/Fs 34
表2-13 以SCR分解煙道氣中PCDD/Fs之文獻 35
表2-14 含硫物質對PCDD/Fs之影響 38
表2-15 吸附劑對PCDD/Fs之影響 40
表2-16 噴射氨對PCDD/F之影響 41
表2-17 城市或地區中大氣PCDD/Fs之濃度 44
表3-1 都市垃圾焚化爐(M1∼M13)之基本資料 52
表3-2 醫療廢棄物焚化爐(H1∼H5)之基本資料 53
表3-3 醫療廢棄物焚化爐H1與H2之採樣時間表 53
表3-4 燒結爐S1、S2、S3與S4之基本資料 54
表3-5 電弧爐(E1∼E4)之基本資料 56
表3-6 二次鋁精煉廠(A1∼A4)之基本資料 56
表3-7 火葬場(C1與C2)之基本資料 57
表3-8 大氣PCDD/Fs採樣時程表 58
表3-9 採樣點位置之經緯度與二度分帶座標 59
表3-10 PCDD/Fs待測物和13C12-同位素標幟物之監測離子群 92
表3-11 PCDDs及PCDFs離子強度比之品管範圍 94
表4-1 時窗標準品及流出順序(DB-5管柱)和層析管柱解析度標準品 100
表4-2 13C12-同位素標幟物組成及工作標準品溶液 101
表4-3 起始檢量校正標準溶液組成一覽表 102
表4-4 採樣設備校正品質規定一覽表 104
表4-5 校正品質規定 106
表4-6 單一實驗室現場空白分析結果(n=8) 106
表4-7品保品管需求表 108
表4-8 實驗室PCDD/Fs測試能力範圍 109
表4-9 檢量校正相對感應因子品管限值 111
表5-1 十三座都市垃圾焚化爐煙道廢氣中PCDD/Fs濃度(pg/Nm3)及RSD(%) 115
表5-2 十三座都市垃圾焚化爐煙道廢氣中PCDD/Fs之平均百分比組成(%)及RSD(%) 120
表5-3 十三座都市垃圾焚化爐煙道廢氣PCDD/Fs排放係數 122
表5-4 五座醫療廢棄物焚化爐煙道廢氣中PCDD/Fs濃度(pg/Nm3)及RSD(%) 123
表5-5 五座醫療廢棄物焚化爐煙道廢氣中PCDD/Fs之平均百分比組成(%)及RSD(%) 126
表5-6 五座醫療廢棄物焚化爐煙道廢氣PCDD/Fs排放係數 127
表5-7 醫療廢棄物焚化爐H1之底灰(ng/g)、飛灰(ng/g)與文式洗滌塔廢水(pg /L)中PCDD/Fs含量 128
表5-8 醫療廢棄物焚化爐H1之底灰、飛灰與文式洗滌塔廢水PCDD/Fs排放係數(μg I-TEQ/ton-waste) 131
表5-9 醫療廢棄物焚化爐H1之PCDD/Fs I-TEQ排放百分比(%) 132
表5-10 四座燒結爐煙道廢氣中PCDD/Fs濃度(pg/Nm3)及RSD(%) 136
表5-11 燒結爐煙道廢氣中同氯數取代PCDD/Fs之平均質量百分比例(%)及其標準偏差 139
表5-12四座燒結爐煙道廢氣PCDD/Fs之排放係數 140
表5-13文獻中燒結爐煙道廢氣PCDD/Fs之排放係數 141
表5-14 SCR對燒結爐煙道廢氣中PCDD/Fs之去除率(%) 142
表5-15 四座電弧爐煙道廢氣中PCDD/Fs濃度(pg/Nm3)及RSD(%) 144
表5-16電弧爐煙道廢氣PCDD/Fs之排放係數 147
表5-17文獻中電弧爐煙道廢氣PCDD/Fs之排放係數 148
表5-18 四座二次鋁精煉廠煙道廢氣中PCDD/Fs濃度(pg/Nm3)及RSD(%) 149
表5-19二次鋁精煉廠煙道廢氣PCDD/Fs之排放係數 152
表5-20文獻中二次鋁精煉廠煙道廢氣PCDD/Fs之排放係數 153
表5-21火葬場煙道廢氣中PCDD/Fs濃度(pg/Nm3)及RSD(%) 154
表5-22火葬場煙道廢氣PCDD/Fs之排放係數 157
表5-23文獻中火葬場煙道廢氣PCDD/Fs之排放係數 158
表5-24 重要PCDD/Fs 排放源煙道廢氣中之指標PCDD/Fs 162
表5-25 台灣重要PCDD/Fs 污染源之年排放量 164
表5-26 H1、H2、M1與M2之基本資料 166
表5-27 由文獻所選出PCDD/Fs排放源之基本資料 168
表5-28 燃料或廢棄物中氯含量之基本資料 168
表5-29 空氣品質背景監測站之大氣中PCDD/Fs濃度(pg/Nm3) 178
表5-30 KC焚化廠周界大氣之PCDD/Fs濃度(pg/Nm3) 180
表5-31 KS焚化廠周界大氣之PCDD/Fs濃度(pg/Nm3) 181
表5-32 火葬場KA周界大氣之PCDD/Fs濃度(pg/Nm3) 185
表5-33 KC焚化廠最大著地濃度處大氣之PCDD/Fs濃度 192
表5-34 KS焚化廠最大著地濃度處大氣之PCDD/Fs濃度 193
表5-35 七座空氣品質監測站大氣中之PCDD/Fs濃度(pg/Nm3) 201
表5-36 台灣南部地區大氣中之指標PCDD/Fs及其疑似PCDD/Fs污染源 214
Abad, E.; Caixach, J.; Rivera, J. “PCDD/F from Emission Sources and Ambient Air in Northeast Spain”, Chemosphere, Vol. 35, pp. 453-456, 1997.
