跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/07 03:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉鎮樟
研究生(外文):Chen-Chang Liu
論文名稱:地表條形載重對擋土牆造成之側向土壓力
論文名稱(外文):Lateral Earth Pressure on Retaining Wall Due to Strip Surcharge
指導教授:方永壽方永壽引用關係
指導教授(外文):Yung-Show Fang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:159
中文關鍵詞:條形載重擋土牆側向土壓力
外文關鍵詞:Strip SurchargeRetaining WallLateral Earth Pressure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文探討回填土伴隨地表條形載重對作用於擋土牆主動土壓力之影響。本研究利用國立交通大學模型擋土牆設備探討平移模式牆位移所造成土壓力之變化。試驗採用36%相對密度之渥太華砂為回填材料,其單位重為15.6 ,內摩擦角為31.3 。根據實驗結果,獲得以下各項結論。
1. 以空中霣降法所製作之鬆砂土體,其靜止土壓力係數 與Jaky建議的公式互相吻合。
2. Coulomb理論 能準確預測在水平移動牆模式下的水平主動土壓力係數 。
3. 當地表載重作用於背填土上方(假設牆不動),實驗量測之側向土壓力 分佈介於DM-7.2所建議的 與1.6 之間。其側向土壓力增量係數 隨載重增加而遞增,並隨載重外移而遞減。
4. 牆發生額外移動量時,實驗的側向主動合力增量 與semiempirical rules相吻合,Steenfelt & Hansen理論計算明顯高估載重作用下與牆移動時的側向土壓力
5. 側向合力增量 的合力作用位置隨牆移動量而遞減,直到 約達到常數1/3。

This paper presents experimental data of earth pressure, which backfill carries a surcharge acting against a vertical rigid wall, which moved away from a mass of dry sand. Ottawa sand is prepared at relative densities of 36% with air-pluviation method. The instrumented retaining-wall at National Chiao Tung University was used to investigate the variation of lateral earth pressure due to strip surcharge induced by the translational wall movement. For all tests, the soil unit weight is 15.6 , and the angle of internal friction of the soil is 31.3 . Based on this study, the following conclusions can be drawn.
1. For soil placed with the air-pluviation method, the coefficient of earth pressures at-rest as comparing with the well-known Jaky solution, values have been well suitable by the Jaky formula in the loose sand.
2. Coulomb theory provides a good evaluation of active thrust as a result of the translational wall movement.
3. As the surcharge is located on the backfill (assuming no wall movement), the distribution of experimental lateral pressure increment could be reasonably described with and 1.6 suggest by the Navy Design Manuel DM-7.2. The increases with increasing and decreases with increasing parameter .
4. For further wall movement, the experimental lateral active force increment is agreed with semiempirical rules. Steenfelt and Hansen’s theory definitely overestimate the lateral earth pressure due to the surcharge and further wall movement.
