(100.25.42.117) 您好!臺灣時間:2021/04/21 16:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:翁韻雅
研究生(外文):Yun-Ya Weng
論文名稱:以高分子凝集劑處理高濁度原水之研究
論文名稱(外文):The treatment of high-turbidity water with polymers
指導教授:葉宣顯
指導教授(外文):Hsuan-Hsien Yeh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:102
中文關鍵詞:高分子凝集劑加藥順序高濁度原水
外文關鍵詞:coagulationhigh-turbidity waterpolymer
相關次數:
  • 被引用被引用:38
  • 點閱點閱:1393
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:163
  • 收藏至我的研究室書目清單書目收藏:0
台灣地區因具高山陡峻、河川短促之地理特性,河川流速湍急,河岸沖刷嚴重,且洪、枯水量差異大;加以水土保持不完善,部份集水區地質鬆軟,近年來,每遇颱風季節帶來暴雨時,洪水夾帶大量泥砂進入河川,導致以表面水為水源之淨水場原水濁度急遽上昇,常令淨水廠操作人員措手不及,被迫關廠停水,招致民怨。
高分子凝集劑(polymers)有助於膠體顆粒之快速凝集與沉降,提高濁度去除率。唯部分高分子凝集劑之單體具毒性,依我國環保署目前之規定,當原水濁度大於250NTU時方得使用,且各類高分子凝集劑有其最大加藥量之限制。本研究旨在探討將高分子凝集劑添加於高濁度原水中,以加速顆粒凝集效果之可行性,並找出高分子凝集劑之選用準則以及其與多元氯化鋁 (PAC) 間之調適,以提昇國內傳統混凝程序對高濁度原水之處理能量。
研究之初,先蒐集符合我國環保署成分規定之高分子凝集劑十餘種,經由膠體滴定等方法,確定其基本性質。然後以人工原水進行混凝試驗,繼之以實廠高濁度原水之驗證。
研究結果顯示,單獨以PAC為混凝劑,雖可有效降低高濁度原水混凝後的殘留濁度,但所需劑量極高,連帶產生大量污泥。若直接以陽離子型polymer為主凝劑,則上澄液濁度稍高 (約10 NTU),但可大幅降低污泥量;而以陰離子型polymer直接做為主凝劑則濁度去除效果不佳。
至於以PAC為主凝劑,polymer為助凝劑進行混凝,可大幅降低PAC之添加量及沉澱污泥量,同時增進膠羽之沉降速度。其中,高分子量之陰離子型polymer之最佳加藥量低於陽離子polymer,且前者所生成之膠羽粒徑較大,沉降速度較高。但以上澄液之殘留濁度而言,則陽離子型polymer之效果優於陰離子型及非離子型polymers。此外,陰離子型polymer做為助凝劑時受加藥順序之影響較大,以polymer先加,隨後再加PAC之效果較佳,陽離子型及非離子型polymer受加藥順序影響較小。而PAC與polymer配比的部分,當PAC劑量較高時,polymer之助凝效果較不明顯,或甚至有過量加藥而使混凝效果惡化之虞。
就混凝機制而言,陽離子型polymer之主要作用機制應是以電性中和為主,而陰離子型polymer則以吸附及架橋為主要之作用機制。而當濁度提高時,架橋作用所扮演之角色亦相對較重要。
總之,以高分子凝集劑為助凝劑,將有助於提昇高濁度原水之混凝效果,但因原水水質可能因地因時而異,故高分子凝集劑在選用時,以實際原水進行瓶杯試驗仍是必要的。再者國內部分淨水廠原水高濁度期間,常碰到之困難為污泥處理設施 (如濃縮槽) 容積不足。故後續之研究可考量添加助凝劑於濃縮槽,或將濾床反沖洗水與沉澱污泥分開處理。
In Taiwan, the water works sometimes encounter very high turbidity raw water during typhoon season. This may force the water works to reduce their output or even closedown completely. Therefore, how to increase the efficiency of coagulation process for high turbidity water is an important topic for Taiwan water industry. This research is to study the efficacy of using polymers as coagulants or coagulant-aids for high turbidity water within the regulation imposed by the government. Furthermore, how those parameters, related to the polymers, such as type of charge, charge density, and molecular weight, affect their function were also studied.