Acharya, P.; DeCicco, S. G.; Novak, R. G. “Factors that can Influence and Control the Emissions of Dioxins and Furans from Hazardous Waste Incinerators” Journal of Air and Waste Management Association, Vol. 41, pp. 1605-1615, 1991.
Aittola, J. P.; Paasivirta, J.; Vattulainen, A. “Measurements of Organochloro Compounds at a Metal Reclamation Plant” Chemosphere , Vol. 27, pp.65-72, 1993.
Alcock, R. E.; Gemmill, R.; Jones, K. C. “Improvements to the UK PCDD/F and PCB Atmospheric Emission Inventory following An Emissions Measurement Programme” Chemosphere, Vol. 38, pp. 759-770, 1999.
Alcock, R. E.; Jones, K. C. “Dioxins in the Environment: A Review of Trend Data” Environmental Science and Technology, Vol. 30, pp. 3133-3143, 1996.
Altwicker, E. R. “Formation of Precursors to Chlorinated Dioxin/furans under Heterogeneous Conditions” Combustion Science and Technology, Vol. 88, pp. 349-368, 1993.
Anderson, D. R.; Fisher, R. “Sources of Dioxins in the United Kingdom: the Steel Industry and Other Sources” Chemosphere, Vol. 46, pp. 371–381, 2002.
Ballschmiter, K.; Zoller, W.; Buchert, H.; Class, T. F. Z. Analytical Chemistry, Vol. 322, pp. 587, 1985.
Blifford, I. H.; Meeker, G. O. “A Factor Analysis Model of Large Scale Pollution”, Atmospheric Environment, Vol. 1, pp. 147-157, 1967.
Boos, R.; Budin, R.; Hartl, H.; Stock, M.; Wurst, F. “PCDD- and PCDF- Destruction by a SCR-UNIT in a Municipal Waste Incinerator” Chemosphere, Vol. 25, pp. 375-382, 1992.
Buekens, A.; Huang, H., “Review: Comparative Evaluation of Techniques for Controlling the Formation and Emission of Chlorinated Dioxins/Furans in Municipal Waste Incineration” Journal of Hazardous Materials, Vol. 62, pp. 1-33, 1998.
Buekens, A.; Cornelis, E.; Huang, H.; Dewettinck, T. “Fingerprints of Dioxin from Thermal Industrial Processes” Chemosphere, Vol. 40, pp. 1021-1024, 2000.
Cains, P. W.; Mccausland, L. J.; Fernandes, A. R.; Dyke, P. “Polychlorinated Dibenzo-p-dioxins and Dibenzofurans Formation in Incineration: Effects of Fly Ash and Carbon Source” Environmental Science and Technology , Vol.31, pp. 776-785, 1997.
Carroll, W. F. Jr.; Berger, T. C.; Borrelli, F. E.; Garrity, P. J.; Jacobs, R. A.; Ledvina, J.; Lewis, J. W.; McCreedy, R. L.; Smith, T. P.; Tuhovak, D. R.; Weston, A. F. “Characterization of Emissions of Dioxins and Furans from Ethylene Dichloride, Vinyl Chloride Monomer and Polyvinyl Chloride Facilities in the United States. Consolidated Report” Chemosphere, Vol.43, pp. 689-700, 2001.
Caserini, S.; Monguzzi, A. M. “PCDD/Fs Emissions Inventory in the Lombardy Region: Results and Uncertainties” Chemosphere, Vol.48, pp. 779-786, 2002.
