(3.238.250.105) 您好!臺灣時間:2021/04/18 19:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳建一
研究生(外文):Chien-i Chen
論文名稱:應用貪婪式基因演算法於選題策略之研究
論文名稱(外文):Study of Applying Greedy-Genetic Algorithm to Select Test Items
指導教授:姜美玲姜美玲引用關係
指導教授(外文):Mei-Ling Chiang
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:53
中文關鍵詞:基因演算法貪婪演算法貪婪式基因演算法
外文關鍵詞:Genetic AlgorithmGreedy AlgorithmGreedy-Genetic Algorithm
相關次數:
  • 被引用被引用:17
  • 點閱點閱:599
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:86
  • 收藏至我的研究室書目清單書目收藏:0
測驗,是教學歷程中的最後關卡。透過測驗,可以了解學生對於教學單元的學習程度,並藉著測驗的題目內容,了解學生在學習過程中的盲點與困難,同時也可以幫助老師在教學內容上的調整,以增加教學的效果。但是要如何選擇適當的題目以形成一份有效的測驗卷則是一個重要的議題。
而隨著資訊科技的發達,有研究開始利用演算法與資料庫的結合,把原本由人力編撰測驗卷的工作,交由電腦來執行,讓電腦產生測驗卷,而這份測驗卷是符合我們所需要測試學生能力範圍的測驗卷。
但傳統的選題策略的演算法並不能十分符合我們的需求,所以有研究提出利用「貪婪演算法(Greedy Algorithm)」及「基因演算法(genetic Algorithm)」,來產生更接近考試需求的測驗卷。在本論文研究中,我們嘗試應用「貪婪式基因演算法(Greedy-Genetic Algorithm)」,藉由結合基因演算法與貪婪演算法的優點,利用既有的題庫產生測驗卷,並與「貪婪演算法」及「基因演算法」所得的結果作比較,實驗結果顯示本研究可以產生較接近考試需求的測驗卷。
Testing is the last barrier of the education process. Testing can help to evaluate students’ learning effectiveness and can help teachers adjust the contents of teaching to increase the effects of teaching. Choosing the suitable test items to form an effective test paper is an important issue.
As information technology improves, there are researches that use computers to produce a test paper. Algorithms and database technologies are often used to replace the traditional manpower method in selecting test items to form the test paper that can fit our needs on evaluating students’ ability of learning.
Traditional algorithms that have been proved in the literature are not able to meet our requirements in selecting test items. Therefore, some researches make use of artificial intelligence algorithms to produce a test paper. In this thesis, we propose the Greedy-Genetic Algorithm that combines the advantages of Greedy Algorithm and Genetic Algorithm for test item selection. Experimental results show that this research is able to produce test papers that are closer to the demands of examination.
目錄………………………………………………………………… Ⅰ
圖目錄……………………………………………………………… Ⅱ
表目錄……………………………………………………………… Ⅲ
中文摘要…………………………………………………………… 1
英文摘要…………………………………………………………… 2
第一章 緒論……………………………………………………… 3
第二章 項目反應理論(IRT)………………………………….. 7
2.1 古典測驗理論與項目反應理論…………………... 7
2.2 IRT的假設…………………………………………… 8
2.3 訊息量(Information)…………………………… 12
第三章 選題策略的文獻探討…………………………………… 15
3.1 五種傳統的選題策略………………………………. 15
3.2 貪婪演算法應用於選題策略………………………. 19
3.3 基因演算法應用於選題策略………………………. 23
第四章 貪婪式基因演算法……………………………………… 32
4.1 參數設定……………………………………………. 32
4.2 貪婪式基因演算法…………………………………. 34
第五章 效能評估………………………………………………… 38
5.1 硬體設備與參數設定………………………………. 38
5.2 實驗結果……………………………………………. 39
第六章 結論……………………………………………………… 48
參考文獻…………………………………………………………… 50
中文文獻……………………………………………………… 50
英文文獻……………………………………………………… 51
[1] 王寶墉(1995),“現代化測驗理論”,台北:心理出版社。
[2] 余民寧(1992),“測驗理論的發展趨勢”,心理測驗之學術及實務研討會。
[3] 余民寧(2003),“教育測驗與評量-成就測驗與教學評量”,台北:心理出版社,再版二刷。
[4] 杜家霖(1997),“研討式教學中隨堂測驗及練習的設計與製作”,碩士論文,私立中原大學資訊工程研究所。
