跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/19 13:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳坤龍
研究生(外文):Kun-Long Wu
論文名稱:高溫厭氧菌分解PAN廢水之族群變化與功能評估
指導教授:鄭幸雄鄭幸雄引用關係
指導教授(外文):Sheng-Shung Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:142
中文關鍵詞:族群變化高溫厭氧菌功能評估
外文關鍵詞:thermophilePANcommunity
相關次數:
  • 被引用被引用:11
  • 點閱點閱:400
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
本研究首先進行聚丙烯腈 (Polyacrylonitrile, PAN)人造壓克力纖維廢水之組成特性分析,及高溫厭氧菌群分解此廢水之機制特性。之後利用16S rDNA基因選殖實驗(clone library),建構高溫厭氧分解菌群的微生物社會,並以批次優化PAN分解菌群探討特定微生物群之分佈。進一步連續進流啟動一座59升的高溫(55oC)厭氧流體化床處理PAN廢水,監測PAN分解菌群的變動情形,希建立此生物程序的微生物指標。
PAN廢水係含高濃度有機氮與硫酸鹽(COD/ SO42-=1.48)之人造壓克力纖維製程廢水,且廢水中的有機聚合物在視分子量大於2,000 g/mol時,其分子中的有機碳組成比例較有機氮高,相反地,視分子量介於670~2,000 g/mol的有機寡合物其有機碳/有機氮(C/N)約2~3 mole/mole,以有機氮組成為主。紅外光光譜進一步顯示PAN廢水中存在有碳氮參鍵與雙鍵等不飽合鍵結,且廢水中不含有芳香族化合物。
三種不同植種來源(人造纖維廠之活性污泥,壓克力纖維廠之脫硝污泥,豬糞尿處理場之厭氧污泥),經PAN廢水馴養後之高溫菌群皆能將PAN廢水中的有機碳與有機氮分解。此高溫菌群分解PAN廢水中C/N約2.8 mole/mole的有機物時,反應初期的水解酸化階段,有氫氣、乙酸和明顯氨氮的累積現象,並發生硫酸鹽還原作用,之後氫氣與乙酸在甲烷化階段迅速被分解。此批分式PAN廢水馴化後的三種厭氧污泥,其真細菌群的社會結構相似,與污泥來源種類無關。16S rDNA 的序列分析顯示PAN分解的高溫厭氧微生物社會有50% OTU(operational taxonomic unit)是屬於Nitrospirae中的Thermodesulfovibrio硫酸鹽還原菌群、41.5% OTU屬於Thermotogae的菌群、5.3% OUT屬於Gram-positive low G+C和3.2% OTU屬於新的分類菌群(OP8 division)。古細菌領域的菌群則是利用乙酸的高溫甲烷菌Methanosaeta thermophila。
FISH分析經乳酸為基質,硫酸鹽為電子接受者優化培養的PAN分解菌群,顯示Thermodesulfovibrio (81.8±5.9%)為優勢菌群,該菌群在額外添加氫氣與PAN廢水為基質的批次實驗,亦為真細菌群中的優勢菌群(84.5±7.1%),且有機氮的分解率可達35%。
高溫厭氧流體化床以PAN廢水中的硫酸鹽(COD/SO42-=2.74)為電子接受者和較低的體積負荷 (0.65 kg COD/m3-day)等操作條件啟動,並於操作65天後添加硫酸鹽於PAN廢水中使COD/SO42-降至1.25時,硫酸鹽還原菌對有機碳(COD)之競爭效率從21%上升到30%,有機氮的去除率亦從40%提高到62%;相反地,甲烷菌對有機碳(COD)之競爭則從41%下降至30%。顯示降低COD/SO42-有助於硫酸鹽還原菌競爭有機物,且有機氮的去除率亦可獲得提升。反應槽之微生物動態,在啟動第15天內,菌相已完全轉換為高溫菌群結構,且流體化床擔體生物膜菌群隨生物膜成長而趨於多樣化且較複雜;相反地,懸浮污泥菌群則未有顯著的變動。比較懸浮、生物膜菌群與批次優化培養之PAN分解菌群的DGGE指紋譜,發現硫酸鹽還原菌群(Thermodesulfovibrio)在操作84天期間一直存在反應槽中。此說明批次優化培養的PAN分解菌群指紋譜,可成功地應用於高溫厭氧流體化床中作為生物指標。
Microbial community shifts and biodegradation of the thermophiles anaerobically degrading the nitrogenous substrates in Polyacrylonitrile (PAN) wastewater from synthetic-fiber manufacture were investigated by using molecular biological approaches and chemical analysis. The industrial wastewater discharged from the PAN-manufacturing process mainly contained refractory nitrogenous compounds and high concentration of sulfate. Furthermore, the results of the fourier transform infrared spectrometer showed that the unsaturated bounds and nitrile(-C≣N) group were present in PAN wastewater.
