跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/09 20:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林靜怡
研究生(外文):Ching-Yi Lin
論文名稱:細粒料對粉土細砂小應變勁度之影響
論文名稱(外文):Effects of Fines on Small Strain Stiffness of Silty Sand
指導教授:黃安斌黃安斌引用關係
指導教授(外文):An-Bin Huang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:195
中文關鍵詞:粉土細砂細粒料微小應變三軸試驗剪力波元件模數衰減阻尼比
外文關鍵詞:silty sandfinessmall strain cyclic triaxial testbender elementmodulus degradationdamping ratio
相關次數:
  • 被引用被引用:32
  • 點閱點閱:348
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:1
在過去的四十年間,室內試驗關於控制乾淨砂微小應變下土壤勁度衰減之行為的影響因子,已經有相當好的結果。然而,在自然界中,許多砂土都具有細粒料,但目前關於細粒料含量對砂土的影響,多著重於土壤抗液化強度之研究上。關於細粒料含量對於粉土細砂微小應變土壤勁度衰減行為影響之報告有限。本研究所使用的麥寮砂(MLS)為台灣西部地區典型砂土,具有相當高含量的粉土(silt)。根據過去試驗結果顯示,麥寮砂具有高壓縮性且膨脹性不高的特性。
本研究目的主要以不同麥寮砂細粒料含量進行往復式及單向式微小應變三軸試驗,並於三軸試驗設備中加入剪力波元件(Bender Element),以求得完整且連續之模數遞減曲線及阻尼比遞增曲線,以分析細粒料之影響。本論文中敘述研究之背景、目的、試驗程序與試驗結果資料,並對於粉土細砂中剪力模數衰減特性進行分析、討論並提供建議。
During the past four decades, laboratory studies on the modulus degradation of clean sands under small strain conditions have been plentiful. However, natural sands often contain various amounts of fines. Available reports on the behavior of silty sands are mostly related to the cyclic shear strength rather than stiffness of the material. This research concentrated on Mai Liao sand (MLS), which was a typical silty sand along the West Coast of Taiwan. MLS was relatively compressible and had a less tendency to dilate when sheared.
A series of strain controlled cyclic and monotonic triaxial tests have been performed on MLS in this research. The triaxial cell was equipped with bender elements to measure shear wave velocities of the triaxial specimen. A complete modulus degradation curve was then established by combining the moduli values deduced from the shear wave velocities and cyclic triaxial compression tests. The thesis describes the background of the research, it’s objectives, research procedures of the small strain triaxial test. The test results were analyzed and the influence of silt contents on MLS were discussed.
中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 viii
表目錄 xv
符號表 xvi
第一章 前言 1
1.1研究背景 1
1.2研究目的 2
1.3研究方法 3
1.4論文內容概述 5
第二章 麥寮粉土細砂之基本性質 6
2.1麥寮粉土細砂之來源 6
2.2麥寮粉土細砂之工程特性 6
2.2.1 基本物理性質 6
2.2.2 壓縮性 7
2.3 麥寮粉土細砂基本物性之檢核 8
第三章 文獻回顧 22
3.1應變定義 22
3.2土壤動態特性 22
3.2.1剪力波速與初始剪力模數 24
3.2.1.1室內試驗評估法 25
3.2.1.2現地試驗評估法 30
3.2.2 微應變試驗之量測 33
3.2.3單一試體大應變範圍之動態試驗 34
3.3剪力模數衰減分析方法 36
3.4影響剪力波速之因素 37
3.4.1有效圍壓 37
3.4.2孔隙比 38
3.4.3剪應變振幅 38
3.4.4主應力比 38
3.4.5顆粒形狀及尺寸 39
3.4.6反覆載重次數及頻率 39
3.4.7含水量 39
3.5影響剪應變振幅與剪力模數衰減關係之因素 40
3.5.1有效圍壓及塑性指數 40
3.5.2孔隙比 43
3.5.3反覆載重次數及排水狀況 43
3.5.4階段試驗技術之影響 47
