跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 17:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊士賢
研究生(外文):Shih-Hsien Yang
論文名稱:水中MTBE氧化特性之研究
論文名稱(外文):Oxidation of MTBE in Aqueous Solution
指導教授:林財富林財富引用關係
指導教授(外文):Tsair-Fuh Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:112
中文關鍵詞:Bubble Column模式全因素實驗設計法甲基第三丁基醚臭氧高錳酸鉀
外文關鍵詞:Bubble Column modelFull factorial experimental designPotassium permanganateMethyl tert-butyl etherOzone
相關次數:
  • 被引用被引用:16
  • 點閱點閱:442
  • 評分評分:
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:1
甲基第三丁基醚(Methyl Tert-Butyl Ether, MTBE)是全世界廣泛使用的汽油添加劑,其具有高度水溶解性、不易被土壤吸附及難以生物分解的特性。其洩露途徑為透過油庫或儲油槽的裂縫而滲漏至地表下,造成地下水水源污染,且MTBE已被証實為疑似致癌物質,因此極需有效的處理技術。本研究選取地下水處理及淨水處理程序常用的氧化劑─臭氧、高錳酸鉀及氯等來對MTBE進行氧化,進而了解各氧化劑去除MTBE之可行性,並探討水中MTBE之氧化特性。
在臭氧氧化MTBE部分,在較高pH值下(pH=8),氧化反應以氫氧自由基攻擊MTBE為主,遠較單獨以臭氧分子氧化時效率為高,以臭氧劑量為2.5mg/min、MTBE濃度為450μg/L時為例,僅反應5分鐘後去除率已可達到90%以上,相對而言,在低pH值下,氧化反應以臭氧分子直接氧MTBE為主,則幾乎無去除效果; 高錳酸鉀與MTBE反應部分,在反應180分鐘時,10mg/L的高錳酸鉀對濃度為670μg/L 的MTBE有26.7%的去除率。至於氯對MTBE的氧化效果則十分有限,以次氯酸鈉濃度為10mg/L為例,在反應180分鐘後,MTBE去除率僅有5.8%,因此加氯處理MTBE並不合適。
以全因素實驗設計法分別評估臭氧及高錳酸鉀氧化試驗,結果發現無論臭氧濃度及MTBE濃度的高低,只要pH值夠大的情況下,MTBE就會有明顯的去除率,因此pH值為最重要的操作因子。至於高錳酸鉀方面,高錳酸鉀劑量及MTBE濃度均對MTBE的去除率有正面的影響,而pH值的影響相對而言較小。
為了充分了解MTBE在受臭氧反應下的各個機制─揮發、氧化作用及質量傳送等,本研究也選擇Bubble Column模式結合臭氧與MTBE之反應動力,用以模擬MTBE在Bubble Column中與臭氧的反應行為。模擬所得的最佳化反應速率常數( )為0.157Lmg-1sec-1,可用以預測在不同MTBE初始濃度下之去除效果,且誤差在可接受範圍內。高錳酸鉀氧化MTBE方面,採取初始反應速率法,可求得高錳酸鉀與MTBE之反應速率式為 mg/L/min,其反應速率常數為2.57×10-4 Lmg-1min-1。
Methyl tert-butyl ether (MTBE) has been added into fuel extensively as an oxygenate. Due to high water solubility, low Henry’s law constant and low partition coefficient, MTBE is not easy to be removed from contaminated groundwater. To evaluate the effectiveness of chemical oxidation on the destruction of MTBE, three oxidants, including ozone, potassium permanganate, and chlorine were studied for their destruction kinetics on MTBE.
For ozone reaction with MTBE at higher pH (pH 8), hydroxyl radical is the dominant oxidant due to its high reactivity and unselectivity. The reaction rate is much faster than that for ozone molecules under lower pH. For instance, MTBE degradation was around 90% after 5 minutes of reaction at ozone concentration = 2.5mg/min and MTBE concentration = 450μg/L. On the contrary, as ozone is the dominant oxidant at lower pH, no significant degradation of MTBE was observed. For the reaction of potassium permanganate with MTBE (MTBE concentration = 670μg/L and potassium permanganate concentration of 10mg/L), about 26.7% of MTBE was degraded after 180 minutes. For chlorine oxidation, only up to 6% reduction of MTBE concentration are found, suggesting that chlorine is not appropriate for oxidizing MTBE.