The anaerobic thermophiles successfully derived from three mesophilic sludges after 180-day incubation and the biodegradation of batch assays revealed that the nitrogenous substrates in wastewater were decomposed into ammonia, transient hydrogen and acetate in company with the sulfate depletion prior to large production of methane. The 16S rDNA clone libraries showed that nine bacterial and three archaeal operational taxonomic units (OTUs) were detected within anaerobic consortia degrading PAN wastewater. The nine bacterial OTUs were phylogenetically classified into four groups: Thermodesulfovibrio in the Nitrospirae division (50% of total clone numbers), Thermotogales (41.5 %), Anaerobaculum in the gram positive low G+C division (5.3 %) and new taxonomic division OP8 (3.2%). Additionally, all of the three archaeal OTUs were affiliated with the thermophilic acetate-utilizing methanogen, Methanosaeta thermophila. Fluorescence in situ hybridization (FISH) further detected that the sulfate-reducing bacterium Thermodesulfovibrio hybridized with the Thermodesulfovibrio-specific probe (Tdsulfo848) was predominant in lactate-enriched culture and the members also degraded the nitrogenous substrates in PAN wastewater. By using the denaturing gradient gel electrophrosis (DGGE) technology, the population dynamics and the genus Thermodesulfovibrio were observed during the start-up period of the thermophilic anaerobic fluidized bed reactor fed with PAN wastewater and sucrose. The DGGE profiles showed that the suspended populations obviously shifted on 15th days and the biofilm populations tended to become more complex than the suspended populations. This study suggested that the Thermodesulfovibrio should play an important role in the thermophilic consortia degrading nitrogenous substrates and the microbial populations that constructed by 16S rDNA database could provide microbial indicators and information for the application of the anaerobic processes treating PAN wastewater.
考試合格證明 ……………………………………………………………………I
中文摘要 …………………………………………………………………………II
英文摘要 ………………………………………………………………………… III
誌謝 ………………………………………………………………………………IV
目錄 ………………………………………………………………………………V
表目錄 ……………………………………………………………………………VII
圖目錄 ……………………………………………………………………………IX

第一章 前言 ……………………………………………………………………1
第二章 文獻回顧 ………………………………………………………………3
2-1 PAN人造纖維製造流程及廢水特性 ……………………………………… 3
2-1-1 PAN 人造纖維廢水水質特性 …………………………………………… 7
2-2 有機腈化物之生物分解 …………………………………………………… 9
2-2-1有機腈化物分解菌群 …………………………………………………… 11
2-3 厭氧微生物之分解作用 ………………………………………………… 15
2-3-1硫酸鹽還原作用 ………………………………………………………… 17
2-3-2硫酸鹽還原菌群的多樣性 ……………………………………………… 19
2-3-2-1高溫硫酸鹽還原菌群特性 …………………………………………… 20
2-3-3 甲烷菌群的多樣性 ……………………………………………………… 22
2-3-4 硫酸鹽還原菌與甲烷菌群之交互關係 ………………………………… 24
2-3-5 高溫環境之微生物多樣性 ……………………………………………… 28
2-4 PAN人造纖維製造廢水之厭氧生物處理 …………………………………… 34
2-4-1 厭氧菌分解PAN人造纖維廢水之特性 ………………………………… 34
2-4-2 高溫流體化床處理PAN人造纖維 ……………………………………… 37
2-4-3 高溫流體化床微生物多樣性 …………………………………………… 38