Various techniques, namely conventional jar test, measurement of zeta potential and colloid titration, were employed to select polymer and polymer dosages for high-turbid water. Surrogate for turbid waters from the field was the suspensions made by adding sludge from Nan-hua reservoir to the lab tap water. A series of different polymers were collected. The effect of mixing intensity, as measured by the mean velocity gradient G, were carefully controlled in all experiments. In addition to residual turbidity in the supernatant, the zeta potential of the floc formed and the volume of sludge were also monitored.
The results show that when PAC was used as the sole coagulant, supernatant with low turbidity can be achieved, however, only at very high dosage. And, therefore, also generate high volume of sludge. When cationic polymers were substituted for PAC as sole coagulant, the residual turbidity of the supernatant was a little bit higher than that from PAC. However, the sludge volume dropped significantly. However, when nonionic or anionic polymers were used as sole coagulant, the coagulation results were less than desirable.
When polymer was used as coagulant aid to PAC, the dosage of the latter could be reduced significantly, and therefore also the sludge volume generated. Adding polymer also increased the settling velocity of the floc. Further, the optimum dosages of high MW anionic polymers were lower than those of cationic polymers, and the floc from the former had larger size distribution and higher settling velocity than those from the latter. However, the residual turbidity of the supernatant from cationic polymers was always lower than that from anionic or nonionic polymers. Furthermore, when anionic polymers was used as coagulant aid to PAC, the chemicals dosing sequence was more important than when cationic or nonionic polymers were used. For the former, better coagulation performance was observed when polymers were added before PAC. As far as coagulation mechanisms were concerned, the proposed major colloid destabilization mechanisms for cationic and anionic polymers were charge neutralization and bridging, respectively.
Based on the results from this study, polymers, as coagulant-aid, are found to be helpful to the treatment of high turbidity raw waters, and some general guidelines were proposed for the selection of polymers. However, due to the variation with time and location of the source water quality, when polymers are to be used in the field, some kinds of lab testing, such as jar tests, are recommended.
摘要..................................................... Ⅰ
Abstract.................................................. Ⅲ
誌謝......................................................Ⅴ
目錄......................................................Ⅶ
表目錄....................................................XI
圖目錄................................................... XIII
第一章前言..............................................1
1-1 研究緣起................................................1
1-2 研究目的................................................4
第二章文獻回顧...........................................5
2-1 水中之濁度及其對水廠之影響..............................5
2-1-1 濁度之來源及性質.....................................5
2-1-2 高濁度原水對水廠之影響..............................7
2-2 混凝(Coagulation) ...................................... 11
2-2-1 混凝理論.......................................... 11
2-2-2 影響混凝作用之因素.................................12
2-3 多元氯化鋁(Polyaluminum chloride,PAC)....................15
2-4 高分子凝集劑..........................................18
2-4-1 高分子凝集劑的種類..................................19
2-4-2 凝集機制..........................................19
2-4-3 高分子凝集劑在水處理之應用..........................24
2-4-4 各國高分子凝集劑使用規定............................28