5. The location of decreases with increasing wall movement until reaches a constant value of about .

Abstract (in Chinese)……………………………………………………….. i
Abstract ……………………………………………………………………... iii
Acknowledgements…………………………………………………………. v
Table of Contents …………………………………………………………... vi
List of Tables ………………………………………………………………... ix
List of Figures……………………………………………………………….. x
List of Symbols ……………………………………………………………... xv
1 INTRODUCTION ………………………………………. 1
1.1 Objective of Study ………………………………………………….…… 2
1.2 Research Outline ………………………………………………………… 2
1.3 Organization of Thesis …………………………………………………... 3
2 LITERATURE REVIEW ……………………………….. 5
2.1 Earth Pressure At-Rest ……………………………….………………….. 5
2.1.1 Coefficient of Earth Pressure At-Rest…………….………….…….. 5
2.1.2 Jaky's Theory………………………………………………………. 6
2.2 Active Earth Pressure……………………………….……………………. 7
2.2.1 Coulomb Earth Pressure Theory …………….………….…………. 7
2.2.2 Rankine Active Earth Pressure Theory…………….………………. 8
2.2.3 Terzaghi General Wedge Theory…………….……………….…….. 9
2.3 Ultimate Bearing Capacity of Loose Sand…………….…………………. 11
2.4 Theoretical Study of Earth Pressure Due to Surcharge……..……………. 12
2.4.1 Theory of Elasticity…………………….………….………….……. 13
2.4.2 Method of Images…………. ………….………….………….……. 13
2.4.3 U.S. Navy Design Manual………………………………................. 14
2.4.4 Vertical Strip Loading on Surface of a Semi-Infinite Mass……....... 14
2.4.5 Semiempirical Rules by Terzaghi and Peck………………………... 15
2.4.6 Simplified Methods by Terzaghi and Peck………………………… 16
2.4.7 Study of Kezdi………………………………................................. 18
2.4.8 Study of Jarquio………………………………................................. 20
2.4.9 Study of Steenfelt and Hansen……....……………………………... 21
2.4.10 Study of Luan and Nogami……………………………….............. 21
2.5 Numerical Study of Earth Pressure Due to Surcharge…………………… 22
2.5.1 Study of Goh………………………………...................................... 22
3 EXPERIMENTAL APPARATUS ……………………… 24
3.1 Soil Bin ………………………………………………………………….. 24
3.2 Model Retaining Wall …………………………………………………… 25
3.3 Driving System ………………………………………………………….. 26
3.4 Surcharge Loading System………………………………………...…….. 26
3.4.1 Reaction Frame..………………………………................................ 27
3.4.2 Surcharge Loading System..……………………………………….. 27
3.4.3 Strip Footing..……………………………….................................... 29
3.4.4 Settlement Measuring System………………………………............ 31
3.5 Data Acquisition System ………………………………………………… 31
4 BACKFILL AND INTERFACE CHARACTERISTICS 32
4.1 Backfill Properties ………………………………………………………. 32
4.2 Interface Characteristics between Model Wall and Backfill …………….. 33
4.3 Side Wall Friction …….…………………………………………………. 34
4.4 Control of Soil Density………………………………………………….. 36
4.4.1 Air-Pluviation of Backfill……………...…..……………..………... 36
4.4.2 Distribution of Soil Density …….………………………………... 36
5 EXPERIMENTAL RESULTS ………………………….. 38
5.1 Step 1 - Earth Pressure At-Rest……………………….………………… 38
5.2 Step 2 - Active Earth Pressure…………………………………………… 38
5.3 Step 3 - Lateral Earth Pressure Due to Strip Surcharge………………… 39
5.3.1 Ultimate Bearing Capacity of Loose Backfill 40
5.3.2 Effects of Surcharge Intensity……………………………………… 41
5.3.3 Effects of Surcharge Location (b=0.3 and b=0.5)………………… 42
5.4 Lateral Pressure Change Due to Further Active Wall Movement………... 42
5.4.1 Change of Lateral Pressure Increment…………………………….. 43
5.4.2 Lateral Force Increment……………………………………………. 43
5.4.2.1 Effects of Surcharge Intensity…………………………….. 44
5.4.3 Point of Application of Lateral Force Increment…………………... 44
6 CONCLUSIONS ………………………………………... 45
References …………………………………………………………………... 46
Tables ………………………………………………………………………... 51
Figures ………………………………………………………………………. 59
Appendix A: Soil Pressure Transducer Calibration ……………………... 149
Appendix B: Load Cell Calibration ………………………………………. 157

Reference
1. Boussinesq, V. J., (1883),”Application des Potential a L’Etude de L’Equilibre et due Mouvenent des Solides Elastiques,” Gauthier-Villars, Paris.
2. Bowles, J. E., (1988), “Foundation Analysis and Design,” 4th Edition, McGraw-Hill Book Co., pp. 474.
3. Bros, B., (1972), “The Influence of Model Retaining Wall Displacements on Active and Passive Earth Pressure in Sand,” Proceedings, 5th European Conference on Soil Mechanics, Vol.1, Madrid, Spain, pp. 241-249.
4. Burgess, G. P.,(1999), “Performance of Two Full-scale Model Geosynthetic Reinforced Segmental Retaining Walls,” Master Thesis, Royal Military College of Canada, Kingston, Ontario, p. 207.