A full factorial experimental design was employed to evaluate the effect of oxidant dosage, MTBE concentration, and pH on the oxidation of MTBE by ozone and potassium permanganate. We found that regardless of MTBE and ozone concentration, the MTBE destruction is significant when pH is high enough. The may suggest that pH is the most important operational factor. For potassium permanganate oxidation, the destruction of MTBE is more substantial at higher oxidant concentration, while pH does not have strong effect on MTBE destruction.
In order to realize the mechanisms of MTBE removal during ozonation process, bubble column experiments are conducted. The experimental data are simulated using a bubble column model that considers three mechanisms, including vaporization, oxidation kinetics and mass transfer. The model fitted to the experimental fairly well, and the reaction rate constant ( ) is 0.157 Lmg-1sec-1. The extracted rate constant is then used to predict another set of experimental data. The model predictions capture the trend of the experimental data, suggesting that the model is reasonable. For potassium permanganate oxidation experiment, an initial rate method is used to determine the reaction rate of potassium permanganate and MTBE oxidation. The observed reaction rate is (mg/L/min).
中文摘要I
英文摘要III
誌謝V
目錄VI
表目錄XI
圖目錄XII
第一章前言1
1-1研究緣起1
1-2研究目的與內容1
第二章文獻回顧4
2-1 MTBE之介紹4
2-1-1 MTBE對環境造成的衝擊4
2-1-2 MTBE在環境中之流佈5
2-1-3 MTBE 物理化學性質5
2-1-4 MTBE對健康之影響9
2-2 常見受MTBE污染地下水之整治技術10
2-2-1 抽取處理系統(Pump-and-Treat)10
2-2-2 空氣注入法(Air Sparging)10
2-2-3 現地沖洗法(In-Situ Flushing)10
2-2-4 透水性反應牆(Permeable reactive barrier, PRB)10
2-3 氧化劑之作用與特性12
2-3-1臭氧12
2-3-1-1 臭氧的發現12
2-3-1-2 臭氧的物理化學性質12
2-3-1-3 臭氧在水中之自身分解15
2-3-1-4 臭氧與有機物的反應機制17
2-3-1-5 臭氧在水處理上的應用23
2-3-2高錳酸鉀25
2-3-2-1 高錳酸鉀之物化特性25
2-3-2-2 高錳酸鉀之反應途徑26
2-3-2-3 高錳酸鉀應用於現地地下水的處理30
2-3-3氯30
2-3-3-1氯的種類30
2-3-3-2氯的消毒理論31
2-3-3-3加氯方式33
2-4 氧化劑之氧化動力學及質量傳輸理論34
2-4-1臭氧與有機物間的質量傳送34
2-4-2高錳酸鉀之氧化動力學35
2-4-3Bubble Column中的質量傳輸理論36
第三章研究設備與方法39
3-1 實驗材料及儀器39
3-1-1實驗藥品39
3-1-2實驗儀器40
3-1-3臭氧反應設備40
3-2 實驗方法43
3-2-1臭氧氧化試驗44
3-2-1-1臭氧氧化試驗流程44
3-2-1-2臭氧氧化試驗控制參數44
3-2-2高錳酸鉀之氧化試驗45
3-2-2-1高錳酸鉀氧化試驗流程45
3-2-2-2高錳酸鉀氧化試驗控制參數45
3-2-3加氯氧化試驗47
3-3因素設計法47
3-3-1 全因素實驗設計法47
3-3-2 部分因素實驗設計法49
3-4 分析方法50
3-4-1臭氧之分析50
3-4-1-1臭氧產生量50
3-4-1-2氣相中臭氧之測定50
