(3.215.183.251) 您好!臺灣時間:2021/04/22 21:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃英能
研究生(外文):Ying-Neng Huang
論文名稱:截波穩定型運算放大器設計於測溫系統之研究
論文名稱(外文):Research on Chopper-Stabilized Operational Amplifier Design for Temperature-Sensing System.
指導教授:孫台平
指導教授(外文):Tai-Ping Sun
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:113
中文關鍵詞:溫度熱電堆CMOS運算放大器截波穩定低雜訊殘餘偏移軌對軌定值轉導能隙參考電壓
外文關鍵詞:temperaturethermopileCMOS operational amplifierchopper-stabilizationlow-noiseresidual offsetrail-to-rail constant gmbandgap reference
相關次數:
  • 被引用被引用:14
  • 點閱點閱:663
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:183
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究目的在於結合熱電堆測溫元件、訊號處理電路及顯示模組來完成非接觸性測溫系統的設計與實現,從中學習訊號處理及系統設計的考量。主要研究重點為訊號處理電路的設計,包括截波穩定型運算放大器、軌對軌定值轉導運算放大器及能隙參考電壓,並透過國家晶片系統設計中心(CIC)以TSMC 0.35um 1P4M CMOS標準製程做全客戶設計。我們運用截波穩定技術設計低雜訊運算放大器做為熱電堆的前置放大器,大大地降低低頻雜訊、偏移電壓及溫度漂移,量測結果顯示當截波頻率為5kHz,其0.1∼10Hz雜訊0.87uVP-P,偏移電壓16.4uV,溫度漂移0.18uV/℃,解析度為0.011℃。另外,使用熱敏電阻做為溫度補償元件,在環境溫度介於10.5∼37℃時,溫度補償電路所造成的誤差小於±0.1℃。所完成的測溫系統其工作電壓3V,功率消耗8.8mW,量測範圍-126∼163℃,操作範圍10.5∼37℃,當量測範圍介於34∼47℃誤差小於±0.1℃。
The aim of this thesis is to design and realize a non-contact temperature-sensing system by combining thermopile sensor, signal processing circuit as well as display module. Through the design, we learned how to deal with signal and noise for system considerations. The emphasis of this thesis is placed on the design of signal processing circuit including chopper-stabilized operational amplifier, rail-to-rail constant transconductance operational amplifier, and bandgap reference circuit. These circuits were implemented through the chip-implementation-center (CIC) using TSMC 0.35 um 1P4M standard CMOS process for full-custom design. An operational amplifier was designed as the pre-amplifier for amplifying the signal from the thermopile by using chopper-stabilized technique which significantly reduced the low-frequency noise, offset and temperature drift. Form our experimental results, the amplifier had a low noise of 0.87uVP-P at 0.1~10Hz, a offset of 16.4uV, and a temperature drift of 0.18uV/°C at chopping frequency of 5kHz with a resolution of 0.011°C. Besides, by using thermistor as a temperature-compensation device and found that the inaccuracy caused by the temperature-compensation circuit is less than ±0.1°C at ambient temperature of 10.5∼37°C. The supply voltage of the temperature-sensing system is 3V with a power consumption of 8.8mW. The temperature sensing range and operation range of the system is -126∼163°C and 10.5∼37°C, respectively. The inaccuracy is less than ±0.1°C when measured range is between 34∼47°C.