5. Canadian Geotechnical Society, (1985), Canadian Foundation Engineering Manual 2nd edition, pp. 380-381.
6. Chang, S. Y., (2000), “Effects of Backfill Compaction on Active Earth Pressure,” Master of Engineering Thesis, National Chaio Tung University, Hsinchu, Taiwan.
7. Chen, H., R., (1997), “Earth Pressure At-Rest with Different Soil Densities and Backfill Inclinations,” Master of Engineering Thesis, National Chiao Tung University, Hsinchu, Taiwan.
8. Chen, T., J., (2003), “Earth Pressures Due to Vibratory Compaction,” Doctor of Philosophy of Engineering Dissertation, National Chiao Tung University, Hsinchu, Taiwan.
9. Das, B. M., (1983), Advance Soil Mechanics, Publishing Company, McGraw-Hill.
10. Das, B. M., (1994), “Principal of Geotechnical Engineering,” 3rd Edition, PWS Publishing Company, Boston.
11. Das, B. M., (1999), “Shallow Foundation: Bearing Capacity and Settlement,” CRC Press LLC.
12. Fang, Y. S., Chen, J. M., and Chen, C. Y., (1997), “Earth Pressures with Sloping Backfill,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 3, March, pp. 250-259.
13. Fang, Y. S., Chen, T. J., Holtz, R. D., and Lee, W. F., (2002), “Reduction of Boundary Friction in Model Tests,” Submitted to Geotechnical Testing Journal, ASTM.
14. Gerber, E. (1929), “Untersuchungen uber die Druckverteilung im ortlichen belasteten Sand,” Zurich, Switzerland.
15. Goh, A. T. C., (1993), “Prediction of Earth Pressure on Concrete Retaining Walls from Surface Line Loads,” Journal of Geotechnical Engineering, Southeast Asian Geotechnical. Society, 24(1), pp. 57-76.
16. Ho, Y. C., (1999), “Effects of Backfill Compaction on Passive Earth Pressure,” Master of Engineering Thesis, National Chaio Tung University, Hsinchu, Taiwan.
17. Jaky, J., (1944), “The Coefficient of Earth Pressure at Rest,” Journal for Society of Hungarian Architects and Engineers, Budapest, Hungary, Oct., pp. 355-358.
18. Jaky, J., (1948), “Pressure in Soils,” Proceedings, 2nd International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, pp. 103-107.
19. Jarquio, R., (1981), “Total Lateral Surcharge Pressure Due to Strip Load,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 107, No. GT10, pp. 1424-1428.
20. Jurgenson, L. (1934), “The application of theories of elasticity and plasticity to foundation problems.” Contributions to Soil Mechanics 1925-1940. Boston Society of Civil Engineers.
21. Kezdi, A., “Lateral Earth Pressure,” pp. 197-220, Winterkorn, H. F. and Fang, H. Y., (1975), “Foundation Engineering Handbook.”
22. Kumbhojkar, A. S., (1993) “ Numerical Evaluation of Terzaghi’s N,” Journal of Geotechnical Engineering, American Society of Civil Engineering, Vol. 119, No. 3, pp. 598-607
23. Lee C. C., (1998), “Passive Earth Pressure with Various Backfill Densities”, Master of Engineering Thesis, National Chiao Tung University, Hsinchu, Taiwan.
24. Lo Presti, D. C. F., Berardi, R., Pedroni, S., and Crippa, V., (1993), “A New Traveling Sand Pluviator to Reconstitute Specimens of Well-Graded Silty Sands,” Geotechnical Testing Journal, ASTM, Vol. 16, No. 1, pp.18-26
25. Luan, M., and Nogami, T., (1997), “Earth-Retaining Wall,” Journal of Engineering Mechanics, ASCE, Vol. 123, No. 5, pp. 524-530.
26. Mackey, R. D., and Kirk, D. P., (1967), “At Rest, Active and Passive Earth Pressures,” Proceedings, South East Asian Conference on Soil Mechanics and Foundation Engineering, Bangkok, pp. 187-199.
27. Matteotti, G., (1970), “Some Results of Quay-Wall Model Tests on Earth Pressure,” Proc., Institution of Civil Engineers, Vol. 47, pp. 185-204.