Chang, M. B.; Lee, C. H. “Dioxin Levels in the Emissions from Municipal Waste Incinerators in Taiwan” Chemosphere, Vol. 36, pp. 2483-2490, 1998.
Cleverly, D.; Schaum, J.; Winter, D.; Schweer, G.; O'Rourke, K. “The Inventory of Sources of Dioxin in the United States”, Organohalogen Compounds, Vol. 36, pp. 1-6, 1998.
Coleman, P. J.; Lee, R. G. M.; Alcock, R. E.; Jones, K. C. “Observations on PAH, PCB, and PCDD/F Trends in U.K. Urban Air 1991-1995”, Environmental Science and Technology, Vol. 31, pp. 2120-2124, 1997.
Dickson, L. C.; Lenoir, D.; Hutzinger, O. “Surface-catalyzed Formation of Chlorinated Dibenzodioxins and Dibenzofurans during Incineration”, Chemosphere, Vol. 19, pp. 277-282, 1989.
Dickson, L. C.; Lenoir, D.; Hutzinger, O. “Quantitative Comparison of de Novo and Formation of Polychlorinated Dibenzo-p-dioxins under Simulated Municipal Solid Waste Incinerator Postcombustion Conditions” Environmental Science and Technology, Vol. 26, pp. 1822-1828, 1992.
Economic Daily News. Economic yearbook of the Republic of Chain 2000, 2000.
Eduljee, G. H.; Dyke, P. “An Updated Inventory of Potential PCDD and PCDF Emission Sources in the UK” The Science of the Total Environment, Vol. 177, pp. 303-321, 1996.
Everaert, K.; Baeyens, J. “The Formation and Emission of Dioxins in Large Scale Thermal Processes” Chemosphere, Vol. 46, pp. 439-448, 2002.
Fängmark, I.; Bavel, B. V.; Marklund, S.; Strömberg, B.; Berge, N.; Rappe, C. “Influence of Combustion Parameters on the Formation of Polychlorinated Dibenzo-p-dioxins, Dibenzofurans, Benzenes, and Biphenyls and Polyaromatic Hydrocarbons on a Pilot Incinerator” Environmental Science and Technology, Vol. 27, pp. 1602-1610, 1993.
Fängmark, I.; Strömberg, B.; Berge, N.; Rappe, C. “Influence of Postcombustion Temperature Profiles on the Formation of PCDDs, PCDFs, PCBzs, and PCBs in a Pilot Incinerator” Environmental Science and Technology, Vol. 28, pp. 624-629, 1994.
Fiedler, H. “Sources of PCDD/PCDF and Impact on the Environment”, Chemosphere,Vol. 32, pp. 55-64, 1996.
Fledler H. “Formation and Sources of PCDD/PCDF” Organohalogen Compounds, Vol. 11, pp. 221-228, 1993.
Frankenhaeuser, M.; Manninen, H.; Koja, I.; Ruuskanen, J.; Virtanen, T.; Vesterinen, T. R.; Virkki, J. “Organic Emissions from Co-combustion of Mixed Plastics with Coal in a Bubbling Fluidized Bed Boiler”, Chemosphere, Vol. 27, pp. 309-316, 1993.
Fujii, T.; Murakawa, T.; Maeda, N.; Kondo, H.; Nagai, K.; Hama, T.; Ota, K. “Removal Technology of PCDDs/PCDFs in Flue Gas from MSW Incinerators by Fabric Filter and SCR System” Organohalogen Compounds, Vol. 12, pp. 49-52, 1993.
Ghorishi, S. B.; Altwicker, E. R. “Formation of Polychlorinated Dioxins, Furans, Benzenes, and Phenols in the Post-Combustion Region of a Heterogeneous Combustor: Effect of Bed Material and Post-Combustion Temperature” Environmental Science and Technology, Vol. 29, pp. 1156-1162, 1995.
Giuliano, M.; Cernuschi, S.; Ghezzi, U. “The Emission of Dioxins and Related Compounds from the Incineration of Municipal Solid Wastes with High Contents of Organic Chlorine (PVC)”, Chemospere, Vol. 19, pp. 407-411, 1989.
Giugliano, M.; Cernuschi, S.; Grosso, M.; Miglio, R.; Aloigi, E. “PCDD/F Mass Balance in the Flue Gas Cleaning Units of a MSW Incineration Plant” Chemosphere, Vol. 46, pp. 1321-1328, 2002.
Griffin, R. D. “A New Theory of Dioxin Formation in Municipal Solid Waste Combustion” Chemosphere, Vol. 15, pp.1987-1990, 1986.
Gullett, B. K., United States Patent US 5,021,229, 4 June 1991.