2-5 微生物社會之生物技術分析 ………………………………………………… 40
2-5-1 微生物族群的指紋譜分析 ……………………………………………… 42
2-5-2 16S rDNA基因資料庫 ………………………………………………… 43
2-5-3 螢光原位雜交法 ………………………………………………………… 44
2-5-3-1 厭氧生物程序之應用 ……………………………………………… 44

第三章 實驗設備與方法 ………………………………………………………… 47
3-1 各項水質分析方法及使用儀器 ……………………………………………… 47
3-1-2 儀器分析 ………………………………………………………………… 48
3-2 分子量分佈測定 ……………………………………………………………… 50
3-3 高溫厭氧菌批次分解PAN廢水之優勢培養 ………………………………… 51
3-4 批次優化培養優勢菌群 ……………………………………………………… 53
3-5 掃瞄式電子顯微鏡 …………………………………………………………… 54
3-6 固定生物膜生物質量之測定-- Phospholipid法 …………………………… 55
3-7 分子生物技術 ………………………………………………………………… 56
3-7-1 總DNA 萃取 …………………………………………………………… 56
3-7-2 總RNA萃取 ……………………………………………………………… 57
3-7-3 聚合脢酵素連鎖反應 …………………………………………………… 60
3-7-4 變性梯度明膠電泳法 …………………………………………………… 61
3-7-5 16S rDNA分子選殖實驗 ……………………………………………… 63
3-7-6 螢光原位雜交 …………………………………………………………… 65
3-8 高溫厭氧活性碳流體化床 …………………………………………………… 69

第四章 結果與討論 ……………………………………………………………… 71
4-1 PAN人造纖維製程廢水之水質特性分析 …………………………………… 71
4-1-1 PAN製程廢水化合物分子量分佈 ……………………………………… 72
4-1-2 PAN廢水之紅外光光譜分析 …………………………………………… 74
4-2 PAN廢水厭氧生物分解機制 ………………………………………………… 76
4-3 PAN分解菌群之微生物社會 ………………………………………………… 82
4-3-1 高溫厭氧菌分解PAN廢水之微生物族群多樣性 ……………………… 82
4-3-1-1 高溫厭氧PAN分解菌群之16S rDNA基因資料庫建立………………83
4-3-2 批次優化培養優勢菌群 ………………………………………………… 89
4-3-3 優勢菌群分解PAN廢水基質特性 ……………………………………… 91
4-3-4 優化PAN分解菌群分解特定基質之菌群指紋譜 ……………………… 95
4-3-5 螢光原位雜合法分析PAN分解菌群 …………………………………… 97
4-3-6 優化PAN分解菌群之掃瞄式電子顯微鏡觀察 ………………………… 104
4-3-7 螢光原位雜合法分析甲烷菌群 …………………………………………105
4-4 高溫厭氧流體化床連續流處理功能探討 …………………………………… 110
4-4-1 高溫厭氧槽啟動試程 ……………………………………………………110
4-4-2 高溫厭氧槽提升硫酸鹽負荷試程 ………………………………………115
4-4-3 高溫厭氧反應槽生物活性狀況 …………………………………………119
4-4-4 高溫厭氧流體化床微生物動態 …………………………………………122
4-4-5 高溫厭氧反應槽菌相觀察 ………………………………………………124

第五章 結論與建議 …………………………………………………………… 126
5-1 結論 …………………………………………………………………………… 126
5-2 建議 …………………………………………………………………………… 128

第六章 參考文獻 ………………………………………………………………… 129
附錄 ……………………………………………………………………………… 136
自述 ……………………………………………………………………………… 141
Aeckersberg, F., Rainey, F. A. and Widdel, F. (1998) Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch. Microbiol. 170:361-369.
Alm, E. W., Oerther, D. O., Larsen, N., Stahl, D. A. and Raskin, L. (1996) The oligonucleotide probe database. Appl. Environ. Microbiol. 62:3557-3559.
Amann, R. I., Ludwig, W. and Schleifer, K. H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143-169.
Amann, R. I., Stromley, J., Devereux, R., Key, R. and Stahl, D. A. (1992) Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58:614-623.
Asano, Y., Fujishiro, K., Tani, Y. and Yamada, H. (1982) Aliphatic nitrile hydratase from Arthobacter sp. J-1 purification and characterization. Agric. Biol.Chem. 46:1165-1174.
Banerjee, A., Sharma, R. and Banerjee, U. C. (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol. Biotechnol. Rev. 60:33-44.
Barns, S. M., Delwiche, C. F., Palmer, J. D., and Pace, N. R. (1996) Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequencws. Proc. Natl. Acad. Sci. USA 93: 9188-9193.