2-5 電荷密度滴定(Colloid Titration).............................29
2-6 混凝效果評估方法.......................................31
第三章實驗材料及方法...................................33
3-1 實驗流程規劃..........................................33
3-2 試驗原水之配製........................................33
3-2-1 現場勘查及採樣....................................33
3-2-2 人工原水..........................................35
3-3 瓶杯試驗..............................................37
3-3-1 混凝劑及高分子凝集劑之配製..........................37
3-3-2 瓶杯試驗..........................................37
3-3-3 加藥順序..........................................39
3-4 水質分析方法..........................................39
3-4-1 導電度(Conductivity).................................39
3-4-2 pH 值..............................................39
3-4-3 鹼度(Alkalinity)....................................41
3-4-4 濁度(Turbidity).....................................41
3-4-5 UV254 吸光值......................................42
3-4-6 非揮發性溶解性有機碳
(Non-Purgable Dissolved Organic Carbon, NPDOC) .........42
3-4-7 界達電位..........................................43
3-4-8 沉澱污泥量.........................................45
3-4-9 膠羽沉降性.........................................46
3-5 電荷密度滴定法(Colloid Titration Method) ....................46
第四章結果與討論.......................................49
4-1 高分子凝集劑電荷密度測定結果............................49
4-2 人工原水水質..........................................52
4-3 單獨以polymer 作為混凝劑之混凝效果......................52
4-4 僅以PAC 為混凝劑之混凝效果.............................56
4-5 polymer 搭配PAC 作為助凝劑之混凝效果....................59
4-5-1 高分子凝集劑之篩選.................................59
4-5-1-1 陽離子型polymer ................................59
4-5-1-2 陰離子型及非離子型polymer......................60
4-5-2 加藥順序之影響....................................60
4-6 各種加藥方法之比較.....................................66
4-6-1 膠羽形成速度及外觀.................................66
4-6-2 沉澱污泥量........................................67
4-6-3 膠羽沉降速度.......................................71
4-7 混凝機制之探討........................................73
4-8 實廠原水試驗結果.......................................75
4-8-1 板新淨水廠原水水質及混凝試驗........................75
4-8-2 坪頂淨水廠高濁度原水之混凝試驗......................79
4-8-2-1 坪頂原水水質及混凝試驗之濁度去除效果............79
4-8-2-2 坪頂原水混凝試驗之沉澱污泥量.....................87
第五章結論與建議.......................................95
5-1 結論...................................................95
5-2 建議...................................................96
參考文獻................................................97
Akitt, J. W., and Farthing, A., "Aluminum-27 nuclear magnetic resonance aluminum metal", J. Chem. Soc. Dalton. Trans., pp. 1624, 1981.
Amirtharagjah, A. and O''Melia, C. R., "Chap 6:Coagulation and Flocculation", Water Quality and Treatment. 5th, AWWA, pp. 6.1, 1990.
Amirthrajah, A. and Mills, K. M., "Rapid Mix Design for Mechanism of Alum Coagulation", Jour. AWWA, Vol. 74, No. 4, pp. 210, 1982.
Arora, H., DeWolfe, J. R., Lee, R. G. and Grubb, T. P., "Evaluation of Dissolved Air Flotation Process for Water Clarification and Sludge Thickening", Wat. Sci. Tech., Vol. 31, No. 3-4, pp. 137, 1995.
AWWARF & IWSA, Treatment Process Selection for Patticle Removel, J. B. McEwen, Editor, AWWA, Denver, CO 80235, 1998
Bersch, P. M., "Conditions for A1-13 Polymer Formation in Partially Neutralized Aluminum Solutions", Soil. Sci. Soc. Am. J., Vol. 51, pp. 825, 1987.
Blck, A. P., "Better Coagulation Processes for Better Waters", Water Works Engineering, Vol. 116, pp. 375, 1963.
Bolto, B. A., Dixon, D. R., Gray, S. R., Chee, H., Harbour, P. J., Ngoc, L. and Ware, A. J., "The Use of Soluble Organic Polymers in Waste Treatment", Wat. Sci. Tech., Vol. 34, No. 9, pp. 117, 1996.
Dentel, S. K., "Coagulant Control in Water Treatment", Critical Reviews in Environmental Control, Vol. 21, No. 1, pp. 41, 1991.