Gullett, B. K.; Bruce, K. R.; Beach, L.O. “Effect of Sulfur Dioxide on the Formation Mechanism of Polychlorinated Dibenzodioxin and Dibenzofuran in Municipal Waste Combustors” Environmental Science and Technology, Vol. 26, pp. 1938-1943, 1992.
Gullett, B. K., United States Patent US 5,185,134, 9 February 1993.
Gullett, B. K.; Lemleux, P. M.; Dunn, J. E. “Role of Combustion and Sorbent Parameters in Prevention of Polychlorinated Dibenzo-p-dioxin and Polychlorinated Dibenzofuran Formation during Waste Combustion” Environmental Science and Technology, Vol. 28, pp.107-118, 1994.
Hagenmaier, H.; Kraft, M.; Brunner, H.; Haag, R. “Catalytic Effects of Fly Ash from Waste Incineration Facilities on the Decomposition of Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans” Environmental Science and Technology, Vol. 21, pp. 1080-1084, 1987.
Hagenmaler, H.; Undig, C.; She, J. “Correlation of Environmental Occurance of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans with Possible Sources” Organohalogen Compounds, pp.271-274, 1993.
Halonen, I.; Tarhanen, J.; Kopsa, T.; Palonen, J.; Vilokki, H.; Ruuskanen, J. “Formation of Polychlorinated Dioxins and Dibenzofurans in Incineration of Refuse Derived Fuel and Biosludge”, Chemosphere, Vol. 26, pp.1869-1880, 1993.
Hassel, G. R.; Barton, R. G.; Mcgrath, T. P. “Emissions Assessments from Incineration of Large Volume Parenteral Plastic Containers”, Incineration Conference. 11th, pp. 483-488, 1992.
Hatanaka, T.; Imagawa, T.; Takeuchi, M. “Formation of PCDD/Fs in Artificial Solid Waste Incineration in A Laboratory-Scale Fluidized-Bed Reactor: Influence of Contents and Forms of Chlorine Sources in High-Temperature Combustion” Environmental Science and Technology, Vol. 34, pp. 3920-3924, 2000.
Hell, K.; Altwicker, E. R.; Stieglitz, L.; Addink, R. “Comparison of 2,4,6-Trichlorophenol Conversion to PCDD/PCDF on A MSWI-Fly Ash and A Model Fly Ash” Chemosphere, Vol. 40, pp. 995-1001, 2000.
Hiester, E.; Bruckman, P.; Bohm, R.; Eynck, P.; Mülder, A.; Ristow, W. Organohalogen Compounds, Vol. 24, pp. 147-152, 1995.
Hiltunen, M. International Patent WO 96.14.919, 23 May 1996.
Hiraoka, M.; Takeda, N.; Okajima, S. “Catalytic Destruction of PCDDs in Flue Gas”, Chemosphere, Vol. 19, pp. 361-366, 1989.
Hofstadler, K.; Friedacher, A.; Gebert, W.; Lanzerstorfer, C., “Dioxin at Sinter Plants and Electric Arc Furnaces – Emission Profiles and Removal Efficiency”, Organohalogen Compounds, Vol. 46, pp.66-69, 2000.
Hums, E.; Joisten, M.; Müller, R.; Sigling, R.; Spielmann, H. “Innovative Lines of SCR Catalysis: Nox Reduction for Stationary Diesel Engine Exhaust Gas and Dioxin Abatement for Waste Incineration Facilities” Catalysis Today, Vol. 27, pp. 29-34, 1996.
Hyun, C. C.; Cheon, G. P.; Hee, J. S.; Tae, Y. “Catalytic Destruction of PCDDs/DFs by the SCR Units” Organohalogen Compounds, Vol. 45, pp. 387-390, 2000.
Ide, Y.; Kashiwabara, K.; Okada, S.; Mori, T.; Hara, M. “Catalytic Decomposition of Dioxin from MSW Incinerator Flue Gas” Chemosphere, Vol. 32, pp. 189-198, 1996.
Iino, F.; Imagawa, T.; Takeuchi, M.; Sadakata, M.; Weber, R. “Formation Rates of Polychlorinated Dibenzofurans and Dibenzo-p-Dioxins from Polycyclic Aromatic Hydrocarbons, Activated Carbon and Phenol” Chemosphere, Vol. 39, pp. 2749-2756, 1999.
Ishida, M.; Shiji, R.; Nie, P.; Nakamura, N. “Full-scale Plant Study on Low Temperature Thermal Dechlorination of PCDDs/PCDFs in Fly Ash” Organohalogen Compounds, Vol. 27, pp. 147-152, 1996.