Barns, S. M., Fundyga, R. E., Jeffries, M. W., and Pace, N. R. (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA 91: 1609-1613.
Becker, S., Boger, P., Oehlmann, R., and Ernst, A. (2000) PCR bias in ecological analysis: a case study for quantitative Taq nuclease assays in analyses of microbial communities. Appl. Environ. Microbiol. 66:4945-4953.
Bryant, M. P., Campbell, L. L., Reddy, C. A. and Crabill, M. R. (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33:1162-1169.
Castro, H. F., Williams, N. H. and Ogram, A. (2000) Phylogeny of sulfate-reducing bacteria. FEMS Microbiol. Ecol.31:1-9.
Cheng, S. S., Chuang, H. P., Yang, Y. F., Chen, Y. N. and Chen, S. D. (2003) The influence of hydrogen on the decomposition of organic nitrogen in treating polyacrylonitrile (PAN) wastewater by thermophilic anaerobic consortia. Proceeding of IWA 6th International Symposium on Strong Nitrogenous and Agro-wastewater. Seoul, Korea.
Cho, J. C. and Tiedje, J. M. (2002) Quantitative detection of microbial genes by using DNA microarrays. Appl. Environ. Microbiol. 68:1425-1430.
Daims, H., Nielsen, P. H., Nielsen, J. L., Juretschko, S. and Wagner, M. (2000) Novel Nitrospira-like bacteria as dominant nitrite-oxidizers in biofilms from wastewater treatment plants: diversity and in situ physiology. Water Sci. Technol. 41: 85-90.
Delong, E. F. (1992) Archaea in coastal marine environments. Proc. Natl. Acad. Sci. U. S. A. 89:5685-5689.
Delong, E. F., K. Ying Wu, B. B. Prezelin, and Jovine, R. V. M. (1994) High abundance of Archaea in Antarctic picoplankton. Nature 371: 695-697.
Domingues, M. R., Araujo, J. C., Varesche, M. B. and Vazoller, R. F. (2002) Evaluation of thermophilic anaerobic microbial consortia using fluorescence in situ hybridization (FISH). Water Sci. Technol. 45:27-33.
Donlon, B., Razo-Flores, E., Luijten, M., Swarts, H., Lettinga, G. and Field, J. (1997) Detoxification and partial mineralization of azo dye mordant orange in a continuous upflow anaerobic sludge-blanket reactor. Appl. Microbiol. Biotechnol. 47:83-90.
Ellis, L.B.M., Hou, B.K., Kang, W., and Wackett, L.P. (2003) The University of Minnesota Biocatalysis/Biodegradation Database: Post-Genomic Datamining" Nucleic Acids Res. 31: 262-265.
Fang, H. H. P., Chui, H. K. and Li, Y. Y. (1995) Effect of degradation kinetics on the microstructure of anaerobic biogranules. Water Sci. Technol. 32:165-172.
Fang, H. H., Zhang, T. and Liu, H. (2002) Microbial diversity of a mesophilic hydrogen-producing sludge. Appl. Microbiol. Biotechnol. 58:112-118.
Ferris, M. J., Muyzer, G., and Ward, D. M. (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial community. Appl. Environ. Microbiol. 62: 340-346.
Frushour, B. G. (1995) Acrylic polymer characterization in solid state and solution. In J. C. Masson (ed.), Acrylic fiber technology and application. Mercel Dekker Inc., New York, N.Y. p. 207.
Gregory, L. G., Bond, P. L., Richardson, D. J. and Spiro, S. (2003) Characterization of a nitrate-respiring bacterial community using the nitrate reductase gene (narG) as a functional marker. Microbiol. 149:229-237.
Gujer, W. and Zehnder, J. B. (1983) Conversion processes in anaerobic digestion. Water Sci. Technol. 15:127-167.
Hansen, K. H., Ahring, B. K. and Raskin, L. (1999) Quantification of syntrophic fatty acid-beta-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 65: 4767-4774.
Harper, D.B. (1977) Microbial metabolism of aromatic nitriles —enzymology of C-N cleavage by Nocardia sp. Biochem. J. 165:309-319.