3-4-1-3水相中臭氧之測定51
3-4-2高錳酸鉀之分析52
3-4-2-1高錳酸鉀濃度之標定52
3-4-2-2高錳酸鉀濃度檢量線52
3-4-2-3殘餘高錳酸鉀濃度之分析53
3-4-3餘氯之分析54
3-4-4MTBE之分析方法54
3-4-4-1 SPME/GC/FID之介紹54
3-4-4-2 MTBE檢量線之配製56
第四章結果與討論59
4-1前置實驗59
4-1-1MTBE不添加氧化劑之背景實驗59
4-1-2MTBE之揮發動力實驗結果60
4-2氧化動力實驗結果62
4-2-1臭氧氧化試驗62
4-2-1-1 pH值對臭氧氧化MTBE之影響62
4-2-1-2添加不同臭氧劑量對MTBE之影響65
4-2-1-3 MTBE濃度對臭氧氧化MTBE效率之影響66
4-2-2高錳酸鉀氧化試驗67
4-2-2-1不同攪拌速率對去除率之影響67
4-2-2-2 pH值對高錳酸鉀氧化MTBE之影響68
4-2-2-3添加不同高錳酸鉀劑量對MTBE之影響69
4-2-2-4不同MTBE濃度對去除率之影響71
4-2-3加氯氧化試驗72
4-2-4比較臭氧、高錳酸鉀及氯對MTBE的去除效果73
4-3 以全因素實驗設計法評估影響氧化的因子74
4-3-1臭氧氧化試驗74
4-3-2高錳酸鉀氧化試驗79
4-4模式應用與預測84
4-4-1 MTBE質量傳送─Bubble Column模式84
4-4-2臭氧對MTBE的反應動力式結合Bubble Column模式
87
4-4-3模式之預測結果91
4-4-4高錳酸鉀對MTBE的反應動力式92
第五章結論與建議97
5-1 結論97
5-2 建議99
參考文獻100
附錄一108
附錄二109
附錄三111
自述112
表目錄
頁數
表2-1MTBE之物理化學性質8
表2-2MTBE與其他含氧添加劑之特性比較9
表2-3臭氧之物理化學性質14
表2-4臭氧與常使用的氧化劑還原電位14
表2-5臭氧溶解度與溫度的關係15
表2-6臭氧直接氧化各種化合物的反應速率常數20
表2-7臭氧直接氧化與以自由基氧化各種化合物的反應速
率常數21
表2-8自由基鏈鎖反應中常見的起始劑﹙Initiator﹚、促進劑
﹙Promoter﹚以及抑制劑﹙Inhibitor﹚22
表2-9臭氧在水處理上的應用24
表2-10高錳酸鉀於不同溫度下之溶解度25
表2-11高錳酸鉀的物化特性26
表3-122設計方陣及目標值48
表4-1氧化動力實驗之參數設計62
表4-2臭氧實驗因子的影響及預估標準偏差之計算74
表4-3考慮99%的信賴度,計算臭氧試驗主因素與交互作用
影響的信賴區間76
表4-4高錳酸鉀實驗因子的影響及預估標準偏差之計算79
表4-5 考慮99%的信賴度,計算高錳酸鉀試驗主因素與交
互作用影響的信賴區間80
表4-6高錳酸鉀氧化MTBE之速率常數及初始反應速率94
圖目錄
頁數
圖1-1實驗流程圖3
圖2-1臭氧結構圖13
圖2-2臭氧分解機制16
圖2-3臭氧與水中有機物之作用機制19
圖2-4二氧化錳之表面構造及其反應途徑29
圖3-1臭氧反應設備配置圖42
圖3-2臭氧製造機之臭氧產量與電壓之關係43
圖3-3高錳酸鉀及加氯氧化試驗裝置46
圖3-4高錳酸鉀標準濃度之檢量線53
圖3-5SPME裝置示意圖57
圖3-6MTBE標準濃度之檢量線58
圖4-1MTBE不添加氧化劑之背景實驗59
圖4-2MTBE之揮發動力61
圖4-3不同pH值下MTBE之揮發動力61
圖4-4以臭氧氧化MTBE與MTBE之揮發動力比較64
圖4-5不同pH值下臭氧對MTBE之氧化動力64
圖4-6不同臭氣劑量下O3 對MTBE之氧化動力65
圖4-7不同MTBE濃度下O3氧化MTBE之氧化動力66
圖4-8不同攪拌速率下KMnO4氧化MTBE之氧化動力67
圖4-9不同pH下KMnO4氧化MTBE之氧化動力69
圖4-10不同KMnO4濃度下KMnO4氧化MTBE之氧化動力
65
圖4-11 不同MTBE濃度下KMnO4氧化MTBE之氧化動力
71
圖4-12加氯氧化MTBE之氧化動力72
圖4-13三種氧化劑對MTBE之氧化動力73
圖4-14MTBE在不同濃度及pH下之去除率77
圖4-15MTBE在不同pH及臭氧劑量下之去除率78
圖4-16不同MTBE濃度及高錳酸鉀劑量下之去除率81
圖4-17不同MTBE濃度及pH下之去除率82
圖4-18 與時間 之線性迴歸圖85
圖4-19Bubble Column模式預測MTBE之揮發動力86
圖4-20Bubble Column中最佳化之模擬氧化動力曲線90
圖4-21以最佳化 (0.157 Lmg-1sec-1)預測初始濃度為201
μg/L下之氧化動力曲線91
圖4-22 MTBE隨不同高錳酸鉀濃度降解曲線圖92
圖4-23 MTBE隨不同MTBE濃度降解曲線圖93
圖4-24初始速率對MTBE初始濃度之線性迴歸圖96
圖4-25 對 之線性迴歸圖96
Achten, C., and Puttmann,W., “Determination of Methyl Tertiary-Butyl Ether in Surface Water by Use of Solid-Phase Mircroextration”, Environ. Sci. Technol.,34, 1359-1364, 2000.
APHA, AWWA and WPCF. Standard Methods for the Examination of Wastewater, 19th ed., Washington, DC, USA, 1995.
APHA, AWWA and WPCF. Standard Methods for the Examination of Wastewater, 19th ed., Washington, DC, USA, 1996.
Bailey, P. S., “Ozonation in Organic Chemistry”, Academic Press, New York, 8, 1990.
Budavari, S. et al., “ 7643 : Patassium Permanganate”, The Merck Index, 11th edition, Merck and Co., INC., 7636, 1989.
Barker, R. and Jones, A. R., “Treatment of malodorants in air by the UV/ozone technique”, Ozone Sci and Eng., 10, 4, 405, 1988.
California Department of Health Services. Drinking Water Standards for Methyl Tertiary-Butyl Ether(MTBE), Sacramento, CA, 1999.
Cho,J.S.,Wakao,N.,”Determination of liquid-side and gas-side volumetric mass transfer coefficients in a bubble column”, Department of Chemical Engineering,Yokohama National University,Yokohama 240,1988.
Clayton,W., Marvin, B.K., Pac, T., and Mott-Smith, E. “A multisite field performance evaluation of in-situ chemical oxidation using permanganate. In: Wickramanayake GB, Gavaskar AR, Chen SC, editors. Chemical oxidation and reactive barriers: remediation of chlorinated and recalcitrant compounds. Second International Conference of Chlorinated and Recalcitrant Compounds. Monterey”, CA: Battelle Press, 101-8, 2000.
Damm,J.H.,Hardacre,C.,Kalin,R.M.,and Walsh,K.P.,” Kinetics of the oxidation of methyl tert-butyl ether (MTBE) by potassium permanganate”, Water Res., 36, 3638-3646, 2002.
Davidson, J.M. and Creek, D.N., “Using the gasoline additive MTBE in forensic environmental investigations”, Environmental Forensics, 1 , 31-36, 2000.
EPA, Environmental Protection Agency, “ MTBE fact sheet#1, overview ”, EPA 510-F97-014, 1998. (http: // www.epa.gov / OUST / mtbe /mtbefs1.pdf)
EPA, Environmental Protection Agency, ” MTBE fact sheet#2,Remediation of MTBE contaminated soil and groundwater ”, EPA 510-F97-015, 1998. (http://www.epa.gov/OUST/mtbe/mtbefs2.pdf)
EPA, Environmental Protection Agency, ”MTBE fact sheet#3,Use and
distribution of MTBE and ethanol “, EPA 510-F97-016, 1998.
(http://www.epa.gov/OUST/mtbe/mtbefs3.pdf)
Feng, J. and Johnson, D. C. “Electrocatalysis of anodic oxygen-transfer reactions: evolution of ozone”, Electrochem. Soc., 141, 2708, 1994.
Ficek, K. J., “Chap.21:Potassium Permanagnate for Iron and Manganese Removal and Taste and Odor Control”, Water Treatment Plant Design, R. L Sanks.(editor), Ann Arbor Science Publishers, Inc., 461-479, 1980.
Ficek, K. J. and Reidies, A. H., “Chap. 8 : Patassium Permanganate”, In Disinfection Alternatives for Safe Drinking Water, Bryrant, E. A., Fulton, G. P. and Budd, G. C.(editor), New York : Van Nostrand Rcinhold, 259-276, 1992.
Huang, T.C. and Chen, D.H., “Kinetics of ozone decomposition in aqueous solution with and without ultraviolet radiation.” J. Chin. I. Ch. E. , 24, 4, 207, 1993.
Hoigne, J. and Bader, H., “Rate constants of reactions of ozone with organic and inorganic compounds in water -I. Non-dissociating organic compounds” , Water Res., 17, 173, 1983.
Hoigine, J. and Bader, H., “Rate constant of reaction of ozone with organic and inorganic compounds in water”, Water Res., 17, 1996.
Hoigne, J. and Bader, H., Hagg, W. R. and Staehelin, J., “Rate constants of reactions of ozone with organic and inorganic compounds in water -Ⅲ. Inorganic compounds and radicals”, Water Res., 19, 993, 1985.
Johnson, R., Pankow, J., Bender, D., Price, C., and Zogorski, J., “Feature-MTBE To What Extent Will Paste Release Contaminated Community Water Supply Wells” , Environ. Sci. Technol., 34, 210-217, 2000.
Julien, D., Rosa, G. and Esmeralda , M.,“Optimization of Headspace Solid-phase Microextraction by Means of an Experimental Design for the Determination of Methyl tert-buryl ether in Water by Gas Chromatography-flame Ionization Detection”, Journal of Chromatography A, 963, 259-264, 2002 .
Knocke, W. R., Shorney, H. L. and Bellamy,J. D. “Examining the Reactions Between Soluble Iron, DOC and Alternative Oxidant During Conventional Treatment”, Jour. AWWA, 86, 117-127, 1994.
Knocke, W. R., Hoehn, R.C. and Sinsabaugh, R. L., “Using Alternative Oxidants to Remove Dissolved Manganese From Waters Laden with Organics”, Jour. AWWA, 79, 75-79, 1987.
Ladbury, J. W. and Cullis, C. F., “Kinetics and Mechanism of Oxidation by Permanganate”, CHEM. Reviews, 58, 403-438, 1958.
Langlias, B., Reckhow, D.A. and Brink, D.R., Ozone in Water Treatment Application and Engineering, Lewis publishers, Inc., Michigan, U.S.A., 1991.
Lapin, L. L., “Modern Engineering Statistics”, Duxbury Press, 1997.
Marie, M. M., Arturo A. K.,Clifford, A. B.,Robert, G. R. and Orville C. S., “Kinetics and Products of Reactions of MTBE with Ozone and Ozone/Hydrogen Peroxide in Water”, Joural of Hazardous Materials, B89, 197-212, 2002.
McCarty, J. J. and Smith, C. H., “A Review of Ozone ang it’s Application of Domestic Wastewater Treatment”, Jour. AWWA, 66, 12, 718-726, 1974.
McKay, D.J., Stark, J.A., Young, B.L., Govoni, J.W., Berini, C.M.,Cronan, T.J. and Hewitt, A.D., “A field demonstration of trichloroethylene oxidation using potassium permanganate”, In: Wickramanayake GB, Gavaskar AR, Chen SC,editors. Chemical oxidation and reactive barriers: remediation of chlorinated and recalcitrant compounds, Second International Conference of Chlorinated and Recalcitrant Compounds, Monterey, CA: Battelle Press, 101-8, 2000.
Oberle, D.W. and Schroder , D.L., “ Design considerations for insitu chemical oxidation. In: Wickramanayake GB, Gavaskar AR, Chen SC, editors. Chemical oxidation and reactive barriers: remediation of chlorinated and recalcitrant compounds. Second International Conference of Chlorinated and Recalcitrant Compounds”, Monterey, CA: Battelle Press, 91-9, 2000
Prengle, H. W. and Mauk C.E.,“New technology ozone/UV chemical oxidation wastewater process for metal complex, organic species and disinfection,” AIChE Sym., 74, 228, 1978.
Posselt, H. S. and Anderson, F. J., “Effect of Permanganate pretreatment and Coagulation with Dual Coagulants on Algae Removal in Direct Filtration”, J. Water SRT-Aqua, 45, 5, 316-326, 1996.
Siegrist, R.L., Principles and Practices of In Situ Chemical Oxidation Using Permanganate, 177-181, Joural of Hazardous Materials, 90, 323-324, 2002
Skoog, D. A., Wesr, D. M. and Holler, F. J., “Chap. 17 : Applications of Oxidation/Reduction Titration”, Analytical Chemistry : An Introduction, 5th edition, Yi Hsien Publishing Co., Ltd., 1990.
Sotelo, J. L. and Beltran, F. J., “Henry’s law constant for the ozone-water system”, Water Res., 23, 1989.
Staehelin, J. and Hoigne, J., ”The decomposiition of ozone in water in the presence of organic solutes acting as promoters and inhibitord of radical chain reactions”, Environ. Sci. Technol., 19, 1206, 1985.
Stumm, W. and Morgan, J. J., “Chap 8 : Oxidation and Reduction ; Equilibria and icrobial Mediation”, Aquatic Chemistry, 3th edition, John Wiley and Sons Inc., 462, 1996.
Rip, V. G. and Netzer, A., “Handbook of Ozone Technology and Application”, Wat. Sci. Tech, I, 1982.
U.S. EPA. Drinking Water Advisory, “Consumer Accptabiliably Advice and Health Effects Analysis on Methyl Tertiary-Butyl Ether(MTBE)”, EPA-822-F-97-009, Office of Water: Washington, DC, 1997.
Vella, P.A., Munder, J.A., “ Toxic pollutant destruction”, In: Emerging technologies in hazardous waste management III, Atlanta, American Chemical Society, 85-105, 1993.
Yan, Y.E., Schwartz, F.W., “ Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate. Journal of Contaminant Hydrology, 37, 3, 43-65, 1999.
方瑋寧,“MTBE好氧分解之可行性研究”,國立中山大學環境工程研究所碩士論文,2002。
行政院環境保護署新聞資料,http://www.epa.gov.tw/news en-900124.htm,2001。
行政院環境保護署,飲用水與甲基第三丁基醚相關資料,http://www.epa.gov.tw/waterpollution/drinkwater/mains/m10.htm,2001。
行政院環境保護署相關資料,汽油添加劑MTBE(甲基第三丁基醚)之環境污染特性,http://www.epa.gov.tw/training/49-4-2.htm,2001。
林哲民,“利用UV/H2O2、O3 及UV/O3光化學氧化法處理反應性染料廢水之研究”,逢甲大學環境工程與科學研究所碩士論文,2001。
林財富、洪旭文,“受污染場現地化學處理方法介紹” ,工業污染防制期刊,第72期,178-200,1999。
林財富、洪旭文, “以吸附劑作為透水性反應牆材料處理地下水中MTBE之研究”,行政院國家科學委員會計畫,2002。
林財富,”污染場址整治”, 國立成功大學環境工程研究所上課講義,2002。
林財富,”地下污染物傳輸與宿命”,國立成功大學環境工程研究所上課講義,2003。
高肇藩,”給水工程”,國立成功大學環境工程系上課用書,1987。
陳郁仁,“前氧化劑對藻類去除影響之研究”,國立成功大學環境工程研究所碩士論文,2001。
溫添進,”統計與實驗設計” ,國立成功大學化學工程研究所上課講義,2002。
黃世峰,“以臭氧/紫外光去除印刷電路板電鍍液中亞甲基二奈磺酸鈉之研究”,國立台灣大學環境工程學研究所碩士論文,2001。
歐陽嶠輝,”下水道工程學”,長松文化公司,2000。
“環保署將加強抽查加油站防範地下儲油槽洩漏”, http://www.epa.gov.tw/news/gn861103.htm,1997。
殷榮堅、顧洋,“以紫外線/臭氧程序處理二氯酚溶液反應行為之研究”,
國立台灣工業技術學院化學工程研究所碩士論文,1993。
劉家玲,”預氯程序對粉狀活性碳吸附2-MIB 之影響”,國立成功大學環境工程研究所碩士論文,2002
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top