Jager, J.; Wilken, M.; Beyer, A.; Rakel, H.; Zeschmar-Lahl, B. “Practical Concepts to Minimize the Emission of Halogenated Organic Compounds from Municipal Solid Waste Incinerators” Organohalogen Compounds, Vol. 9, pp. 103-106, 1992.
Jager, J. “PCDD/F and PCB Emission from Steel Producing, Processing and Reclamation Plants with Varying Input” Toxicological and Environmental Chemistry, Vol. 40, pp. 201-211, 1993.
Japan Ministry of the Environment, The Environmental Monitoring Report on the Persistent Organic Pollutants (POPs) in Japan. 2002.
John Wiley & Sons, Encyclopedia of Polymer Science and Engineering Vol. 17, 1989.
Johnke, B.; Stelzner, E. “Results of the German Dioxin Measurement Programme at MSW Incinerators”, Waste Management and Research, Vol. 10, pp. 345-355, 1992.
Jolliffe, I. T. Principal Component Analysis, Springer-Verlag, 1986.
Kakareka, S. V. “Sources of Persistent Organic Pollutants Emission on the Territory of Belarus” Atmospheric Environment, Vol. 36, pp. 1407-1419, 2002.
Karasek, F. W.; Dickson, L. C. Science, Vol. 237, pp.754, 1987.
Kim, S. C.; Jeon, S. H.; Jung, I. R.; Kim, K. H.; Kwon, M. H.; Kim, J. H., Yi, J. H.; Kim, S. J.; You, J. C.; Jung, D. H. “Removal Efficiencies of PCDDs/PCDFs by Air Pollution Control Devices in Municipal Solid Waste Incinerators” Chemosphere, Vol. 43, pp. 773-776, 2001.
Kreisz, S.; Hunsinger, H.; Vogg H. “Wet Scrubbers - A Potential PCDD/F Source?” Chemosphere, Vol. 32, pp. 73-78, 1996.
Krishnamoorthy, S.; Baker, J. P.; Amiridis, M. D. “Catalytic Oxidation of 1,2-Dichlorobenzene over V2O5/TiO2-based Catalysts” Catalysis Today, Vol. 40, pp. 39-46, 1998.
Lahl, U. “Sintering Plants of Steel Industry – the Most Important Thermical PCDD/F Source in Industrialized Regions”. Organohalogen Compounds , Vol. 11, pp. 311-314, 1993.
Lahl, U. “Sintering Plants of Steel Industry - PCDD/F Emission Status and Perspectives” Chemosphere, Vol. 29, pp. 1939-1945, 1994.
Lee, R. G. M.; Green, N. J. L.; Lohmann, R.; Jones, K. C., “Seasonal, Anthropogenic, Air Mass, and Meteorological Influences on the Atmospheric Concentrations of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans (PCDD/Fs): Evidence for the Importance of Diffuse Combustion Sources”, Environmental Science and Technology, Vol. 33, pp. 2864-2871, 1999.
Leeuwen, F. X. R.; Feeley, M.; Schrenk, D.; Larsen, J. C.; Farland, W.; Younes, M. “Dioxins: WHO’s Tolerable Daily Intake (TDI) Revisited” Chemosphere, Vol. 40, pp. 1095-1101, 2000.
Lenoir, D.; Kaune, A.; Hutzinger, O.; Mützenich, G.; Horch, K. “Influence of Operating Parameters and Fuel Type on PCDD/F Emissions from a Fluidized Bed Incinerator”, Chemosphere, Vol. 23, pp.1491-1500, 1991.
Lexén, K.; Wit, C.; Jansson, B.; Kjeller, L. O.; Kulp, S. E.; Ljung, K.; Söderström, G.; Rappe, C., “Polychlorinated Dibenzo-p-dioxin and Dibenzofuran Levels and Patterns in Samples from Different Swedish Industries Analyzed within the Swedish Dioxin Survey”, Chemosphere, Vol. 27, pp. 163-170, 1993.
Li, C. T.; Zhuang, H. K.; Hsieh, L. T,; Lee, W. J.; Tsao, M. C. “PAH Emission from the Incineration of Three Plastic Wastes” Environment International, Vol. 27, pp. 61-67, 2001.
Liljelind, P.; Unsworth, J.; Maaskant, O.; Marklund, S. “Removal of Dioxins and Related Aromatic Hydrocarbons from Flue Gas Streams by Adsorption and Catalytic Destruction” Chemosphere, Vol. 42, pp. 615-623, 2001.
Lindbauer, R. L.; Wurst, F.; Prey, T., “Combustion Dioxin Supression in Municipal Solid Waste Incineration with Sulphur Additives”, Chemosphere, Vol. 25, pp. 1409-1414, 1992.