3.5.5載重頻率/剪動速率之影響 49
3.5.6振動方式的影響 50
3.5.7靜態載重與動態載重試驗之比較 50
3.6影響阻尼比特性之影響 51
3.6.1剪應變振幅 52
3.6.2有效圍壓 52
3.6.3塑性指數 54
3.6.4孔隙比 55
3.6.5砂土顆粒特性之影響 56
3.6.6反覆載重次數及排水狀況之影響 57
3.6.7階段性試驗技術 58
3.6.8振動方式 59
第四章 試驗設備與方法 88
4.1試驗規劃流程 88
4.2微應變三軸試驗設備 90
4.2.1三軸室 90
4.2.2軸壓加載及控制系統 91
4.2.3氣壓與水壓控制系統 92
4.2.4量備系統 92
4.2.4.1剪力波元件試驗(Bender Element Test) 93
4.2.4.2局部應變之量測 95
4.2.4.3軸向荷重及水壓之量測 96
4.2.5訊號擷取系統 97
4.3試驗方法 97
4.3.1三軸試驗試體材料之準備 98
4.3.2試體之製作 99
4.3.3試體之飽和 100
4.3.4三軸室之壓密 100
4.3.5剪力波元件試驗 100
4.3.6往復式微小應變三軸試驗 101
4.3.7單向式微小應變三軸試驗 103
第五章 試驗結果與討論 117
5.1試驗內容與控制參數 117
5.1.1往復式微小應變三軸試驗 117
5.1.2單向式微小應變三軸試驗 118
5.2往復式微小應變三軸試驗結果 125
5.2.1試驗結果 125
5.2.2分析方法 127
5.2.3孔隙比之影響 129
5.2.4細粒料含量之影響 130
5.2.5試驗方法之影響 131
5.3剪力波元件試驗結果 132
5.4單向微小應變載重試驗結果 133
第六章 結論與建議 185
6.1結論 185
6.2建議 186
參考文獻 188
Abbiss, C. P. (1981) “Shear Wave Measurement of the Elasticity of Ground,” Geotechnique, Vol. 31, No. 1, pp. 94-104.
Aderson, D. G. and Stokoe, K. H. II (1978) “Shear Modulus: A Time-Dependent Soil Property.” Dynamic Soil and Rock Testing in the Field and Laboratory for Seismic Studies, ASTM STP.
Aggour, M. S., Tawfiq, K. S. and Taha, M. R. (1988) “Impulse and Random Testing of Soils.” Proc. of the Conference on Earthquake Engineering and Soil Dynamics II — Recent Advances in Ground-Motion Evaluation, ASCE, pp.346-358.
Alarcon-Guzman, A., Chameau, J. L., Leonards, G. A. and Frost, J. D. (1989) “Shear Modulus and Cyclic Undrained Behavior of Sand.” Soil and Foundations, JSSMFE, Vol. 31, pp. 210-213.
Alarcon-Guzman, A., Chameau, J. L., Leonards, G. A. and Frost, J. D. (1991) Closure to “Shear Modulus and Cyclic Undrained Behavior of Sand.” Soil and Foundations, JSSMFE, Vol. 31, pp.210-213.
Amini, F., Tawfiq, K. S. and Aggour, M. S. (1988) “Cohesionless Soil Behavior Under Random Excitation Conditions.” Journal of Geotechnical Engineering Division, ASCE, Vol. 114, No. 8, August, pp. 896-914.
Atkinson, J. K. and Sallfors, G. (1991) “Experimental Determination of Soil Properties,” Proceedings of the 10th ECSMFE, Florence 3, pp. 915-956
Barros, J. M. C. (1994) “Factors Affecting Dynamic Properties of Soil.” Ph.D. thesis, University of Mechigan.
Bolton, M. D. and Wilson, M.R. (1989) “An Experimental and Theorical Comparison Between Static and Dynamic Torsional Soil Tests” Geotechnique, Vol. 34, No. 4 pp. 585-599.
Burland, J. B. (1989) ““Small is Beautiful” — The Stiffness of Soils at Small Strains” Ninth Laurits Bjerrum Memorial Lecture, Canadian Geotechnical Journal, Vol. 26, pp. 499-516.
Canales, A. R. (1980) “Measurement Techniques and Test Related Variables in Resonant Column Testing.” Ph. D. thesis, The University of Texas at Austin, 240p.