Henry, E. A., Devereux, R., Maki, J. S., Gilmour, C. C., Woese, C. R., Mandelco, L., Schauder, R., Remsen, C. C. and Mitchell, R. (1994) Characterization of a new thermophilic sulfate-reduction bacterium Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch. Microbiol. 161: 62-69.
Heuer, H., Krsek, M., Baker, P., Smalla, K. and Wellington, E. M. (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233-3241.
Hugenholtz, P, Pitulle, C, Hershberger, K. L. and Pace, N. R. (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180: 366-76.
Imachi, H., Sekiguchi, Y., Kamagata, Y., Ohashi, A. and Harada, H. (2000) Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl. Environ. Microbiol. 66:3608-3615.
Ishii, K. and Fukui, M. (2001) Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67:3753-3755.
Ito, T., Okabe, S., Satoh, H. and Watanabe, Y. (2002) Successional Development of Sulfate-Reducing Bacterial Populations and Their Activities in a Wastewater Biofilm Growing under Microaerophilic Conditions. Appl. Environ. Microbiol. 68:1392-1402.
Jacob, S. H. and Birgitte, K. A. (1999) Thermodesulfobacterium hveragerdense sp. nov., and Thermodesulfovibrio islandicus sp. nov., two thermophilic sulfate reducing bacteria isolated from a Icelandic hot spring. System. Appl. Microbiol. 22: 559-564.
Johnson, D.V., Zabelinskaja-Mackova, A. A. and Griengl, H. (2000) Oxynitrilases for asymmetric C-C bond formation. Curr. Opin. Chem. Biol. 4:103-109.
Juretschko, S., Loy, A., Lehner, A. and Wagner, M. (2002) The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst. Appl. Microbiol. 25:84-99.
Kanagawa, T., Kamagata, Y., Aruga, S., Kohno, T., Horn, M. and Wagner, M. (2000) Phylogenetic analysis of and oligonucleotide probe development for Eikelboom type 021N filamentous bacteria isolated from bulking activated Sludge. Appl. Environ. Microbiol. 66:5043-5052.
Kane, M. D., Poulsen, L. K. and Stahl, D. A. (1993) Monitoring the enrichment and isolation of sulfate-reduction bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl. Environ. Microbiol. 59: 682-686
Klein, M., Friedrich, M., Roger, A. J., Hugenholtz, P., Fishbain, S., Abicht, H., Blackall, L. L., Stahl, D. A. and Wagner, M. (2001) Multiple Lateral Transfers of Dissimilatory Sulfite Reductase Genes between Major Lineages of Sulfate-Reducing Prokaryotes. J. Bacteriol. 183: 6028-6035.
Kowalchuk, G. A., Stephen, J. R., de Boer, W., Prosser, J. I., Embley, T. M. and Woldendorp, J. W. (1997) Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 63:1489-1497.
Kuehn, M., Hausner, M., Bungartz, H. J., Wagner, M., Wilderer, P. A. and Wuertz, S. (1998) Automated confocal laser scanning microscopy and semiautomated image processing for analysis of biofilm. Appl. Environ. Microbiol. 64:4115-4127.
Lane, D. J. (1991) 16S/23S rRNA sequencing. In: Nucleic Acid Techniques in Bacterial Systematics. Stackebrandt, E., Goodfellow, M. (eds.), John Wiley and Sons, New York. 115-175.
LaPara, T. M., Nakatsu, C. H., Pantea, L. and Alleman, J. E. (2000) Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. Appl. Environ. Microbiol. 66:3951-3959.
Lee, N., Nielsen, P. H., Andreasen, K. H., Juretschko, S., Nielsen, J. L., Schleifer, K. H. and Wagner, M. (1999) Combination of fluorescent in situ hybridization and microautoradiography -a new tool for structure-function analysis in microbial ecology. Appl. Environ. Microbiol. 65:1289-1297.
Lemmer, H., Lind, G., Műller, E., Schade, M. and Ziegelmayer, B. (2000) Scum in activated sludge plants: impact of non-filamentous and filamentous bacteria. Acta. Hydrochim. Hydrobiol. 28:34-40.
Lettinga, G., Field, J. Van-Lier, J., Zeeman, G. and Hulshoff Pol L. W. (1997) Advanced anaerobic wastewater treatment in the near future. Water Sci. Technol. 35:5-12.
Li, Y. Y., Lam, S. and Fang, H. H. P. (1996) Effect of sulphate on anaerobic benzoate degradation. Water Res. 30:1555-1562.