Lindbauer, R. L.; Wurst, F.; Prey, T. “PCDD/F Emission Control by Sulphur Addition - New Results with High – S Lignite, SO2 and SO3, Organohalogen Compounds, Vol. 12, pp. 35-38, 1993.
Lohmann, R.; Green, N. J. L.; Jones, K. C. “Detailed Studies of the Factors Controlling Atmospheric PCDD/F Concentrations” Environmental Science and Technology, Vol. 33, pp. 4440-4447, 1999.
Luijk, R.; Akkerman, D. M.; Slot, P.; Olie, K.; Kapteijn, F. “Mechanism of Formation of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in the Catalyzed Combustion of Carbon”, Environmental Science and Technology, Vol. 28, pp.312-321, 1994.
Luthardt, P.; Mayer, J.; Fuchs, J. “Total TEQ Emissions (PCDD/F and PCB) from Industrial Sources” Chemosphere, Vol. 46, pp. 1303-1308 2002.
Mattila, H.; Virtanen, T.; Vartiainen, T.; Ruuskanen, J. “Emissions of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Flue Gas from Co-combustion of Mixed Plastic With Coal and Bark”, Chemosphere, Vol. 25, pp. 1599-1609, 1992.
McKay, G. “Dioxin Characterisation, Formation and Minimisation during Municipal Solid Waste (MSW) Incineration: Review”, Chemical Engineering Journal, Vol. 86, pp. 343-368, 2002.
Milligan, M. S.; Altwicker, E. “The Relationship between de Novo Synthesis of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans and Low-Temperature Carbon Gasification in Fly Ash” Environmental Science and Technology, Vol. 27, pp.1595-1601, 1993.
Nass L. I., and Grossman R. F. Conversion and Fabrication Processes. Encyclopedia of PVC, Vol. 4, 1998.
Ogura, I.; Masunaga, S.; Nakanishi, J. “Atmospheric Deposition of Polychlorinated Dibenzo-p-dioxins, Polychlorinated Dibenzofurans, and Dioxin-Like Polychlorinated Biphenyls in the Kanto Region, Japan”, Chemosphere, Vol. 44, pp. 1473-1487, 2001.
Oh, J. E.; Lee, K. T.; Lee, J. W.; Chang, Y. S. “The Evaluation of PCDD/Fs from Various Korean Incinerators”, Chemosphere, Vol. 38, pp. 2097-2108, 1999.
Okamoto, Y; Tomonari, M. “Formation Pathways from 2,4,5-Trichlorophenol (TCP) to Polychlorinated Dibenzo-p-dioxins (PCDDs): An Ab Initio Study” The Journal of Physical Chemistry A., Vol. 103, pp. 7686-7691, 1999.
Olie, K.; Vermeulen, P. L.; Hutzinger, O. “Chlorodibenzo-p-dioxins and Chlorodibenzofurans Are Trace Components of Fly Ash and Flue Gas of Some Municipal Incinerators in the Netherlands” Chemosphere, Vol. 6, pp. 455-459, 1977.
Osada, Y.; Fujii, S.; Yokoyama, T. “Behavior of PCDDs/PCDFs Homologues at Inlet/Outlet of Baghouse under Stable MSW Combustion” Organohalogen Compounds, Vol. 36, pp. 249-252, 1998.
Quaß, U.; Fermann, M. W.; Bröker, G. “Steps Towards A European Dioxin Emission Inventory” Chemosphere, Vol. 40, pp. 1125-1129, 2000.
Raghunathan, K.; Gullett, B. K. “Role of Sulfur in Reducing PCDD and PCDF Formation” Environmental Science and Technology, Vol. 30, pp. 1827-1834, 1996.
Randall, D.; Shoraka-Blair, S. An Evaluation of the Cost of Incinerating Wastes containing PVC. ASME Research Report, Vol. 31, 1994.
Rigo, H. G.; John, C. A.; Steven, L. W. The Relationship between Chlorine in Waste Stream and Dioxin Emissions from Waste Combustor Stacks. ASME Research Report, CRTD Vol.36, 1995.
Ruegg, H.; Sigg, A. “Dioxin Removal in a Wet Scrubber and Dry Particulate Remover”, Chemosphere, Vol. 25, pp. 143-148, 1992.
Ruuskanen, J.; Virtiainen, T.; Koja, I.; Manninen, H.; Oksanen, J.; Frankenhaeuser, M. “Formation of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Co-combustion of Mixed Plastics with Coal, Exploratory Principal Component Analysis” Chemosphere, Vol. 28, pp. 1989-1999, 1994.
Sakurai, T., European Patent EP 645,172, 29 March 1995.
Schwarz, G.; Steiglitz, L.; Roth, W. “Formation Conditions of Several Polychlorinated Compound Classes on Fly Ash of a Municipal Waste Incinerator” Organohalogen Compounds, Vol. 3, pp. 169-172, 1990.