Dobry, R. and Ladd, R. (1980) Discussion to “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquake,” by H. B. Seed and “Liquefaction Potential: Science versus Practice,” by R. B. Peck, Journal of the Geotechnical Engineering Division, ASCE, Vol. 106, GT. 6, June, pp. 720-724
Dobry, R., Ladd, R. S., Yokel, F. Y., Chung, R. M. and Powell, D. (1982) “Prediction of Pore Water Pressure Building and Liquefaction of Sand During Earthquake by the Cyclic Strain Method.” National Bureau of Standards, Building Science 138, Washington, D. C., April.
Drnevich, V. P. (1972) “Undrained Cyclic Shear of Saturated Sand.” Journal of Soil Mechanic and Foundation Engineering Division, ASCE, Vol. 98, No. SM8, Aug., pp. 807-825.
Drnevich, V. P. and Richart, F. E., Jr. (1970) “Dynamic Prestraining of Dry Sand,” Journal of the SMFD, ASCE, 96, SM2, March, pp. 453-469.
Dyvik, R. and Madshus, C. (1985) “Laboratory measurement of Gmax using bender element.” Proc. ASCE Annual Convention: Advance in the art of testing soils under cyclic conditions, Detroit.
Edil, T. B. and Luh, G. H. (1978) “Dynamic Modulus and Damping Relationship for Sands.” Proc. of the ASCE Gectechnical Engineering Division Specialty Conference on Earthquake Engineering and Soil Dynamic, Pasadena, California, V. I, pp. 393-409.
Erguvanli, A. (1977) “The Influence of Mineralogical Composition on the Damping Capacity of Cohesive Soils.” Proc. of the Sixth World Conf. on Earthquake Engineering, N. Delhi, Vol. III, PP.2394.
Foti, S. (2000) “Multistation Methods for Geotechnical Characterization using Surface Waves”, Politecnico di Torino, Ph. D. Dissertation, February, 2000.
Hall, J. R., Jr. and Richart, F. E., Jr. (1963) “Dissipation of Elastic Wave Energy in Granular Soils.” J. Soil Mech. and Found. Div. Proc. ASCE, Vol. 89, No.SM6, Nov., pp. 27-56.
Hardin, B. O. (1965) “Dynamic Versus Static Shear Modulus for Dry Sand.” Materials Research and Standards, ASTM, Vol. 5, No. 5, May, pp. 232-235.
Hardin, B. O. (1965) “The Nature of Damping in Stands.” J. Soil Mech. Found. Div., Proc. ASCE, Vol. 91, No. SM1, Jan., pp. 63-97.
Hardin, B. O. and Drnevich, V. P. (1972a) “Shear Modulus and Damping in Soils: Measurement and Parameter Effects,” J. Soil Mech. Found. Div., ASCE, Vol. 98, No. SM6, 1972, pp. 603-624.
Hardin, B. O. and Drnevich, V. P. (1972b) “Shear Modulus and Damping in Soils: Design Equations and Curves.” J. Soil Mech. and Found. Div., ASCE, Vol. 98, No. SM7, July, pp. 667-692.
Hardin, B. O. and Richart, F. E., Jr. (1963) “Elastic Wave Velocity in Granular Soils.” Journal of Soil Mechanic and Foundation Engineering Division, ASCE, Vol. 89, No. SM6, pp. 27-56.
Hepton, P. (1988) “Shear Wave Velocity Measurements during Penetration Testing”, Penetration Testing is the UK, pp. 275~278, Thomas Telford, London, 1988.
Huang, A. B., Hsu, S. P. and Kuhn, H. R. (1994) “A Multiple Purpose Soil Testing Apparatus,” Geotechnical Testing Journal, ASTM, Vol. 17, No. 2, pp. 227-232.
Idriss, I. M., Dobry, R. and Singh, R. D. (1978) “Nonlinear behavior of Soft Clays During Cyclic Loading.”J. GED, ASCE, 104(12), 1427-1447.