28. Mayne, P. W. and Kulhawy, F. H., (1982), “K0 - OCR relationships in soils,” Journal of Geotechnical Engineering, Division, ASCE, Vol. 108, No. GT6, June., pp. 851-873.
29. McElory, J. A., 1997, “Seismic Stability of Geosynthetic Reinforced Slopes: A Shaking Table Study”, Master Thesis, University of Washington, Seattle.
30. Mesri, G., and Hayat, T. M., (1993), “The Earth Pressure at Rest,” Canadian Geotechnical Journal, Vol. 30, No. 4, August, pp. 647-666.
31. Meyerhof, G. G. (1963). “ Some Recent Reach on the Bearing Capacity of Foundations,” Canadian Geotechnical Journal, Vol. 1, No.1, pp.16-26
32. Mindlin, R. D. (1936), “Discussion: Pressure Distribution on Retaining walls,” 1st ICSMFE, vol.3, pp. 155-156
33. Rad, N. S. and Tumay, M. T., (1987), “Factors Affecting Sand Specimen Preparation by Raining,” Geotechnical Testing Journal, ASTM, Vol. 10, No.1, pp.31-37
34. Rowe, P. W., and Barden, L. (1964). “Importance of free ends in triaxial testing,” Journal of the Soil Mechanics and Foundations Division, ASCE, 90(SM1), pp.1-77
35. Sherif, M. M. and Mackey, R. D., (1977), “Pressure on the Retaining Wall with Repeated Loading,” Journal of Geotechnical Engineering Division, ASCE, Vol. 103 no, GT11, pp. 1341-1345.
36. Sherif, M. A., Fang, Y. S., and Sherif, R. I., (1984), “Ka and Ko behind Rotating and Non-Yielding Walls,” Journal of Geotechnical Engineering, ASCE, Vol. 110, No. 1, Jan., pp. 41-56.
37. Sherif, M. A., Ishibashi, I., and Lee, C. D., (1982), ”Earth Pressure Against Rigid Retaining Walls,” Journal of Geotechnical Engineering, ASCE, Vol.108, No.GT5, May, pp. 679-695.
38. Steenfelt, J. S., and Hansen, B. (1983), “Total Lateral Surcharge Pressure Due to Strip Load,” Journal of the Geotechnical Engineering Division, ASCE, pp.271-273.
39. Sowers, G. B., and Sowers, G. F., (1961), Introductory Soil Mechanics and Foundations, New York: Macmillan, pp. 386.
40. Terzaghi, K., (1941), “General Wedge Theory of Earth Pressure,” ASCE Transaction, Vol. 106, pp. 68-80.
41. Terzaghi, K., (1943), Theoretical soil Mechanics, Wiley, New York.
42. Terzaghi, K., (1954), “Anchored bulkheads”, Transactions, ASCE. 119, Paper No. 2720.
43. Terzaghi, K., Peck, R. B., (1967), Soil Mechanics in Engineering Practice, 2nd ed. John Wiley, New York.
44. Tschebotarioff, G. P., (1973), “Foundations, Retaining and Earth Structures,” 2nd Edition, McGraw-Hill Book Co.
45. Tzeng, S. K., (2002), “Horizontal Pressure on an Unyielding Wall Due to Strip Loading on Backfill with Different Densities,” Master of Engineering Thesis, National Chiao Tung University, Hsinchu, Taiwan.
46. US NAVY, (1982), Foundation and Earth Structures, NAVFAC Design Manual DM-7.2, Naval Facilities Engineering Command, U.S. Government Printing Office, Washington, D. C., pp. 73-74.
47. Vaid, Y. P., and Negussey, D., (1984), “Relative Density of Pluviated Sand Samples,” Soils and Foundations, JSSMFE, Vol. 24, No. 2, pp.101-105
48. Vesic, A. S. (1973), “Analysis of Ultimate Loads of Shallow Foundations,” Journal of the soil Mechanics and Foundations Division, ASCE, Vol. 99 No. SM1, pp. 45-73.
49. Wu, B., F., (1992), “Design and Construction of National Chiao Tung University Model Retaining Wall,” Master of Engineering Thesis, National Chiao Tung University, Hsinchu, Taiwan.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top