(100.25.42.117) 您好!臺灣時間:2021/04/21 17:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張凱琳
研究生(外文):Kai-Lin Chang
論文名稱:自我補償型運算放大器應用於光功率量測之設計與實現
論文名稱(外文):The Design and Implementation of Self-Compensation Operational Amplifiers for the Optical Power Measurement
指導教授:孫台平
指導教授(外文):Tai-Ping Sun
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:88
中文關鍵詞:光電晶體光二極體自我補償型運算放大器電壓放大器電流放大器轉導放大器轉阻放大器二級轉阻放大器
外文關鍵詞:phototransistorphotodiodeself-compensation operational amplifiervoltage amplifiercurrent amplifiertrans-conductance amplifiertrans-impedance amplifiertwo-stage trans-impedance amplifier
相關次數:
  • 被引用被引用:3
  • 點閱點閱:274
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們設計了四個自我補償型運算放大器,分別應用於光電晶體與光二極體功率量測的前置放大器電路。所謂自我補償型運算放大器,其意義為無頻率補償元件但是依然穩定的運算放大器,因為少了頻率補償電容,所以大大的降低了電路佈局面積。
光電晶體功率檢測電路以轉阻放大器實現之,在轉阻放大器的設計上我們特別強調電壓放大器的驅動能力,並且設計了兩個不同的電壓放大器來比較,分別是電流鏡放大器與串疊放大器,兩個前置放大器的轉阻增益皆為40dBΩ;-3dB頻寬都達到1MHz;可量測的最小功率為115.3nW。
而光二極體功率檢測電路以二級轉阻放大器實現之,第一級由電流放大器組成,藉由電流放大器將微弱的光電流放大與其低雜訊表現,可以提高前置放大器的signal-to-noise ratio,再由第二級的運算轉導放大器將光電流轉為電壓,使用二級轉阻放大器的優點是只要在特定條件下,-3dB頻寬與閉迴路增益無關。整個前置放大器的轉阻增益為92.4dBΩ,-3dB頻寬可以達到1MHz,可量測的最小功率為526.6nW。
In this thesis, four self-compensation operational amplifiers with phototransistor and photodiode respectively were designed as pre-amplifiers for optical power measurement. The so-called self-compensation operational amplifier means an operational amplifier without using frequency compensation capacitor but is still stable. Since no frequency compensation capacitor is used, the layout area on the chip can be reduced.
The phototransistor optical power detecting circuit was implemented by trans-impedance amplifier with emphasis placed on the driving capability of the design of voltage amplifier. In order to make a comparison, two different voltage amplifiers, a current mirror amplifier and a cascode amplifier, were designed for this purpose. Both the pre-amplifiers have a trans-impedance gain of 40dBΩ and a 1MHz —3dB bandwidth. The minimum detectable optical power is 115.3nW.
For the photodiode optical power detecting circuit, however, the implementation was accomplished by using a two-stage trans-impedance amplifier. The first stage of the amplifier is a current amplifier, through which we can amplify the very small optical current. Due to the low noise nature of current amplifier, the signal-to-noise ratio of the pre-amplifier can then be improved. We used a trans-conductance amplifier as the second stage amplifier to transfer the optical current into voltage. The advantage of using two-stage operational amplifier is that, under certain conditions, the —3dB bandwidth is independent of the closed-loop gain of the amplifier. The final pre-amplifier we designed can have a trans-impedance gain of 92.4dBΩ, a 1MHz —3dB bandwidth, and a minimum detectable optical power of 526.6nw.