Sin, D. W. M.; Choi, J. Y. Y.; Louie, P. K. K., “A Study of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in the Atmosphere of Hong Kong” Chemosphere, Vol. 47, pp. 647-653, 2002.
Stieglitz, L.; Vogg, H., Report KFK 4379, Laboratorium fur Isotopentechnik, Institut fur Heize Chemi, Kernforschungszentrum Karlsruhe, 1988.
Stieglitz, L.; Vogg, H.; Bautz, H.; Beck, J.; Zwick, G. “The Effect of Sulfur Dioxide on the De-Novo-Synthesis of PCDD/PCDF on Fly Ash” Organohalogen Compounds, Vol. 3, pp. 175-177, 1990.
Stieglitz, L.; Vogg, H.; Zwick, G.; Beck, J.; Bautz, H. “On Formation Conditions of Organohalogen Compounds from Particulate Carbon of Fly Ash” Chemosphere, Vol. 23, pp. 1255-1264, 1991.
Takacs, L.; Moilanen, G. L. “Simultaneous Control of PCDD/PCDF, HCl and NOx Emission from Municipal Solid Waste Incinerators with Ammonia Injection” Journal of the Air & Waste Management Association, Vol. 41, pp.716-722, 1991.
Takeda, N.; Takaoka, M.; Fujiwara, T.; Takeyama, H.; Eguchi, S., “PCDDs/DFs Emissions from Crematories in Japan” Chemosphere, Vol. 40, pp. 575-586, 2000.
Takeda, N.; Takaoka, M.; Fujiwara, T.; Takeyama, H.; Eguchi, S. “Measures to Prevent Emissions of PCDDs/DFs and Co-Planar PCBs from Crematories in Japan” Chemosphere, Vol. 43, pp. 763-771, 2001.
Takeshita, R.; Akimoto, Y. “Control of PCDD and PCDF Formation in Fluidized Bed Incinerators” Chemosphere, Vol. 19, pp. 345-352, 1989.
Tan, P.; Hurtado, I.; Neuschütz, D. “Thermodynamic Modeling of PCDD/Fs Formation in Thermal Processes” Environmental Science and Technology, Vol. 35, pp. 1867-1874, 2001.
Tartler, M.; Vermeulen, M.; Winden, T. V. “Dioxin Reduction in Domestic Waste Incineration Plants - The AVA Nijmegen Plant as An Example” Organohalogen Compounds, Vol. 27, pp. 68-71, 1996.
Thurston, G. D.; Spengler, J. D. “A Quantitative Assessment of Source Contributions to Inhalable Particulate Matter Pollution in Metropolitan Boston” Atomospheric Environment, Vol. 19, pp. 9-25, 1985.
Tysklind, M.; Söderström, G.; Rappe, C. “PCDD and PCDF Emissions from Scrap Metal Melting Processes at A Steel Mill” Chemosphere, Vol. 19, pp. 705-710, 1989.
US EPA Locating and Estimating Air Emission from Source of Polycycle Organic Matter(POM), EPA-45014-84-007, 1987.
US EPA Health Assessment Document for 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and Related Compounds”, EPA/600/Bp-92/001c Estimating Exposure to Dioxin-Like Compounds, EPA/600/6-88/005Cb, Office of Research and Development, Washington, DC, 1994a.
US EPA Combustion Emissions Technical Resource Document (CETRED), Report No. EPA 530-R-94-014, Washington, DC, 1994b.
US EPA Alternative Control Techniques Document - NOx Emissions from Iron and Steel Mills. EPA-453/R-94-065, 1994c.
US EPA Profile of the Iron and Steel Industry. EPA/310-R-95-005, 1995.
US EPA The Inventory of Sources of Dioxin in the United States, EPA/600/P-98/002Aa, April 1998.
US EPA Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and Related Compounds, EPA/600/P-00/001Bb, 2000.
US EPA Database of Sources of Environmental Releases of Dioxin like Compounds in the United States, EPA/600/C-01/012, 2001.
Vogg, H.; Stieglitz, L. “Thermal Behavior of PCDD/PCDF in Fly Ash Municipal Incinerators” Chemosphere, Vol. 15, pp.1373-1378, 1986.
Vogg, H.; Metzger, M.; Stieglitz., L. “Recent Findings on the Formation and Decomposition of PCDD/PCDF in Municipal Solid Waste Incineration” Waste Management & Research, Vol. 5, pp. 285-294, 1987.