Liu, J. K., Liu, C. H. and Lin, C. S. (1997) The role of nitrogenase in a cyanide-degrading Klebsiella oxytoca strain. Proc. Natl. Sci. Counc. Repub. China 2:37-42.
Liu, W. T., Chan, O. C and Fang, H. H. (2002) Microbial community dynamics during start-up of acidogenic anaerobic reactors. Water Res. 36:3203-3210.
Liu, W. T., Marsh, T. L., Cheng, H. and Forney, L. J. (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphism of 16S ribosomal DNA. Appl. Environ. Microbiol. 63: 4516-4522.
Loy, A., Lehner, A., Lee, N., Adamczyk, J., Meier, H., Ernst, J., Schleifer, K. H. and Wagner, M. (2002) Oligonucleotide Microarray for 16S rRNA Gene-Based Detection of All Recognized Lineages of Sulfate-Reducing Prokaryotes in the Environment. Appl. Environ. Microbiol. 68:5064-5081.
Lüdemann, H., Arth, I. and Liesack W. (2000) Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores.
Appl. Environ. Microbiol. 66:754-762.
Madigan, M. T., Martinko, J. M. and Parker, J. (2000) Biology of microorganisms. 9th Edition. Prentice-Hall, Inc. New Jersey, U. S. A. p. 609, 687.
Maidak, B. L., Cole, J. R., Lilburn, T. G., Parker, C. T. Jr., Saxman, P. R., Stredwick, J. M., Garrity, G. M., Li, B., Olsen, G. J., Pramanik, S., Schmidt, T. M. and Tiedje, J. M. (2000) The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28:173-174.
Mark, H. F., Atlas, S. M. and Cernia, E. (1967) Man-Made Fibers. Volume 1. Interscience Pub. New York.
Menes, R. J. and Muxi, L. (2002) Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum. Int. J. Syst. Evol. Microbiol. 52: 157-164.
Muyzer, G. and Ramsing, N. B. (1995) Molecular methods to study the organization of microbial communities. Water Sci. Technol. 32:1-9.
Muyzer, G. and Smalla, K. (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenkoek 73:127-141.
Muyzer, G., de Waal, E. C. and Uitterlinden, A. G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700.
Myers, R. M., Maniatis, T. and Lerman, L. S. (1987) Detection and localization of single base change by denaturing gradient gel electrophoresis. Methods Enzymol. 155:501-527.
Nielsen, P. H. (1987) Biofilm dynamics and kinetics during high-rate sulfate reduction under anaerobic conditions. Appl. Environ. Microbiol. 53:27—32.
Nilsen, R. K., Torsvik, T. and Lien, T. (1996) Desulfotomaculum thermocisternum sp. Nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int. J. Syst. Bacteriol. 46:397-402.
Nübel, U., Engelen, B., Felske, A., Snaidr, J. and Wieshuber, A. (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178:5636-5643.
Odom, J. M. and Singleton, R. Jr. (1993) The sulfate-reducing bacteria: contemporary perspectives. Springer-Verlag New York Inc. p. 28.
Olsen, G. J., Lane, D. J., Giovannoni, S J. and Pace, N. P. (1986) Microbial ecology and evolution: a ribosomal RNA approach. Ann. Rev. Microbiol. 40:337-365.
Orphan, V. J., Taylor, L. T., Hafenbradl, D. and Delong, E. F. (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl. Environ. Microbiol. 66: 700-711.
Owen, W. F., D.C. Stuckey, J. B. Healy Jr., L. Y. Young and P. L. McCarty. (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res.13: 485-492.
Park, H. D., Regan, J. M. and Noguera, D. R. (2002) Molecular analysis of ammonia-oxidizing bacterial populations in aerated-anoxic orbal processes. Water Sci. Technol. 46:273-280.
Pérez, M.; Romero, L. I.; Sales, D. Comparative performance of high rate anaerobic thermophilic technologies treating industrial wastewater. (1998) Water Res. 32: 559-564.
Precigou, S., Goulas, P. and Duran, R. (2001) Rapid and specific identification of nitrile hydratase (NHase)-encoding genes in soil samples by polymerase chain reaction. FEMS Microbiol. Lett. 204: 155-161.
Rabus, R., Nordhaus, R., Ludwig, W. and Widdel, F. (1993) Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl. Environ. Microbiol. 59:1444-1451.