中文摘要…………………………………………………………………I
英文摘要………………………………………………………………...II
誌謝……………………………………………………………………..IV
目錄……………………………………………………………………...V
圖目錄………………………………………………………………...VIII
表目錄…………………………………………………………………XII
第一章、緒論…………………………………………………………….1
1.1簡介………………………………………………………………..1
1.2研究動機與背景…………………………………………………..1
1. 3論文編排………………………………………………………….3
第二章、光電感測器及其前端電路架構……………………………….4
2.1簡介………………………………………………………………..4
2.2光二極體…………………………………………………………..4
2.3光電晶體…………………………………………………………..8
2.4電壓放大器與電流放大器的比較………………………………11
2.4.1電壓與電流放大器的閉迴路增益與頻寬的比較………...11
2.4.2電壓與電流放大器的雜訊比較…………………………...17
2.4.3電壓與電流放大器的使用時機……………………….…..20
2.5光電晶體與光二極體的檢測電路架構……………………...….20
第三章、光電晶體檢測電路之電壓放大器設計與量測……………...24
3.1簡介……………………………………………………………....24
3.2電壓放大器設計( I )……..……………………………………....24
3.2.1電流鏡架構…………………………..………………….…24
3.2.2電流鏡運算轉導放大器設計…..………………………….29
3.2.3輸出級設計…………..…………………………………….31
3.2.4電流鏡放大器之分析與量測……..……………………….34
3.3電壓放大器設計( II )………..………………………………..…40
3.3.1串疊運算轉導放大器設計…………………………..…….40
3.3.2串疊運算放大器之分析與量測……………………..….....42
3.4討論………………………………………………………………46
第四章、光二極體檢測電路之電流、運算轉導放大器設計與量測…47
4.1簡介……………………………………………………………....47
4.2電流放大器設計…………………………………………...…….47
4.2.1電流放大器架構……………….………………………….47
4.2.2電流放大器之分析與量測…………………………..……54
4.2.3電流放大器之應用………………………………………..61
4.3推挽式運算轉導放大器設計…………………………………....63
4.3.1推挽式運算轉導放大器之分析與量測…..…………...….64
4.4討論………………………………………………………...…….68
第五章、應用光電晶體與光二極體於功率量測……………………...69
5.1簡介…………………………………………………...………….69
5.2光電晶體檢測電路…………………………………………...….69
5.3光電晶體功率量測………………………………………………70
5.4光二極體檢測電路………………………………………………76
5.5光二極體功率量測…………………………………………...….77
第六章、結論與未來展望………………………………………..…….81
6.1結論…………………………………………………………..…..81
6.1.1光電晶體檢測電路………………………………………..81
6.1.2光二極體檢測電路………………………………………..81
6.2未來展望………………………………………………..………..82
參考文獻……………………………………………………………..…83
附錄(A)……………...…………………………………………………..86
附錄(B)……………………………………………………………….....88
[1] 谷腰欣司, ‘光感測器及其使用技術’, 建興出版社, 1998
[2] Mitsuo Fukuda, ‘Optical Semiconductor Device’, John Wiley & Sons, 1999
[3] Donald A. Neamen, ‘Semiconductor Physics & Devices’, McGraw-Hill , 1999
[4] D. Cristia, P. Cosmin, F. Craciunoiu, ‘High-Responsivity Silicon Photodetectors for Optoelectronic Integrated Systems’, IEEE 0-7803-3223-7/96, 1996
[5] Michael L. Simpson, M. Nance Ericson, Gerald E. Jellison, William B. Dress, Alan L. Wintenberg, Miljko Bobrek, ‘Application Specific Spectral Response with CMOS Compatible Photodiodes’, IEEE Transactions on Electron Devices, Vol. 46, No. 5, May 1999
[6] Eustace L. Dereniak, Devon G. Crowe, ‘Optical Radiation Detectors’
[7] W. T. Matzen, R. A. Hawthome, W. T. Kilian, ‘Radiation-Hardened Phototransistor’, IEEE Transactions on Nuclear Science, Vol. 38, No. 6, December 1991
[8] Horst Zimmermann, ‘Integrated Silicon Optoelectronics’, Springer, 2000
[9] Phillip E. Allen, Douglas R. Holberg, ‘CMOS Analog Circuit Design’, Oxford , 2002