Dentel, S. K., Gucciardi, B. M., Bober, T. A. and Resta, J. J., “Procedures Manual for Polymer Selection in Water Treatment Plants”, AWWARF, Denver, CO 80235, 1989.
Desjardins, C., Koudjonou, B. and Desjardins, R., "Laboratory Study of Ballasted Flocculation", Wat. Res., Vol. 36, pp. 744, 2002.
Gregory, J., "Rates of Flocculation of Latex Particles by Cationic Polymer", Jour. of Colloid Interface Science, Vol. 42, pp. 448, 1973.
Guibai, L. and Gregory, J., "Flocculation and Sedimentation of High-Turbidity Waters", Wat. Res., Vol. 25, No. 9, pp. 1137, 1991.
Hoyer, O. and Schell, H., "Monitoring Raw Water Quality and Adjustment of Treetment Processes - Experiences at the Wahnbach Reservior", Wat. Sci Tech., Vol. 37, No. 2, pp. 43, 1998.
Huang, C. and Chen, G. S., "Use of the Fiber-optical Monitor in Evaluating the State of Flocculation", Wat. Res., Vol. 30, No. 11, pp. 2723, 1996.
Huang, C., Chen, S. and Pan, J. R., "Optimal Condition for Modification of Chitosan:a Biopolymer for Coagulation of Colloidal Particles", Wat. Res., Vol. 34, No. 3, pp. 1057, 2000.
Lee, J. F., Liao, P. M., Tseng, D. H. and Wen, P. T., "Behavior of Organic Polymers in Drinking Water Purification", Chemosphere, Vol. 37, No. 6, pp. 1045, 1998.
Odegaard, H., "Optimised Particle Separation in the Primary Step of Wastewater Treatment", Wat. Sci. Tech., Vol. 37, No. 10, pp. 43, 1998.
O''Melia, C. R., In Physiocochemical Processes - for Water Quality Control, Ed. W. J. Weber Jr., Wiley-Interscience, New York, 1972.
Ozacar, M. and Sengil, "Effectiveness of Tannins Obtained from Valonia as a Coagulant Aid for Dewatering of Sludge", Wat. Res., Vol. 34, No. 4, pp. 1407, 2000.
Packham, R. F., "Some Studies of the Coagulation of Dispersed Clays with Hdrolyzing Salts", Jour. of Colloid Interface Sci., Vol. 20, No. 1, pp. 81, 1965.
Pan, J. R., Huang, C., Chen, S. and Chung, Y. C., "Evaluation of a Modified Chitosan Biopolymer for Coagulation of Colloidal Particles", Colloids and Surfaces A:Physicochemical and Engineering Aspects, Vol. 147, pp. 359, 1999.
Rout, D., Verma R. and Agarwal S. K., "Polyelectrolytes Treatment - An Approach for Water Quality Improvement", Water Sci. Tech., Vol. 40, No. 2, pp. 137, 1999.
Snoeyink, V. L. and Jenkins, D., Water Chemistry, John Wiley & Sons, New York, pp. 262, 1982.
Shih, W. K. and Chiang C. L., "Treatment of High Turbidity Water", Proceeding 4th International Workshop on Drinking Water Quality Management and Treatment Technology, March 4-5, Taiwan, R.O.C., 1998.
Stumm, W. and Morgan, J. J., “The Solid-Solution Interface”, Aquatic Chemistry, John Wiley and Sons, New York, pp. 612, 1981.
Stumm, W. and O''Melia, C. R., "Stoichometry of Coagulation", Jour. AWWA, Vol. 60, No. 5, pp. 514, 1968.
Twort, A. C., Ratnayaka, D. D. and Brandt, M. J., "Chap 7: Storage, Clarification and Filtration of Water", Water Supply. 5th, E. Arnold, Lodon, pp. 267, 1990.
Van Benschoten, J. E. and Edzwald, J. K. "Chemical Aspect of Coagulation Using Aluminum Salt-I. Hydrolytic Reactions Alum and Polyaluminum Chloride", Wat. Res., Vol. 24, No. 12, pp. 1519, 1990.