[5] 杜淑芬,黃國禎(1998),“網路測驗及評估系統試題配置最佳化之研究”,第七屆國際電腦輔助教學研討會(ICCAI’ 98),337~343頁,高雄:國立高雄師範大學。
[6] 何榮桂(1994),“電腦化題庫概述”,測驗與輔導,126期,2576-2577頁。
[7] 何榮桂、杜玲均、莊謙本(1998),“改良式之灰色預測電腦化適性測驗選題測驗”,第七屆國際電腦輔助教學研討會(ICCAI’ 98),393~400頁,高雄:國立高雄師範大學。
[8] 李連順(1999),“國中生活科技線上測驗系統發展研究”,碩士論文,國立高雄師範大學工業科技教育研究所。
[9] 李明如(2001),“測驗選題演算法之研究─以國中基本學力測驗之國文.數學為例”,碩士論文,中原大學資訊工程研究所。
[10] 吳旭晉(2000),“以遺傳演算法與模擬退火法計算固定式太陽電池板之最佳安裝角度”,碩士論文,私立義守大學電機工程研究所。
[11] 林佑政、謝財明、謝雪娥、洪羽珊、陳玟伶(2000),“測驗選題系統”,第四屆全球華人教育資訊科技大會會議論文集(GCCCE’ 00),488-495頁,新加坡。
[12] 孫光天、陳新豐、吳鐵雄(1998),“線上適性測驗回饋對作答情緒與動機影響之研究”,第七屆國際電腦輔助教學研討會(ICCAI’ 98),9-14頁,高雄:國立高雄師範大學。
[13] 孫光天、鄭海東、謝凱隆、陳新豐(1998),“智慧型線上適性測驗系統”,第七屆國際電腦輔助教學研討會(ICCAI’ 98),81-86頁,高雄:國立高雄師範大學。
[14] 孫光天、陳岳宏、賴膺守、謝凱隆、陳新豐(1999),“使用貪婪演算法作為一有效益之選題策略”,全國計算機會議(NCS’ 99),B本,237-243頁,台北:淡江大學。
[15] 孫光天、賴膺守、戴伯昌(1999),“利用基因演算法於選題策略之研究”,全國計算機會議(NCS’ 99),A本,379-386頁,台北:淡江大學。
[16] 莊元明(2000),“建立退火基因演算法反算海底地音參數”,碩士論文,國立臺灣大學造船及海洋工程學研究所。
[17] 許為元(1999),“複合式自我學習之基因演算法應用於旅行推銷員問題”,碩士論文,國立臺灣大學資訊工程學研究所。
[18] 張瑛蘭(2000),“應用基因演算法於合作學習最佳化分組之研究”,碩士論文,國立台南師範學院資訊教育研究所。
[19] 陳英豪、吳裕益(1995),“測驗與評量”,高雄:復文書局。
[20] 陳新豐(2001),“線上題庫與適性測驗整合系統之發展研究”,博士論文,國立政治大學教育研究所。
[21] 黃家輝(2001),“利用灰色理論於選題策略之研究”,碩士論文,義守大學資訊工程研究所。
[22] 鄭海蓮、施宣光(1997),“應用模擬降溫於自動化編制平行測驗之組間配對與測驗配對選題的比較”,中國測驗年刊,44輯,2期,195-212頁。
[23] 賴文祺(2000),“改良式進化退火法應用於電力系統經濟調度之研究”,碩士論文,國立台北科技大學電機工程研究所。
[24] 簡瑞華(2001),“線上題庫與評量系統之開發”,碩士論文,國立臺中師範學院教育測驗統計研究所。
[25] Ahuja, R., Orlin, J.B., and Tivari, A.(2000), “A Greedy Genetic Algorithm for the Quadratic Assignment problem”, Comput. Oper. Res., 27(10), pp.917-934.
[26] Anbarasu, L.A., Narayanasamy, P., and Sundararajan, V.(1998), “Multiple Sequence Alignment Using Parallel Adaptive Genetic Algorithm”, Simulated Evolution and Learning, Second Asia-Pacific Conference on Simulated Evolution and Learning, SEAL''98, pp.130-137, Canberra, Australia, November 24-27.
[27] Baker, F.B.(1985), “The Basic of Item Response Theory”, Portmouth, NH:Heinemann.
[28] Bock, R.D., and Aikins, M.(1981), “Marginal Maximum Likelihood Estimation of Item Parameters:Application of an EM Algorithm”, Psychometric, (46), pp.443-460.
[29] Brannick, Michael T., “Item Response Theory”, http://luna.cas.usf.edu/~mbrannic/files/pmet/irt.htm.
[30] Cool, L.L., and Hambleton, R. K. (1978), “A Comparative Study of Item Selection Methods Utilizing Latent Trait Theoretic Models and Concepts”, Laboratory of Psychometric and Evaluative Research Report, (88), School of Education, University of Massachusetts, Amherst.
[31] David, J.W.(1983), “Latent Trait Test Theory and Computerized Adaptive Testing”, New Horizons in Testing, Fifth Avenue, New York:Academic Press.
[32] Fang, Hsiao-Lan(1994), “Genetic Algorithms in Timetabling and Scheduling”, Ph.D. Thesis, Department of Artificial Intelligence, University of Edinburgh, Scotland.
[33] Goldberg, D.E.(1989), “Genetic Algorithm in Search, Optimization, and Machine Learning”, Addison-Wesley, Reading, Massachusetts.
[34] Grefenstette, J.J.(1986), ”Optimization of Control Parameter for Genetic Algorithms”, IEEE Transactions on Intelligent Systems, Vol.SMC-16, No.1, pp.122-128, Jan.