中文摘要………………………………………………………………….i
英文摘要…………………………………………………………………ii
誌謝……………………………………………………………………...iii
目錄……………………………………………………………………...iv
圖目錄…………………………………………………………………..vii
表目錄…………………………………………………………………....x
第一章 緒論……………………………………………………….……..1
1.1 研究動機與目的…………………………………….…….1
1.2 論文架構與設計流程……………………………….…….3
第二章 感測器與低雜訊技術之理論分析…………………………...…5
2.1 熱電堆……………………………………………………..5
2.1.1 發展歷史…………………………………………...5
2.1.2 Seebeck效應……………………………………….6
2.1.3 黑體輻射理論……………………………………...6
2.1.4 等效電路與特性參數……………………………...9
2.1.5 測溫原理與溫度補償…………………………….10
2.2 CMOS電路雜訊分析……………………………………12
2.2.1 雜訊來源………………………………………….13
2.2.2 雜訊頻寬………………………………………….14
2.3 截波穩定技術……………………………………………17
2.3.1 一般低雜訊技術………………………………….17
2.3.2 基本原理………………………………………….19
2.3.3 雜訊調變………………………………………….21
2.3.4 殘餘偏移………………………………………….25
第三章 截波穩定型運算放大器之設計與量測……………………….30
3.1 設計考量…………………………………………………30
3.1.1 感測器訊號……………………………………….30
3.1.2 放大器設計考量………………………………….31
3.2 截波穩定型運算放大器…………………………………32
3.2.1 電路架構………………………………………….32
3.2.2 偏壓電路………………………………………….35
3.2.3 調變/解調變器……………………………………36
3.2.4 非重疊時脈產生器……………………………….37
3.2.5 輸入/增益級………………………………………38
3.2.6 AB類輸出級……………………………………...39
3.2.7 雜訊及偏移電壓………………………………….41
3.2.8 量測結果………………………………………….43
3.3 其他技術的低雜訊運算放大器…………………………47
3.3.1 輸入元件的最佳化……………………………….47
3.3.2 弱反轉操作……………………………………….51
3.4 三種低雜訊設計的比較…………………………………57
第四章 軌對軌定值轉導運算放大器與能隙參考電壓之設計與量測58
4.1 軌對軌定值轉導運算放大器……………………………58
4.1.1 設計考量………………………………………….58
4.1.2 電路架構………………………………………….60
4.1.3 軌對軌輸入級…………………………………….61
4.1.4 定值轉導控制電路……………………………….63
4.1.5 量測結果………………………………………….68
4.2 能隙參考電壓……………………………………………70
4.2.1 設計考量………………………………………….70
4.2.2 電路設計………………………………………….70
4.2.3 量測結果………………………………………….74
第五章 測溫系統之實現與量測……………………………………….76
5.1 測溫系統架構……………………………………………76
5.2 讀出電路設計……………………………………………77
5.3 測溫系統實現……………………………………………81
5.4 校準與量測………………………………………………82
5.5 量測範圍與誤差探討……………………………………86
5.6 測溫系統規格……………………………………88
第六章 結論與未來展望…………………………………89
6.1 結論………………………………………………………89
6.2 未來展望…………………………………………………91
參考文獻………………………………………………………93
附錄A TPS434 Datasheet
附錄B 晶片佈局圖及實際照片
附錄C 測溫電路PCB佈局圖
〔1〕 R. Muanghlua, S. Cheirsirikul, and S.Supadech, “The study of silicon thermopile,” Proc. TENCON 2000, vol. 3, pp. 226-229.
〔2〕 Q. Huang, C. Menolfi, and C.Hammerschmied, “A MOSFET- only interface for integrated flow sensors,” Circuits and Systems, ISCAS 1996, vol. 4, pp. 372-375, May 1996.
〔3〕 A. Koll, A. Schaufelbuhl, N. Schneeberger, U. Munch, O. Brand, H. Baltes, C. Menolfi, and Q. Huang, “Micromachined CMOS calorimetric chemical sensor with on-chip low noise amplifier,” MEMS ‘99, 12th IEEE International Conference, pp. 547-551.R.
〔4〕 G. Lammel, S. Schweizer, and P. Renaud, “MEMS infrared gas spectrometer based in a porous silicon tunable filter,” MEMS 2001, 14th IEEE International Conference, pp. 578-581.
〔5〕 K. A. A. Makinwa, and J. H. Huijsing, “A wind sensor with an integrated low-offset instrumentation amplifier,” ICECS 2001, The 8th IEEE International Conference, Vol. 3, pp. 1505-1508.
〔6〕 J. Schilz, thermophysica minima: thermoelectric infrared sensors (thermopiles) for remote temperature measurements; pyrometry, PerkinElmer Optoelectronics (1999).