[10] P. E. Allen, M. B. Terry, ‘The use of current amplifiers for high performance voltage applications’, IEEE Journal of Solid-State Circuits, Vol.SC-15, No.2, pp. 155-162, April 1980
[11] K. Phang, D. A. Johns, ‘A 3-V CMOS Optical Preamplifier with DC Photocurrent Rejection’, IEEE 0-7803-4455-3/98, 1998
[12] Bahram Zand, Khoman Phang, David A. Johns, ‘Transimpedance Amplifier with Differential Photodiode Current Sensing’, IEEE 0-7803-5471-0/99, 1999
[13] 劉權德, ‘光電用轉阻放大器研製’, 國立清華大學碩士論文, 2001
[14] Z. Wang, W. Guggenbuhl, ‘Adjustable Bidirectional MOS Current Mirror Amplifier’, Electronics Letters Vol. 25, No. 10, 11th May 1989
[15] Hoi LEE, Philip K. T. MOK, ‘ A CMOS Current-Mirror Amplifier with Compact Slew Rate Enhancement Circuit for Large Capacitive Load Applications’, IEEE 0-7803-6685-9/01, 2001
[16] Richard E. Vallee , Ezz I. El-Masry, ‘A Very High-Frequency CMOS Complementary Folded Cascode Amplifier’, IEEE Journal of Solid-State Circuits, Vol.29, No.2, pp. 130-130, February 1994
[17] D. B. Ribner, M. A. Copeland, ‘Design Techniques for Cascode CMOS Op Amps With Improved PSRR and Common-Mode Input Range’, IEEE Journal of Solid-State Circuits, Vol.SC-19, No.6, pp. 919-925, December 1984
[18] M. Milkovic, ‘Current Gain High-Frequency CMOS Operational Amplifiers’, IEEE Journal of Solid-State Circuits, Vol.SC-20, No.4, pp. 845-851, August 1985
[19] C. Toumazou, F.J. Lidgey, D.G. Haigh, ‘Analogue IC Design : the current-mode approach’, Peter Peregrinus, 1990
[20] Z. Wang, ‘Wideband Class AB (Push-Pull) Current Amplifier in CMOS Technology’, Electronics Letters Vol. 26, No. 8, 12th April 1990
[21] Rajesh H. Zele, Sang-Soo Lee, David J. Allstot, ‘A High Gain Current-Mode Operational Amplifier’, IEEE 0-7803-0593-0/92, 1992
[22] Rajesh H. Zele and etc., ‘Fully Balanced CMOS Current-Mode Circuits’, IEEE Journal of Solid-State Circuits, Vol.28, No.5, May 1993
[23] Thomas Kaulberg, ‘A CMOS Current-Mode Operational Amplifier’, IEEE Journal of Solid-State Circuits, Vol.28, No.7, pp.849-852, July 1993
[24] Erik Bruun, ‘A High-Speed CMOS Current Op Amp for Very Low Supply Voltage Operation’, IEEE International Symposium on Circuits and Systems’, Vol.5, pp.509-512, 1994
[25] R. Fried, C. C. Enz, ‘CMOS Parametric Current Amplifier’, Electronics Letters Vol. 32, No. 14, 4th July 1996
[26] Giuseppe Palmisano, Gaetano Palumbo, Salvatore Pennisi, ‘CMOS Current Amplifiers’, Kluwer Academic, 1999
[27] 陳炫全, ‘低工作電壓高操作速度之電流模式運算放大器’, 國立清華大學碩士論文, 1999
[28] David A. Johns, Ken Martin, ‘Analog Integrated Circuit Design’, John Wiley & Sons, 1997
[29] Behzad Razavi, ‘Design of Analog CMOS Integrated Circuits’, McGraw-Hill , 2001
[30] 國家晶片設計製作中心,TSMC 0.35μm 1P4M製程參數資料
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