Ramsing, N. B., Fossing, H., Ferdelman, T. G., Andersen, F. and Thamdrup, B. (1996) Distribution of bacterial populations in a stratified fjord (Mariager fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Appl. Environ. Microbiol. 62:1391-1404.
Raskin, L., Rittmann, B. and Stahl, D.A. (1996) Competition and Coexistence of Sulfate-Reducing and Methanogenic Populations in Anaerobic Biofilms. Appl. Environ. Microbiol. 62:3847-3857.
Raskin, L., Stomley, J. M., Rittmann, B. E. and Stahl, D. A. (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl. Environ. Microbiol. 60:1232-1240.
Reysenbach, A. L. and Sherry, L. C. (2001) Microbiology of ancient and modern hydrothermal systems. Trends Microbiol. 9:79-85.
Rinzema, A. and Lettinga, G. (1988) The effect of sulphide on the anaerobic degradation of propionate. Environ. Technol. Letters. 9:83-88.
Riqueza1, E. C., Palermo, A., Claudio, L. and Palermo, M. R. M. (2002) Modification of porous copolymers network based on acrylonitrile. Polym. Bulletin 48:407-414.
Robinson, J. A. and Tiedje, J. M. (1984) Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch. Microbiol. 137:26-32.
Rozanova, E. P. and Pivovarova, T. A. (1988) Reclassification of Desulfovibrio thermophilus. Mikrobiologiya. 57: 102-106.
Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A. and Harada, H. (1999) Fluorescent in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl. Environ. Microbiol. 65:1280-1288.
Sekiguchi, Y., Kamagata, Y., Syutsubo, K., Ohashi, A., Harada, H., and Nakamura, K. (1998) Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiol. 144: 2655-2665.
Skirnisdottir, S., Hreggvidsson, G. O., Hjorleifsdottir, S., Marteninsson, V. T. Petursdottir, S. K. and Holst, O. (2000) Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl. Environ. Microbiol. 66:2835-2841.
Snaidr, J., Amann, R., Huber, I., Ludwig, W. and Schleifer, K. (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 63:2884-2896.
Stahl, D. A. and Amann, R. (1991) Development and application of nucleic acid probes. In Nucleic acid techniques in bacterial systematics. Stackebrandt, E. and Goodfellow, M. (eds.), New York: John Wiley and Sons. 205-248.
Stams, A. J. M., Hansen, T. A. and Skyring, G. W. (1985) Utilization of amino acids as energy substrates by two marine Desulfovibrio strains. FEMS Microbiol. Ecol. 31:11-15.
Stanley, R. and Sandler, W. K. (1992) Polymer syntheses. Academic Press New York Vol. 1:382-408.
Suzuki, M. T. and Giovannoni, S. J. (1996) Bias caused by template annealing in the amplification of mixture of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62:625-630.
Teske, A., Wawer, C., Muyzer, G. and Ramsing, N. B. (1996) Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl. Environ. Microbiol. 62:1405-1415.
Traore, A. S., Fardeau, M. L., Hatchikian, C. E., Gall, J. L. and Belaich, J. P. (1983) Energeties of growth of a defined mixed culture of Desulfovibrio vulgaris and Methanosarcina barkeri: interspecies hydrogen transfer in batch and continuous cultures. Appl. Environ. Microbiol. 46:1152-1156.
Ueno, Y., Haruta, S., Ishii, M. and Igarashi, Y. (2001) Microbial community in anaerobic hydrogen-production microflora enriched from sludge compost. Appl. Microbiol. Biotechnol. 57: 555-562.
Wagner, M., Amann, R., Kämpfer, P., Assmus, B., Hartmann, A., Hutzler, P., Springer, N. and Schleifer, K. H. (1994) Identification and in situ detection of gram-negative filamentous bacteria in activated sludge. System Appl. Microbiol. 17: 405-417.
Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A., and Stahl, D. A. (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180:2975-2982.
Wang, C. C. and Lee, C. M. (2001) Denitrification with acrylonitrile as a substrate using pure bacteria cultures isolated from acrylonitrile-butadiene-styrene wastewater. Environ. Int. 26:237-241.
Widdel, F. (1983) Methods for enrichment and pure culture isolation of filamentous gliding sulfate-reducing bacteria. Arch. Microbiol. 134:282-285.