〔7〕 PerkinElmer Optoelectronics, Inc., Application note thermopile sensors, 2001.
〔8〕 Thermometrics, Inc., Application note of thermopile IR sensors.
〔9〕 Phillip E.Allen and Douglas R. Holberg, CMOS Analog Circuit Design. New York: Oxford, 1987.
〔10〕 Phillip E.Allen and Douglas R. Holberg, CMOS Analog Circuit Design, 2nd Edition. New York: Oxford , 2002.
〔11〕 Pallas-Areny and J. G. Webster. Analog Signal Processing. New York: John Wiley & Sons, 1999.
〔12〕 R. Pallas-Areny and J. G. Webster. Sensors and Signal Conditioning, 2nd Edition. New York: John Wiley & Sons, 2001.
〔13〕 David A. Johns and Ken Martin, Analog Integrated Circuit Design. New York: John Wiley & Sons, 1997.
〔14〕 R. Jacob Baker, Harey W. Li, and David E. Boyce, CMOS: Circuit Design, Layout, and Simulation. New York: Wiley-IEEE, 1998.
〔15〕 Behzad Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
〔16〕 Edgar Sanchez-Sinencio and Andreas G. Andreou, Low-Voltage/Low-Power Integrated Circuits and Systems: Low-Voltage Mixed-Signal Circuits, New York: Wiley-IEEE, 1999.
〔17〕 Meijer, G.C.M. and Herwaarden, A.W.ed, Thermal Sensors. Bristol: Adam Hilger, 1994.
〔18〕 M.A.T. Sanduleanu, B. Nauta and H. Wallinga, “Low-power, low-voltage chopped amplifier for noise and offset reduction,” Proc. ESSCIRC’ 97, Southampton, UK, pp. 204-207, SEP. 1997.
〔19〕 PerkinElmer Optoelectronics, Inc., Datasheet, TPS434.
〔20〕 C. C. Enz, E. A. Vittoz, and F. Krummenacher, “A CMOS chopper amplifier,” IEEE J. Solid-State Circuits, vol. SC-22, pp. 335-342, June 1987.
〔21〕 K. C. Hsieh, P. R. Gray, D. Senderowicz, and D. G. Messerschmitt, “A low-noise chopper stabilized differential switched-capacitor filtering technique,” IEEE J. Solid-State Circuits, vol. SC-16, pp. 708-715, Dec. 1981.
〔22〕 A. Boker, K. Thiele, and J. H. Huijsing, “A CMOS nested-chopper instrumentation amplifier with 100-nV offset,” IEEE J. Solid-State Circuits, vol. 35, pp. 1877-1883, Dec. 2000.
〔23〕 C. Menolfi, and Q. Huang, “A low-noise CMOS instrumentation amplifier for thermoelectric infrared detectors,” IEEE J. Solid-State Circuits, vol. 32, pp. 968-976, July 1997.
〔24〕 Yamu Hu, M. Sawan, “CMOS front-end amplifier dedicated to Monitor very low amplitude signal from implantable sensors,” IECES, vol. 1, pp. 298-301, 2000.
〔25〕 C. Menolfi, and Q. Huang, “A fully integrated, untrimmed CMOS instrumentation amplifier with submicrovolt offset,” IEEE J. Solid-State Circuits, vol. 34, pp. 415-420, MAR. 1999.
〔26〕 M.A.T. Sanduleanu, A.J.M. Van Tuijl, R.F. Wassenaar, M.C. Lammers, and H. Wallinga, “A low noise, low residual offset, chopped amplifier for mixed level applications,” ICECS, Vol. 2, pp. 333-336, 1998.
〔27〕 R. Hogervorst, J. P. Tero, R. G. H. Eschauzier, and J. H. Huijsing, “A compact power-efficient 3 v CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries,” IEEE J. Solid-State Circuits, vol. 29, pp. 1505-1513, DEC. 1994.