[35] Hambleton, R.K., and Swaminathan, H.(1985), “Item Response Theory-Principles and Applications”, Kluwer Academic Publishers Group, Netherlands.
[36] Hiroyasu, Tomoyuki, Miki, Mitsunori, and Ogura, Maki (2000), “Parallel Simulated Annealing Using Genetic Crossover”, Toshisha University.
[37] Holland, J.H.(1975), “Adaptation in Natural and Artificial Systems”, University of Michigan Press, Ann Arbor, Michigan.
[38] Horng,J.T., Chang, Y.J., Liu, B.J., and Kao, C.Y.(1999), “Materialized View Selection Using Genetic Algorithms in a Data Warehouse”, in Proc. of World Congress on Evolutionary Computation, pp.2221-2227.
[39] Horward, W.(1990), “Computerized Adaptive Testing: A Primer”, Hillsdale, New Jersey:Lawrence Erlbaum Associates.
[40] “Item Response Theory”, http://www.eclass.com.cn/languagetest/LTChapter8text.htm.
[41] Lin, F.T., Kao, C.Y., and Hsu, C.C.(1993), “ Applying the Genetic Approach to Simulated Annealing in Solving Some NP-Hard Problems”, IEEE Transaction on System Man, Cybernetics, Vol. 23, No.6, pp.1752-1767.
[42] Lord, F.M.(1952), “A Theory of Test Scores”, Psychometric Monograph, (7).
[43] Lord, F.M., and Novick, M.R.(1968), “Statistical Theories of Mental Test Scores”, Addison-Wesley Reading, Massachusetts.
[44] Lord, F.M.(1980), “Applications of Item Response Theory to Practical Testing Problems”, Hillsdale, NJ:Erlbaum.
[45] Merz, P., and Freisleben, B.(1997), “Genetic Local Search for the TSP: New Results”, Proceedings of the 1997 IEEE International Conference on Evolutionary Computation, IEEE Press, pp.159-164.
[46] Mitchell, M. (1996), “An Introduction to Genetic Algorithm”, MIT Press, Cambridge, Massachusetts.
[47] Owen, R. J. (1975), “A Bayesian Sequential Procedure for Quantal Response in the Context of Adaptive Mental Testing”, Journal of the American Statistical Association, (70), pp.351-356.
[48] Pham, D.T., and Karaboga, D.(2000), “Intelligent Optimization Techniques”, Spring-Verlag London.
[49] Shaw, K.J., Noortcliffe, A.L., Thompson, M., Love, J., and Fleming, P.J.(1999), “Interactive Batch Process Schedule Optimization and Decision-making Using Multi-objective Genetic Algorithms”, 1999 IEEE SMC’99 Conference Proceedings, (6), pp.486-491.
[50] Shen, C.Y., Pao, Y.H., and Yip, P.P.C.(1994), ”Scheduling Multiple Job Problems with Guided Evolutionary Simulated Annealing Approach”, IEEE Conference on Evolutionary Computation, Vol.2, pp.702-706.
[51] Sun, K.T., & Fu, H.C.(1993), “ A Hybrid Neural Network Model for Solving Optimization Problems,” IEEE Transactions on Computers, 42(2), 218-227.
[52] Sun, K.T.(1999), “An Effective Item Selection Method by Using AI Approaches”, in Proc. of Advances in Intelligent Computing & Multimedia Systems, pp.137-142, Baden-Baden, Germany, August 2-7.
[53] Sun, K.T.(1999), “Applying AI Techniques to Construct a Desired Test”, 7th International Conference on Computer in Education, pp.117-124, Chiba, Japan, November 4-7.
[54] Wang, Liu Hong(1997), “Molecular Binging in Structure-based Drug Design: a Case Study of the Population-based Annealing Genetic Algorithms”, National Taiwan University.
[55] Weiss, D. J.(1982), “Improving Measurement Quality and Efficiency with Adaptive Testing”, Applied Psychological Measurement, (6), pp.473-492.
[56] Winter, G., Periaux, J., Galan, M., and Cuesta, P.(1995), “Genetic Algorithms in Engineering and Computer Science”, John Wiley & Sons, inc., New York.
[57] Yamada, Takeshi, Yoshimura, Kazuyuki, and Nakano, Ryohei, “Information Operator Scheduling by Genetic Algorithms”, Simulated Evolution and Learning, Second Asia-Pacific Conference on Simulated Evolution and Learning, SEAL''98, pp.50-57, Canberra, Australia, November 24-27.
[58] Yip, P.P.C., and Pao, Y.H.(1995), ”Combinational Optimization with Use of Guided Evolutionary Simulated Annealing”, IEEE Transactions on Neural Networks, Vol.6, No.2, pp.290-295, Mar.
[59] Yoichi, T., and Nobuo, F.(1998), “An Improved Genetic Algorithm Using the Convex Hull for Traveling Salesman problem”, Transactions on Systems, Man, and Cybernetics, (3), pp.2279-2284.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