Vogg, H.; Hunsinger, H.; Merz, A.; Stieglitz, L. “Influencing the Production of Dioxin/Furan in Solid Waste Incineration Plants by Measures Affecting the Combustion as well as the Flue Gas Cleaning Systems” Chemosphere, Vol. 25, pp. 149-152, 1992.
Wagner, J.; Green, A. “Correlation of Chlorinated Organic Compound Emissions from Incineration with Chlorinated Organic Input”, Chemosphere, Vol. 26, pp. 2039-2054, 1993.
Wallenhost, T.; Kraub, P.; Hagenmaier, H. “PCDD/F in Ambient Air and Deposition in Baden-Wurttemberg, Germany” Chemosphere, Vol. 34, pp. 1369-1378, 1997.
Weber, R.; Sakurai, T.; Hagenmaier, H. “Low Temperature Decomposition of PCDD/PCDF, Chlorobenzenes and PAHs by TiO2-based V2O5-WO3 Catalysts” Applied Catalysis B: Environmental , Vol.20, pp. 249-256, 1999.
Wevers, M.; Fré, R. D. “Estimated Evolution of Dioxin Emissions in Belgium from 1985 to 1995” Organohalogen Compounds, Vol. 24, pp. 105-108, 1995.
Wevers, M.; De Fré R. “Dioxin Emission Reduction of A Municipal Waste Incinerator by Injection of Activated Carbon - The Abatement of Memory Effects” Organohalogen Compounds, Vol. 36, pp. 343-346, 1998.
WHO Regional Office for Europe, Copenhagen, “PCBs, PCDDs and PCDFs: Prevention and Control of Accidental and Environmental Exposures” Environmental Health Series, Vol. 32, 1987.
Wiesenhahn, D. F.; Li, C. P.; Penner, S. S. “A Simplified Model for Dioxin and Furan Formation in Municipal-waste Incinerators” Energy, Vol. 13, pp. 225-237, 1988.
Wikström, E.; Löfvenius, G.; Rappe, C.; Marklund, S. “Influence of Level and Form of Chlorine on the Formation of Chlorinated Dioxins, Dibenzofurans, and Benzenes during Combustion of An Artificial Fuel in a Laboratory Reactor” Environmental Science and Technology, Vol. 30, pp. 1637-1644, 1996.
Wikström, E.; Marklund, S. “Secondary Formation of Chlorinated Dibenzo-p-dioxins, Dibenzofurans, Biphenyls, Benzenes, and Phenols during MSW Combustion” Environmental Science and Technology, Vol. 34, pp. 604-609, 2000.
Wilken, M.; Böske, J.; Jager, J.; Zeschmar-Lahl, B. “PCDD/F, PCB, Chlobenzene and Chlorophenol Emissions of a Municipal Solid Waste Incineration Plant (MSWI) - Variation within a Five Day Routine Performance and Influence of Mg(OH)2-Addition” Organohalogen Compounds, Vol. 11, pp. 241-244, 1993.
Yang, H. H.; Lee, W. J.; Chen, S. J.; Lai, S. O. “PAH Emission from Various Industrial Stacks” Journal of Hazardous Materials, Vol. 60, pp. 159-174, 1998.
Yasuhara, A.; Katami, T.; Okuda, T.; Ohno, N.; Shibamoto, T. “Formation of Dioxins during the Combustion of Newspapers in the Presence of Sodium Chloride and Poly(Vinyl Chloride)” Environmental Science and Technology, Vol. 35, pp. 1373-1378, 2001.
Zimmermann, R.; Blumenstock, M.; Heger, H. J.; Schramm, K. W.; Kettrup Da. “Emission of Nonchlorinated and Chlorinated Aromatics in the Flue Gas of Incineration Plants during and after Transient Disturbances of Combustion Conditions: Delayed Emission Effects”, Environmental Science and Technology, Vol. 35, pp.1019-1030, 2001.
台灣環保署,http://www.epa.gov.tw/statistics/,2002。
吳信賢,類神經網路在受體模式之應用,碩士論文,國立台灣大學環境工程研究所,1996。
李俊賢、詹長權、王榮德,從戴奧辛毒性談台灣醫療事業廢棄物焚化處理,中華衛誌,Vol.18,pp.237-240,1999。
張劭勳,SAS for Windows 統計分析-高等統計,松崗電腦圖書資料股份有限公司,1995。
陳建民、李孫榮,戴奧辛、環境與人類,工業污染防制,Vol.57,1996.
黃俊英,多變量分析,中國經濟企業研究所,1991。
楊錫賢,大氣環境中多環芳香烴化合物與金屬元素之特徵,國立成功大學環境工程學系博士論文,1997。
廖明珠,醫療廢棄物焚化爐排放多環芳香烴化合物之研究, 國立成功大學環境工程學系碩士論文,1997。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