〔28〕 Klaas-Jan de Langen, and J. H. Huijsing, “Compact low-voltage power-efficient operational amplifier cells for VLSI,” IEEE J. Solid-State Circuits, vol. 33, pp. 1482-1496, OCT. 1998.
〔29〕 Shouli YAN, and E. Sanchez-Sinencio, “Low voltage analog circuit design techniques: A tutorial,” IEICE Trans. Analog Integrated Circuits and System, vol. E00-A, FEB. 2000.
〔30〕 Klaas-Jan de Langen and J. H. Huijsing, Compact low-voltage and high-speed CMOS, BiCMOS and bipolar operational amplifiers, Boston: Kluwer Academic Publishers, 1999.
〔31〕 Edgar Sanchez-Sinencio, “Low voltage analog circuit design techniques: A tutorial,” IEEE Dallas CAS Workshop 2000.
〔32〕 C. Huang, A. Motamed, and M. Ismail, “Universal constant-gm input-stage architectures for low-voltage op amps,” IEEE Transactions on Circuits and Systems, Vol. 42, pp. 886-895, NOV 1995
〔33〕 C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of opamp imperfections: Autozeroing, correlated double sampling, and chopper stabilization,” Proc. IEEE, vol. 84, pp. 1584-1614, Nov. 1996.
〔34〕 A. Harb, Yamu Hu, and M. Sawan, “New CMOS instrumentation amplifier dedicated to very low-amplitude signal applications,” ICECS, vol. 1, pp. 517-520, 1999.
〔35〕 W. T. Holman, and J. A. Connelly, “A compact low noise operational amplifier for a 1.2 um digital CMOS technology,” IEEE J. Solid-State Circuits, vol. 30, pp. 710-714, JUNE 1995.
〔36〕 J. H. Huijsing, and D. Linebarger, “Low-voltage operational amplifier with rail-to-rail input and output ranges,” IEEE J. Solid-State Circuits, vol. SC-20, pp. 1144-1150, DEC. 1985.
〔37〕 D. M. Monticelli, “A quad CMOS single-supply op amp with rail-to-rail output swing,” IEEE J. Solid-State Circuits, vol. SC-21, pp. 1026-1034, DEC. 1986.
〔38〕 Maxim Integrated Products, Inc., Datasheet, ICL7650.
〔39〕 Linear Technology, Inc., Datasheet, LTC1050.
〔40〕 Texas Instruments, Inc., Datasheet, TLC2654.
〔41〕 Texas Instruments Inc., “Noise analysis in operational amplifier circuits,” Application Report, 1999.
〔42〕 Cheng Jun, and Chen Guican, “A CMOS bandgap reference circuit,” ASIC, Proc. 4th International Conference, pp. 271-273, 2001.
〔43〕 .A. Bakker, and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE J. Solid-State Circuits, vol. 31, pp. 933-937, JULY 1996.
〔44〕 K. G. Lamb, S. J. Sanchez, and W. T. Holman, “A low noise operational amplifier design using subthreshold operation,” Circuits and Systems, Proc. of the 40th Midwest Symposium, pp. 35-38, Aug. 1997.
〔45〕 F. Salazar, M. Pacheco, and M. Vellasco, “Very-low power analog cells in CMOS,” Circuits and Systems, Proc. of the 43rd Midwest Symposium, pp. 328-331, Aug. 2000.
〔46〕 U. Yodprasit , and J. Ngarmnil, “Efficient low-power designs using MOSFETs in the weak inversion region,” Circuits and Systems, IEEE APCCAS, pp. 45-48, 1998.
〔47〕 M. A. P. Pertijs, A. Bakker, and J. H. Huijsing, “A high-accuracy temperature sensor with second-order curvature correction and digital bus interface,” Circuits and Systems, ISCAS 2001, vol. 1, pp. 368-371, May 2001.
〔48〕 J. Schilz, thermophysica minima: applications of thermoelectric infrared sensors (thermopiles): gas detection by infrared absorption; NDIR, PerkinElmer Optoelectronics (2000).
〔49〕 歐陽盟,輻射溫度計之分析與設計,博士論文,民八十七年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