Isenhower, W. M. and Stokoe, K. H., II (1981) “Strain-Rate Dependent Shear Modulus of San Francisco Bay Mud.” Proc. Int. Conf. Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, MO, Vol. II, pp. 597-602.
Ishibashi, I. and Zhang, X. (1993) “Unified Dynamic Shear Moduli and Damping Ratios of Sand and Clay.” Soils and Foundations, JSSMFE, Vol.33, No. 1, Mar., pp. 182-191.
Ishihara, K. (1996) “Soil Behavior in Earthquake Geotechnica.” Claremdon press, Oxford.
Iwasaki, T. and Tatsuoka, F. (1977) “Effects of Grain Size and Grading on Dynamic Shear Moduli of Sands.” Soils and Foundations, JSSMFE, Vol. 17, No. 3, pp. 19-35.
Iwasaki, T., Tasuoka, F. and Takagi, Y. (1978) “Shear Modulus of Sands under Cyclic Torsional Shear Loading.” Soil and Foundations, JSSMFE, Vol. 18, No. 1, pp. 39-56.
Jamiolkowski, M., Leroueli, S. and LoPresti, D. C. F. (1991) “Theme lecture: Design Parameters from theory to practice.” Proceeding, Geo-Coast 1991, Yokohama, Japan, pp. 1-41.
Jovicic, V., Coop, M. R. and Simic, M. (1996) “Objective Criteria for Determining Gmax from Bender Element Test.” Geotechnique, Vol. 46, No. 2, pp.357-362.
Khouri, N. Q. (1984) “Dynamic Properties of Soils.” Master Thesis, Department of Civil Engineering, Syracuse University.
Kim, D. S. (1993) Discussion on “Moduli and Damping Factors of Soft Marine Clays”, Journal of Geotechnical Engineering.” ASCE, Vol. 119, No. 8, August, 1993, pp. 2020-2022.
Kim, T. C. and Novak, M. (1981) “Dynamic Properties of Some Cohesive Soils of Ontario”, Canadian Geotechn. Journal, 18, pp. 371-389.
Kokusho, T., (1980) "Cyclic Triaxial Test of Dynamic Soil Properties for Wide Strain Range," Soils and Foundations, Vol.20, No.2, pp.45-60.
Kokusho, T., Yoshida, Y. and Esashi, Y. (1982) “Dynamic Properties of Soft Clay For Wide Strain Range.” Soil and Foundations, Vol. 22, No. 4, pp. 1-18.
Lings, M. L. and Greening, P. D. (2001) “A Novel Bender/Extender Element for Soil Testing.” Geotechnique, Vol. 51, No. 8, pp. 713-717.
Luna, R. and Jadi, H. (2000) “Determination of Dynamic Soil Properties Using Geophysical Methods”, Geophysics 2000, St. Louis, Missouri, December 15, 2000.
Nigbor, R. L. and Imai, T. (1994) “The Suspension PS Velocity Logging Method: Geophysical Characterization of Sites”, Volume Prepared by ISSMFE, Technical Committee #10, XIII ICSMFE, New Delhi, India, pp. 57~64, 1994.
Park, T. K. and Silver, M. L. (1975) “Dynamic Triaxial and Simple Shear Behavior of Sand.” J. Geotechn. Eng. Div., Proc. ASCE, Vol. 101, No. GT6, pp. 513-529.
Pyke, R. M. (1973) “Settlement and Liquefaction of Sand under Multi-Directional Loading,” Ph.D. Dissertation, University of California, Berkeley.
Ray, R. P. (1983) “Changes in Shear Modulus and Damping in Cohensionless Soil Due to Repeated Loading.” Ph. D. thesis, Department of Civil Engineering, University of Michigan, Ann Arbor.
Ray, R. P. and Woods, R. D. (1988) “Modulus and Damping Due to Unifrom and Variable Cyclic Loading.” J. Gectechn. Eng. Div., ASCE, Vol. 114, No. 8, pp. 861-877.
Richart, F. E., Jr. (1977) “Dynamic Stress-Strain Relationships for Soils.” Chap. 1 of “Soil Dynamics and Its Application to Foundation Engineering.” by Y. Koshimi, F. E. Richart, Jr., S. Prakash, D. D. Barkan and A. Ilyichev, Proc. 9th Int. Conf. Soil Mech. Found. Eng. (Tokio), Vol. 2, pp. 605-612.
