|
1. International Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, CA, (1999). 2. M. Koyama, K. Suguro, M. Yoshiki, Y. Kamimuta, M. Koike, M. Ohse, C. Hongo, and A. Nishiyama, “Thermally stable ultra-thin nitrogen incorporated ZrO2 gate dielectric prepared by low temperature oxidation of ZrN,” Tech. Dig. Int. Electron Devices Meet., 20.3.1 (2001). 3. E. P. Gusev, D. A. Buchanan, E. Cartier, A. Kumar, D. DiMaria, S. Guha, A. Callegari, S. Zafar, P. C. Jamison, D. A. Neumayer, M. Copel, M. A. Gribelyuk, H. Okorn-Schmidt, C. D Emic, P. Kozlowski, K. Chan, N. Bojarczuk, L. -A. Ragnarsson, and Rons, “Ultrathin high-K gate stacks for advanced CMOS devices,” Tech. Dig. Int. Electron Devices Meet., 20.1.1 (2001). 4. T. M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hedge, I. J. R. Baumvol, and G. N. Parsons, “Evidence of aluminum silicate formation during chemical vapor deposition of amorphous Al2O3 thin films on Si(100),” Appl. Phys. Lett. 75, 4001 (1999). 5. L. Manchanda, W. H. Lee, J. E. Bower, F. H. Baumann, W. L. Brown, C. J. Case, R. C. Keller, Y. O. Kim, E. J. Laskowski, M. D. Morris et al., “Gate quality doped high K films for CMOS beyond 100 nm: 3-10 nm Al2O3 with low leakage and low interface states,” Tech. Dig. Int. Electron Devices Meet., 605 (1998). 6. E. P. Gusev, M. Copel, E. Cartier, I. J. R. Buumann, C. Krug, and M. A. Gribelyuk, “High-resolution depth profiling in ultrathin Al2O3 films on Si,” Appl. Phys. Lett. 76, 176 (2000). 7. A. Chin, C. C. Liao, C. H. Lu, W. J. Chen, and C. Tsai, “Device and reliability of high-k Al2O3 gate dielectric with good mobility and low Dit,” Symp. on VLSI Tech., 135 (1999). 8. A. Chin, Y. H. Wu, S. B. Chen, C. C. Liao, W. J. Chen, “High quality La2O3 and Al2O3 gate dielectrics with equivalent oxide thickness 5-10 Å,” Symp. on VLSI Tech., 16 (2000). 9. D. G. Park, H. J. Cho, C. Lim, I. S. Yeo, J. S. Roh, C. T. Kim, and J. M. Hwamg, “Characteristics of Al2O3 gate dielectric prepared by atomic layer deposition for giga scale CMOS DRAM devices,” Tech. Dig. VLSI Symp., 46 (2000). 10. L. Manchanda and M. Gurvitch, “Yttrium oxide/silicon dioxide: a new dielectric structure for VLSI/ULSI circuits,” IEEE Electron Device Lett. 9, 180 (1988). 11. M. Gurvitch, L. Manchanda, and J. M. Gibson, “Study of thermally oxidized yttrium films on silicon,” Appl. Phys. Lett. 51, 919 (1987). 12. S. Guha, E. Cartier, M. A. Gribelyuk, N. A. Borjarczuk, and M. A. Copel, “Atomic beam deposition of lanthanum- and yttrium-based oxide thin films for gate dielectrics,” Appl. Phys. Lett. 77, 2710 (2000). 13. J. J. Chambers and G. N. Parsons, “Yttrium silicate formation on silicon: Effect of silicon preoxidation and nitridation on interface reaction kinetics,” Appl. Phys. Lett. 77, 2385 (2000). 14. G. B. Alers, D. J. Werder, Y. Chabal, H. C. Lu, E. P. Gusev, E. Garfunkel, T. Gustafsson, and R. S. Urdahl, “Intermixing at the tantalum oxide/silicon interface in gate dielectric structures,” Appl. Phys. Lett. 73, 1517 (1998). 