Widdel, F. (1988) Microbiology, and ecology of sulfate- and sulfur-reducing bacteria. In: Biology of anaerobic microorganisms. Zehnder A. J. B. (ed.) New York: John Wiley and Sons.
Wilderer, P. A., Bungartz, H. J., Lemmer, H., Wagner, M. and Keller, J. (2002) Modern scientific methods and their potential in wastewater science and technology. Water Res. 36:370-393.
Woese, C. R. (1987) Bacterial Evolution. Microbiol. Rev. 51:221-271.
Woese, C. R., Kandler, O. and Wheelis, M. L. (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc. Natl. Acad. Sci. U. S. A. 87: 4576-479.
Wu, J. H., Liu, W. T., Tseng, I. C., and Cheng, S. S. (2001) Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. Microbiol. 147:373-382.
Xavier, J. B., Schnell, A., Wuertz, S., Palmer, R., White, D. C. and Almeida, J. S. (2001) Objective threshold selection procedure (OTS) for segmentation of scanning laser confocal microscope images. J. Microbiol. Methods 47:169-180.
Yamamoto, H., Hiraishi, A., Kato, K., Chiura, H. X., Maki, Y. and Shimizu, A. (1998) Phylogenetic evidence for the existence of novel thermophilic bacteria in hot spring sulfur-turf microbial mats in Japan. Appl. Environ. Microbiol. 64:1680-1687.
Yoda, M., Kitagawa, M. and Miyaji, Y. (1987) Long term competition between sulfate-reducing and methane-producing bacteria for acetate in anaerobic biofilm. Water Res. 21:1547—1556.
Yoichi K,, Kawasaki, H., Oyaizu, H., Nakamura, K., Mikami, E., Endo, G.., Koga, Y. and Yamasato, K. (1992) Methanothrix thermophila sp. nov. and rejection of Methanothrix thermoacetophila. Int. J. Syst. Bacteriol. 42: 463-468.
Zeikus, J. G., Dawson, M. A., Thompson, T. E., Ingvorsen, K. and Hatchikian, E. C., (1983) Microbial ecology of volcanic sulphidogenesis : isolation and characterization of Thermodesulfobacterium commune, gen. nov. and sp. Nov., J. Gen Microbiol. 129: 1159-1169.
Zhao, H., Yang, D., Woese, C. R., and Bryant, M. P. (1993) Assignment of fatty acid-beta-oxidizing syntrophic bacteria to Syntrophomonadaceae fam. nov. on the basis of 16S rRNA sequence analyses. Int. J. Syst. Bacteriol. 43:278-286.
李季眉,(1998),「已分離篩選之微生物對實際高氮工業廢水之研究」,行政院國家科學委員會專題研究計畫成果報告。
林泓胤,鄭幸雄,(1999)「三段式流體化床生物程序處理高氮工業廢水之程序研究」,國立成功大學環境工程研究所碩士論文。
產業年報,(1981),「人纖工業」,中華徵信所。
陳文欽,鄭幸雄,(1997),「固定生物流體化床處理高氮樹脂之特性研究」,國立成功大學環境工程研究所博士論文。
陳彥男,鄭幸雄,(2002),「三段式流體化床生物程序處理壓克力人造纖維製程廢水之程序研究」,國立成功大學環境工程研究所碩士論文。
彭欽鑫,鄭幸雄,(2001),「三段式流體化床三相生物程序處理人造纖維製程廢水之生物分解性研究」,國立成功大學環境工程研究所碩士論文。
黃俊霖,劉文佐,(2001)「以分子生物技術探討厭氧生物產氫程序之菌群結構」,國立中央大學環境工程研究所碩士論文。
寧永成,(1992),「有機化合物結構鑒定與有機光譜學」,歐亞書局。
鄭幸雄, (1996),「固定化生物程序處理高氮工業廢水之分解機制研究」,行政院國家科學委員會專題研究計畫成果報告。
鄭幸雄,陳佩足,許佩瑜,(1998),「氣泡呼吸儀批次試驗探討丙烯腈生物脫氨機制」,第二十三屆廢水處理技術研討會論文集,第248~255頁。
龔國文,鄭幸雄,(1995)「厭氧流體化床處理對苯二甲酸製程廢水之研究」,國立成功大學環境工程研究所碩士論文。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