Rix, G.J. (1988) “Experimental Study of Factors Affetting the Spectral-Analysis-of-Surface-Waves Method”, Ph. D. Dissertation, University of Texas at Austin, 1988.
Robertson, P. K., Campanella, R. C., Gillespie, D. and Rice, A. (1986) “Seismic CPT to Measure in situ Shear Wave Velocity”, Journal of Geotechnical Engineering, Vol. 112, pp. 791~803, ASCE, August, 1986.
Roesset, J. M. (1991) “Energy Dissipation” Proceedings: NSF/EPRI Workshop on Dynamic Soil Properties and Site Characterization, Palo Alto, California, Vol. 1, Chapter 4, pp. 4.1-4.46.
Sanches-Salinero, I., Roesset, J. M. and Stokoe, K. M. (1986) “Analytical Studies of Body Wave Propagation and Attenuation.” Report GR 86-15, University of Texas, Austion.
Saxena, S. K. and Reddy, K. R. (1989) “Dynamic Moduli and Damping Ration for Monterey No.0 Sand By Resonant Column Tests.” Soil and Foundations, JSSMFE, Vol. 29, No. 2, June, pp. 37-51.
Seed, H. B. and Idriss, I. M. (1970) “Soil Moduli and damping factors for dynamic response analyses.” Report No. EERC 70-10, Earthquake Engineering Research Center, University of California.
Seed, H. B., Wong, R. T., Idriss, I. M. and Tokimatsu, K. (1986) “Moduli and Damping Factor for Dynamic Analysis of Cohesionless Soils.” J. Geotechn. Eng. Div., ASCE, Vol. 112, No. 11, November, pp. 1016-1032.
Sherif, M. A. and Ishibashi, I. (1976) “Dynamic Shear Moduli for Dry Sands.” J. Geotechn. Eng. Div., ASCE, Vol. 102, No. GT11, Nov., pp. 1171-1184.
Sherif, M. A., Ishibashi, I. and Gaddah, A. H. (1977) “Damping Ratio of Dry Sands.” J. Geotechn. Eng. Div., ASCE, Vol. 103, No. GT7, July, pp. 743-756.
Shibata, T. and Soelarno, D.S. (1975) “Stress Strain Characteristic of Sand Under Cyclic Loading.” Proc. Japanese Society of Civ. Engrg., 239, pp.57-65.
Shirley, D. J. (1978) “An Improved Shear Wave Transducer,” Journal of the Acoustical Society of American, 63(5) May, pp. 1643-1645.
Silver, M. L. and Park, T. K. (1975) “Testing Procedure Effects on Dynamic Soil Behavior.” Journal of Geotechnical Engineering Division, ASCE, Vol. 101, No. GT10, October, pp. 1061-1083.
Silver, M. L. and Seed, H. B. (1971) “Deformation Characteristic of Sand Under Cyclic Loading.” J. Soil Mech. Found. Div., Proc. ASCE, Vol. 97, No.SM8, August, pp. 1081-1098.
Sun, J. I., Golesorkhi, R. and Seed, H. B. (1988) “Dynamic Moduli and Damping Ratios for Cohesive Soils.” Report No. UCB/EERC-88/15, August, College of Engineering, University of California, Berkeley, Ca, 42p.
Taniguchi, E., Ogasaware, H. and Sawada, K. (1978) “Effect of Shear Strain on the Dynamic Deformation Coefficient on Clay.” Proc. Fifth Japan Earthquake Engineering Symposium, Tokyo, Japan, November, pp. 705-712.
Tastsuoka, F., Iwasaki, T. and Takagi, Y. (1978) “Hysteretic Damping of Sands Under Cyclic Loading and Its Relation to Shear Moduli.” Soils and Foundations, JSSMFE, Vol. 18, No. 2, June, pp. 23-40.
Tatsuoka, F., Shibuya, S., Teachavorasinskun, S. and Park, C. S. (1990) Discussion on “An Experimental and Theoretical Comparison Between Static and Dynamic Torsional Soil Tests.” Geotechnique, Vol. 40, No. 4, PP.659-662.