15. Y. Nishioka, H. Shinriki, and K. Mukai, “Influence of SiO2 at the Ta2O5/Si interface on dielectric characteristics of Ta2O5 capacitors,” J. Appl. Phys. 61, 2335(1987). 16. R. M. Fleming, D. V. Lang, C. D. W. Jones, M. L. Steigerwald, D. W. Murphy, G. B. Alers, Y. H. Wong, R. B. van Dover, J. R. Kwo, and A. M. Sergent, “Defect dominated charge transport in amorphous Ta2O5 thin films,” J. Appl. Phys. 88, 850 (2000). 17. S. A. Campbell, D. C. Gilmer, X. Wang, M. T. Hsich, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permittivity TiO2 dielectrics,” IEEE Trans. Electron Devices 44, 104 (1997). 18. K. Guo, X. Wang, Z. Luo, T. P. Ma, and T. Tamagawa, “High quality ultra-thin (1.5 nm) TiO2-Si3N4 gate dielectric for deep sub-micron CMOS technology,” Tech. Dig. Int. Electron Devices Meet., 137 (1999). 19. R. B. van Dover, “Amorphous lanthanide-doped TiOx dielectric films,” Appl. Phys. Lett. 74, 3041 (1999). 20. B. H. Lee, L. Kang, R. Nieh, W. J. Qi, and J. C. Lee, “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing,” Appl. Phys. Lett. 76, 1926 (2000). 21. L. Kang, K. Onishi, Y. Jeon, H. L. Byoung, C. Kang, W.-J. Qi, R. Nieh, S. Gopalan, R. Choi, and J.C. Lee, “MOSFET devices with polysilicon on single-layer HfO2 high-K dielectrics,” Tech. Dig. Int. Electron Devices Meet., 35 (2000). 22. S. J. Lee, H. F. Luan, W. P. Bai, C. H. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, “High quality ultra thin CVD HfO2 gate stack with poly-Si gate electrode,” Tech. Dig. Int. Electron Devices Meet., 31 (2000). 23. W. J. Qi, R. Nieh, B. H. Lee, K. Onishi, L. Kang, Y. Jeon, J. C. Lee, V. Kaushik, B. Y. Nguyen, L. Prabhu, K. Eisenbeiser, and J. Finder, ”Performance of MOSFETs with ultra thin ZrO2 and Zr silicate gate dielectrics,” Symp. on VLSI Tech., 40 (2000). 24. T. Ngai, W. J. Qi, R. Sharma, J. Fretwell, X. Chen, J. C. Lee, and S. Banerjee, “Electrical properties of ZrO2 gate dielectric on SiGe,” Appl. Phys. Lett. 76, 502 (2000). 25. H. Zhang, R. Solanki, B. Roberds, G. Bai, and I. Banerjee, “High permittivity thin film nanolaminates,” J. Appl. Phys. 87, 1921 (2000). 26. Y. Sakashita, T. Ono, and H. Segawa, “Preparation and electrical properties of MOCVD-deposited PZT thin films,” J. Appl. Phys. 69, 8352 (1991). 27. R. E. Jones, Jr., P. D. Maniar, J. O. Olowolafe, A. C. Campbell, and C. J. Mogab, “Electrical characteristics of paraelectric lead zirconate titanate thin films for dynamic random access memory applications,” Appl. Phys. Lett. 60, 1022 (1992). 28. L. A. Bursill, and K. G. Brooks, “Crystallization of sol-gel derived lead-zirconate-titanate thin films in argon and oxygen atmospheres,” J. Appl. Phys. 75, 4501 (1994). 29. B. Yang, T. K. Song, S. Aggarwai, and R. Ramesh, “Low voltage performance of Pb(Zr,Ti)O3 capacitors through donor doping,” Appl. Phys. Lett. 71, 3578 (1997). 30. J. Lee, S. Esayan, A. Safari, and R. Ramesh, “Effect of ultraviolet light on fatigue of lead zirconate titianate thin-film capacitors,” Appl. Phys. Lett. 65, 254 (1994). 31. X. Du, and I.-W. Wang, “Model experiment on fatigue of Pb(Zr0.53Ti0.47)O3 ferroelectric thin films,” Appl. