跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/04 05:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建彰
研究生(外文):Chien-Chang CHEN
論文名稱:鑄記基因,GRB10,MEST與體型
論文名稱(外文):Imprinting genes, GRB10, MEST and body size
指導教授:林秀娟林秀娟引用關係
指導教授(外文):Shio-Jean Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:64
中文關鍵詞:體型鑄記基因
外文關鍵詞:Imprinting geneGRB10MEST
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
約有15%的新生兒在出生時有體型上偏小或偏大的情形,除了可能造成新生兒發展遲緩外也有可能造成較高的罹病率或是死亡率。對於體型此一受多基因遺傳影響的表型而言,要找出調控的基因事實上非常的困難。就單一罕見遺傳疾病Russell-Silver Syndrome (RSS)來說,此一疾病會造成患者身材矮小、肢體兩側不對稱等症狀,據統計約有10%的RSS患者是屬於第七號染色體的母源單親二體症(maternal uniparental disomy),提供了一對體型研究的線索。單親二體症最主要會影響鑄記基因的表現而致病。所謂鑄記基因指的是一群會因對偶基因的親源而決定此一對偶基因表現與否的基因。在第七號染色體上一共有三個鑄記基因,其中的兩個與生長發育的調控相關,分別是GRB10及MEST。實驗中對於GRB10及MEST,採用SNP genotyping的方式,對所蒐集的不同的族群做試驗後,以統計方法比較在不同體型大小的族群間以及在所蒐集的RSS疑似病患間,是否有關聯性存在。在結果中發現MEST與體型大小的變化或RSS的發生並沒有相關,而在GRB10方面,經過計算發現點rs1019000與RSS的發生有相關外,在點rs730652也發現與體型大小的變化有正相關,認為GRB10是第七號染色體上扮演調控體型大小角色的基因。後續更針對在點rs1019000所發現的雙核酸重複序列做多型性分析,結果顯示,所發現的雙核酸重複序列在體型上有一相關存在。
There are about 15% newborns with abnormal body size. The abnormal body size may result in growth retardation or higher morbidity and mortality. Body size is a polygenetic phenotype. Most of the genetic causes of abnormal body size are still unknown. At present, it is difficult to find out all of the genes which control this phenotype. The Russell-Silver syndrome (RSS) suffered patients by low-birth-weight dwarfism and lateral asymmetry. Maternal uniparental disomy for chromosome 7 (mUPD7) has found in around 10% Russell-Silver Syndrome patients, which may be shed some light on finding genes for body size control. The major effect of uniparental disomy is it may disturb imprinting gene expression. Genomic imprinting refers to an epigenetic modification in germ line leads to preferential expression of one of two parental alleles in a parental-of-origin-specific manner. And a substantial proportion of imprinting genes are involved in control of fetal growth and placental development. There are three imprinting genes on chromosome 7. Two of these three genes, GRB10 and MEST, were reported to take part in growth or development control. In this study, we try to find out if the GRB10 and MEST genes associate with RSS or abnormal body size by SNP genotyping and association study in different body size population and RSS patients. In this study, we found that the MEST gene is not related to abnormal body size and RSS. The GRB10 gene, in this study, is associated with abnormal body size and RSS. By statistic analysis of four SNP genotyping in different body size population and RSS patients, rs1019000 has a significant contribution to RSS. That is the GRB10 gene, located on chromosome 7p11.2-12, controls fetal development and result in different body size. We also find out a CA di-nucleotide repeat downstream of rs1019000. By genotyping, the microsatellite polymorphism seems to relate to body size difference. The next step for this di-nucleotide repeat is to see if this repeat affects the RNA transcription result in protein higher expressed.
目次 頁次
緒論 1
材料與方法 7
檢體收集 7
檢體分類 7
核酸萃取 8
核酸硫酸氫鈉處理 8
甲基化專一聚合脢連鎖反應 9
EBV 細胞株培養 10
EBV 轉型 11
SNP 挑選 11
SNP Short Base Extension genotyping 11
Template Preparation 11
SNP 引子設計 12
SNP 複合聚合脢連鎖反應放大 12
SNP聚合脢連鎖反應放大 13
PCR產物純化 14
SNaPshot 3rd引子設計 15
SNaPshot reaction prepation 15
SNaPshot Thermal Cycling and Post-Extension treatment15
GenScan by ABI Prism 310 or 3100 genetic analyzer 16
核酸序列定序 16
GRB10 重複序列聚合脢連鎖反應放大 16
統計分析 17
結果 18
開發快速檢驗mUPD7之方法 18
GRB10、MEST對體型影響之研究 20
討論 25
開發快速檢驗mUPD7之方法 25
GRB10、MEST對體型影響之研究 28
表 35
圖 50
參考文獻 61
自述 64
1.Hitchins M.P., Monk D., Bell G. M., Ali Z., Preece M. A., Stanier P., Moore G. E Maternal repression of human GRB10 gene in the developing central nervoussystem; evaluation of the role for GRB10 in Silver-Russell syndrome European Journal of Human Genetics 9, 82-90 (2001)
2.Constância M., Hemberger M., Hughes J., Dean W., Ferguson-Smith A., Fundele R., Stewart F., Kelsey G., Fowdenk A., Sibley C., Reik W. Placental-specific IGF-II is a major modulator of placental and fetal growth Nature 417, 945-948 (2002)
3.Gaunt T. R., Cooper J. A., Miller G. J., Day I. N. M., O’Dell S. D. Positive associations between single nucleotide polymorphisms in the IGF2 gene region and body mass index in adult males Human Molecular Genetics 10, 1491-1501 (2001)
4.Fant M. E., Weisoly D. Insulin and Insulin-like growth factors in human development: implications for the perinatal period Seminars in perinatology 25, 426-435 (2001)
5.Monk D., Wakeling E. L., Proud V., Hitchins M., Abu-Amero S.N., Stanier P., Preece M. A., Moore G. E Duplication of 7p11.2-p13, including GRB10, in Silver-Russell syndrome American Journal of human genetics 66, 36-46 (2000)
6.Nakabayashi K., Fernandez B. A., Teshima I., Shuman C., Proud V. K., Curry C. J., Chitayat D., Grebe T., Ming J., Oshimua M., Meguro M., Mitsuya K., Deb-Rinker P., Herbrick J., Weksberg R., Scherer S. W. Molecular genetic studies of human chromosome 7 in Russell-Silver syndrome Genomic 79, 186-196 (2002)
7.Monk D. Bently L., Hitchins M., Myler R. A., Clayton-Smith J., Ismail S., Price S. M., Preece M. A., Stanier P., Moore G. E Chromosome 7p disruptions in Silver Russell syndrome: delineating an imprinting candidate gene region Human Genetics 111, 376-387 (2002)
8.Gardner R. L., Squire, S., Zaina, S.,Hills, S. & Graham, C. F. Insulin-like growth factor-2 regulation of conceptus composition: effects of the trophoectoderm and inner cell mass genotypes in the mouse. Biol. Reprod. 60, 190—195 (1999).
