〔1〕 R. Muanghlua, S. Cheirsirikul, and S.Supadech, “The study of silicon thermopile,” Proc. TENCON 2000, vol. 3, pp. 226-229.
〔2〕 Q. Huang, C. Menolfi, and C.Hammerschmied, “A MOSFET- only interface for integrated flow sensors,” Circuits and Systems, ISCAS 1996, vol. 4, pp. 372-375, May 1996.
〔3〕 A. Koll, A. Schaufelbuhl, N. Schneeberger, U. Munch, O. Brand, H. Baltes, C. Menolfi, and Q. Huang, “Micromachined CMOS calorimetric chemical sensor with on-chip low noise amplifier,” MEMS ‘99, 12th IEEE International Conference, pp. 547-551.R.
〔4〕 G. Lammel, S. Schweizer, and P. Renaud, “MEMS infrared gas spectrometer based in a porous silicon tunable filter,” MEMS 2001, 14th IEEE International Conference, pp. 578-581.
〔5〕 K. A. A. Makinwa, and J. H. Huijsing, “A wind sensor with an integrated low-offset instrumentation amplifier,” ICECS 2001, The 8th IEEE International Conference, Vol. 3, pp. 1505-1508.
〔6〕 J. Schilz, thermophysica minima: thermoelectric infrared sensors (thermopiles) for remote temperature measurements; pyrometry, PerkinElmer Optoelectronics (1999).
〔7〕 PerkinElmer Optoelectronics, Inc., Application note thermopile sensors, 2001.
〔8〕 Thermometrics, Inc., Application note of thermopile IR sensors.
〔9〕 Phillip E.Allen and Douglas R. Holberg, CMOS Analog Circuit Design. New York: Oxford, 1987.
〔10〕 Phillip E.Allen and Douglas R. Holberg, CMOS Analog Circuit Design, 2nd Edition. New York: Oxford , 2002.
〔11〕 Pallas-Areny and J. G. Webster. Analog Signal Processing. New York: John Wiley & Sons, 1999.
〔12〕 R. Pallas-Areny and J. G. Webster. Sensors and Signal Conditioning, 2nd Edition. New York: John Wiley & Sons, 2001.
〔13〕 David A. Johns and Ken Martin, Analog Integrated Circuit Design. New York: John Wiley & Sons, 1997.
〔14〕 R. Jacob Baker, Harey W. Li, and David E. Boyce, CMOS: Circuit Design, Layout, and Simulation. New York: Wiley-IEEE, 1998.
〔15〕 Behzad Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
〔16〕 Edgar Sanchez-Sinencio and Andreas G. Andreou, Low-Voltage/Low-Power Integrated Circuits and Systems: Low-Voltage Mixed-Signal Circuits, New York: Wiley-IEEE, 1999.
〔17〕 Meijer, G.C.M. and Herwaarden, A.W.ed, Thermal Sensors. Bristol: Adam Hilger, 1994.
〔18〕 M.A.T. Sanduleanu, B. Nauta and H. Wallinga, “Low-power, low-voltage chopped amplifier for noise and offset reduction,” Proc. ESSCIRC’ 97, Southampton, UK, pp. 204-207, SEP. 1997.
〔19〕 PerkinElmer Optoelectronics, Inc., Datasheet, TPS434.
〔20〕 C. C. Enz, E. A. Vittoz, and F. Krummenacher, “A CMOS chopper amplifier,” IEEE J. Solid-State Circuits, vol. SC-22, pp. 335-342, June 1987.
〔21〕 K. C. Hsieh, P. R. Gray, D. Senderowicz, and D. G. Messerschmitt, “A low-noise chopper stabilized differential switched-capacitor filtering technique,” IEEE J. Solid-State Circuits, vol. SC-16, pp. 708-715, Dec. 1981.
〔22〕 A. Boker, K. Thiele, and J. H. Huijsing, “A CMOS nested-chopper instrumentation amplifier with 100-nV offset,” IEEE J. Solid-State Circuits, vol. 35, pp. 1877-1883, Dec. 2000.
〔23〕 C. Menolfi, and Q. Huang, “A low-noise CMOS instrumentation amplifier for thermoelectric infrared detectors,” IEEE J. Solid-State Circuits, vol. 32, pp. 968-976, July 1997.
〔24〕 Yamu Hu, M. Sawan, “CMOS front-end amplifier dedicated to Monitor very low amplitude signal from implantable sensors,” IECES, vol. 1, pp. 298-301, 2000.
〔25〕 C. Menolfi, and Q. Huang, “A fully integrated, untrimmed CMOS instrumentation amplifier with submicrovolt offset,” IEEE J. Solid-State Circuits, vol. 34, pp. 415-420, MAR. 1999.