Toki, S., Shibuya, S. and Yamashita, S. (1995) “Standardization of Laboratory Test Methods to Determine the Cyclic Deformation Properties of Geomaterials in Japan,” Proceedings, the 1st Pre-Failure Deformation of Geomaterials, Sapporo, Japan, Vol. 2, pp. 741-784.
Viggiani, G. and Atkinson, J. H. (1995) “Interpretation of bender element tests.” Geotechnique, Vol. 45, No.1, pp.149-154.
Viggiani, G. and Atkinson, J. H. (1995) “Stiffness of Fine-Grained soil at Very Small Strain.” Geotechnique, Vol. 45, No.2, pp.249-265.
Vucetic, M. (1992). “Soil Properties and Seismic Response.” Proc. 10th Conf. Earthquake Engineering, pp. 1199-1204.
Vucetic, M. and Dobry, R. (1988) “Degradation of Marine Clays Under Cyclic Loading.” Journal of the Geotechn. Eng. Division, ASCE, Vol. 114, No. 2, Feb., pp. 133-149.
Vucetic, M. and Dobry, R. (1991) “Effect of Soil Plasticity on Cyclic Response.”. Journal of Geotechnical Engineering Division, ASCE, 117(1); pp. 89-107.
Woods, R. D. (1977) “Parameters affecting elastic properties.” Dynamic method on Soil and Rock Mechanics, Vol. 1, Karlsruhe, Germany, 37-60.
Yamashita, J., Majima, M. and Nagataki, Y. (1984) “Dynamic Properties of Saturatured Sand Under Cyclic Loading Conditions (Modeling os Shear Stress — Strain Relations) VIII World Conference on Earthquake Engineering, San Francisco, Vol. III, pp. 79-86.
Youd, T. L. (1972) “Compaction of Sands by Repeated Shear Straining,” Journal of the SMFD, ASCE, 98, SM7, July, pp. 709-725.
尤致偉(1997),”現地貫入試驗評估土層動態參數之研究” 國立台灣大學土木工程學系,碩士論文。
王統立(2000),”高細粒料含量粉土細砂中CPT之標定試驗” 國立交通大學土木工程學系,碩士論文,41p.。
李建中(1988),” 台北盆地粉質土壤之動態性質” 行政院國家科學委員會防災科技研究報告。
李崇正、李建中(1990),”台北盆地粉質土壤之動態性質IV” 行政院國家科學委員會防災科技研究報告。
卓彥百(1999),”層狀土壤對剪力波傳遞特性影響之評估” 國立海洋大學河海工程學系,碩士論文。
邱建銘(2000),”以剪力波速評估員林地區液化及其地層動態反應研究” 國立台灣大學土木工程學系,碩士論文。
胡耀華(1996),”剪力波元件試驗之初步研究” 國立台灣大學土木工程學系,學士論文。
倪勝火 (1992),” 高雄市區土壤動態特性之研究(二)”行政院國家科學委員會防災科技研究報告。
倪勝火 (2001),”表面波譜法(SASW)之分析原理與應用”,地工技術,第86期,第5~18頁,民國九十年八月。
倪勝火、常正之(1990),” 高雄市區土壤動態特性之研究(一)” 行政院國家科學委員會防災科技研究報告。
張嘉偉(1997),”圓錐貫入試驗在粉砂中之標定” 國立交通大學土木工程學系,碩士論文,161p.。
陳瑞禾(1996),”現地試驗評估粘土初始剪力模數之初步研究” 國立台灣大學土木工程學系,碩士論文。
黃香燕(1998),” 利用壓電晶片量測不同應力條件下之砂土傳波速度” 國立中央大學土木工程學系,碩士論文。
蔡明道(2002),”細粒料含量對粉土細砂不排水強度之影響” 國立交通大學土木工程學系,碩士論文,46p.。
蔡榮燦(1999),” 砂土組構及傳波速度” 國立中央大學土木工程學系,碩士論文。
謝祥暉(2001),” 回填土壤剪力波特性與抗液化強度相關性之研究” 國立海洋大學河海工程學系,碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top