Van Benschoten, J. E. and Edzwald, J. K. "Chemical Aspect of Coagulation Using Aluminum Salt-II. Coagulation of Fulvic Acid Using Alum and Polyaluminum Chloride", Wat. Res., Vol. 24, No. 12, pp.1527, 1990.
Van Benschoten, J. E. and Edzwald, J. K. "Measuring Aluminum During Water Treatment: Methodology and Application", Jour. AWWA, Vol. 82, No. 3, pp. 71, 1990.
Walker, H. W. and Grant, S. B., "Factors Influencing the Flocculation of Colloidal Particles by a Model Anionic Polyelectrolyte", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 119, pp. 229, 1996.
Yao, C., The Preparation of Polymeric Aluminum Chloride and Its Application in Water Treatment, Doctoral Dissertation, the Johns Hopkins University, Baltimore, MD, 1987.
台北自來水事業處, "高濁度水處理技術探討", 研究報告, 台北, 1998.
甘其銓, "淨水廠濁度去除效能評估及混凝監測之研究-以豐原淨水廠為例", 碩士論文, 國立交通大學環境工程研究所, 新竹, 1996.
行政院環保署, 公告引用水管理條例第十三條飲用水水質處理所使用之藥劑, 八十六年十一月二十四日 (86) 環署毒字第七四0三三號
行政院環保署, 飲用水水質標準, 八十七年二月四日 (87) 環署毒字第000四四二八號令發佈
高肇藩, "給水工程 (衛生工程。自來水篇)", 編著者發行, 台南, 1978.
湯鴻霄, "羥基聚合氯化鋁的絮凝型態學", 環境科學學報, 第18卷, 第1期, 1998.
劉雅瑄, 駱尚廉, 官文惠等, "高分子聚合物對淨水水質影響評估", 第十九屆自來水研究發表會論文集, Nov. 15, 台北, pp. 22-29, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林雅慧(民87)。國小英語教學經驗分享。國民教育,39(1),39-44。
2. 施玉惠、周中天、陳淑嬌和朱惠美(民87b)。國小英語教學實施現況與未來規劃方向。載於第七屆中華民國英語文教學國際研討會論文集第二冊,759-777。台北:文鶴。
3. 李玉林(民86)。ABCD大家說。桃縣文教,7,18-20。
4. 朱正國(民88)。樂見國小實施英語教學。班級經營,4(2),38-42。
5. 石素錦(民87)。從認知心理與社會互動談兒童英語教學-根據皮亞傑與維高斯基理論談國小英語教學實務分析。載於第十五屆中華民國英語文教學國際研討會論文集,1-26。台北:文鶴。
6. 石素錦(民81)。從認知心理學談兒童英語教學。英語教學,17(2),57-67。
7. 毛連塭(民82)。談小學實施外語教學。教師天地,67,2-6。
8. 施玉惠(民87)。國小英語教學的未來規劃方向。教育資料與研究,23,15。
9. 丁仁(民88)。國小英語教學之要點與原則。教師之友,40(2),24-27。
10. 韋金龍(民87)。國小英語教師的選訓應注重品管。英語教學,23(2),93-94。
11. 殷彩鳳(民88)。教材選對,效果加倍-談選用英語教材的基本原則。敦煌英語教學雜誌,21,15-17。
12. 張湘君(民89b)。多元智能理論與英語教學法探究。國民教育,40(6),48-54。
13. 曹素香(民82)大台北地區兒童英語教學現況調查研究。北師語文教育通訊,2,49-61。
14. 陳春蓮(民88)。從學習者特質論國民小學英語教學之實施。課程與教學,2(3),23-36。
15. 陳貞(民87)。漫談國小英語課程。教師之友,39(2),1-3。
 
系統版面圖檔 系統版面圖檔