9.Bérard J., Dufour P., Vinatier D., Subtil D., Vanderstichéle S., Monnier JC., Puech F.
Fetal macrosomia: risk factors and outcome, a study of the outcome concerning 100 cases > 4500g European Journal of Obstetrics & Gynecology and Reproductive Biology 77 (1998) 51-9
10.Lazer S., Biale Y., Mazor M., Lewenthal H., Insler V. Complication associated with the macrosomic fetus. J. Reprod. Med. 1986; 31: 501-5
11.Roth S., Abernathy M. P., Lee W. H., Pratt L., Denne S., Golichowski A., Pescoritz O. H. Insulin-like growth factor I & II peptides and messenger RNA levels in macrosomic infants of diabetic pregnancies. J. Soc. Gynecol Invest. 1996; 3: 78-84
12.Tenovuo A. Neonatal complications in small-for-gestational age neonates. J. Perina. Med. 16(3): 197-203, 1988
13.Tenovuo A. Developmental outcome of 519 small-for-gestational age children at the age of two years. Neuropediatrics. 19(1): 41-5, 1988
14.Zeitlin J. A., Ancel PY., Saurel-Cubizolles MJ., Papiernik E. Are risk factors the same for small for gestational age versus other preterm births? Am J Obstet Gynecol 185(1): 208-215, 2001
15.Teng YN, Tsai WH, Wu CJ, Lin SJ, Chen YJ, Kuo PL. Association of a Prader-Willi Syndrome and Angelman syndrome Based on Methylation-Specific Polymerase chain Reaction. J Formos Med Assoc 101: 488-94, 2002
16.Tsai WH, Lin SJ, Chen CT, Shiue CN, Tsai SC, Wu CJ, Kuo PL Diagnosis of Prader-Willi Syndrome in the Neonatal Period. Clincal Neonatology 9:24-27, 2002
17.Kosaki K., Kosaki R., Robinson WP., Craigen WJ., Shaffer LG., Sato S., Matsuo N. Diagnosis of maternal uniparental disomy of chromosome 7 with a methylation specific PCR assay Journal of Medical genetics 37 (9): 19e (2000)
18.Hanel ML., Wevrick R. The role of genomic imprinting in human developmental disorders: lessons from Prader-Willi syndrome Clin Genet: 59 156-164 (2001)
19. Fant ME., Weisoly D. Insulin and insulin-like growth factors in human development: implications for the perinatal period Seminar in Perinatology 25 (6) 426-435 (2001)
20.Hannula K., Lipsanen-Nyman M., Kontiokari T., Kere J. A narrow segment of maternal uniparental disomy of chromosome 7q31-qter in Silver-Russell syndrome delimits a candidate gene region American Journal of human genetics 68, 247-253 (2001)
21.Strahl BD, Allis CD The language of covalent histone modification. Nature 403:41-45 (2000)
22.El-Maarri O, Buiting K et al. Methylation imprints on human chromosome 15 are established during or after fertilization. Nat Genet 27: 341-344(2001)
23.Georgiades, P. et al. Roles for genomic imprinting and the zygotic genome in placental development. Proc. Natl Acad. Sci. USA 98, 4522—4527 (2001).
24.Vu TH., Hoffman AR. Comparative genomics heds lights on mechanisms of genomic imprinting Genome research 10:1660-1663 (2000)
25.Pfeifer K. Mechanisms of Genomic imprinting American Journal of human genetics 67: 777-787 (2000)
26.Shemer R., Hershko AY., Perk J., Mostoslavsky R., Tsuberi B., Cedar H., Buiting K., Razin A. The imprinting box of the Prader-Willi/Angelman syndrome domain Nat Genet 26: 440-443(2000)
27.Buiting K., Barnicoat A., Lich C., Pembrey M., Malcolm S., Horsthemke B. Disruption of the bipartite imprinting center in a family with Angelman Syndrome American Journal of human genetics 68: 1290-1294 (2001)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top