〔26〕 M.A.T. Sanduleanu, A.J.M. Van Tuijl, R.F. Wassenaar, M.C. Lammers, and H. Wallinga, “A low noise, low residual offset, chopped amplifier for mixed level applications,” ICECS, Vol. 2, pp. 333-336, 1998.
〔27〕 R. Hogervorst, J. P. Tero, R. G. H. Eschauzier, and J. H. Huijsing, “A compact power-efficient 3 v CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries,” IEEE J. Solid-State Circuits, vol. 29, pp. 1505-1513, DEC. 1994.
〔28〕 Klaas-Jan de Langen, and J. H. Huijsing, “Compact low-voltage power-efficient operational amplifier cells for VLSI,” IEEE J. Solid-State Circuits, vol. 33, pp. 1482-1496, OCT. 1998.
〔29〕 Shouli YAN, and E. Sanchez-Sinencio, “Low voltage analog circuit design techniques: A tutorial,” IEICE Trans. Analog Integrated Circuits and System, vol. E00-A, FEB. 2000.
〔30〕 Klaas-Jan de Langen and J. H. Huijsing, Compact low-voltage and high-speed CMOS, BiCMOS and bipolar operational amplifiers, Boston: Kluwer Academic Publishers, 1999.
〔31〕 Edgar Sanchez-Sinencio, “Low voltage analog circuit design techniques: A tutorial,” IEEE Dallas CAS Workshop 2000.
〔32〕 C. Huang, A. Motamed, and M. Ismail, “Universal constant-gm input-stage architectures for low-voltage op amps,” IEEE Transactions on Circuits and Systems, Vol. 42, pp. 886-895, NOV 1995
〔33〕 C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of opamp imperfections: Autozeroing, correlated double sampling, and chopper stabilization,” Proc. IEEE, vol. 84, pp. 1584-1614, Nov. 1996.
〔34〕 A. Harb, Yamu Hu, and M. Sawan, “New CMOS instrumentation amplifier dedicated to very low-amplitude signal applications,” ICECS, vol. 1, pp. 517-520, 1999.
〔35〕 W. T. Holman, and J. A. Connelly, “A compact low noise operational amplifier for a 1.2 um digital CMOS technology,” IEEE J. Solid-State Circuits, vol. 30, pp. 710-714, JUNE 1995.
〔36〕 J. H. Huijsing, and D. Linebarger, “Low-voltage operational amplifier with rail-to-rail input and output ranges,” IEEE J. Solid-State Circuits, vol. SC-20, pp. 1144-1150, DEC. 1985.
〔37〕 D. M. Monticelli, “A quad CMOS single-supply op amp with rail-to-rail output swing,” IEEE J. Solid-State Circuits, vol. SC-21, pp. 1026-1034, DEC. 1986.
〔38〕 Maxim Integrated Products, Inc., Datasheet, ICL7650.
〔39〕 Linear Technology, Inc., Datasheet, LTC1050.
〔40〕 Texas Instruments, Inc., Datasheet, TLC2654.
〔41〕 Texas Instruments Inc., “Noise analysis in operational amplifier circuits,” Application Report, 1999.
〔42〕 Cheng Jun, and Chen Guican, “A CMOS bandgap reference circuit,” ASIC, Proc. 4th International Conference, pp. 271-273, 2001.
〔43〕 .A. Bakker, and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE J. Solid-State Circuits, vol. 31, pp. 933-937, JULY 1996.
〔44〕 K. G. Lamb, S. J. Sanchez, and W. T. Holman, “A low noise operational amplifier design using subthreshold operation,” Circuits and Systems, Proc. of the 40th Midwest Symposium, pp. 35-38, Aug. 1997.
〔45〕 F. Salazar, M. Pacheco, and M. Vellasco, “Very-low power analog cells in CMOS,” Circuits and Systems, Proc. of the 43rd Midwest Symposium, pp. 328-331, Aug. 2000.
〔46〕 U. Yodprasit , and J. Ngarmnil, “Efficient low-power designs using MOSFETs in the weak inversion region,” Circuits and Systems, IEEE APCCAS, pp. 45-48, 1998.
〔47〕 M. A. P. Pertijs, A. Bakker, and J. H. Huijsing, “A high-accuracy temperature sensor with second-order curvature correction and digital bus interface,” Circuits and Systems, ISCAS 2001, vol. 1, pp. 368-371, May 2001.
〔48〕 J. Schilz, thermophysica minima: applications of thermoelectric infrared sensors (thermopiles): gas detection by infrared absorption; NDIR, PerkinElmer Optoelectronics (2000).
〔49〕 歐陽盟,輻射溫度計之分析與設計,博士論文,民八十七年。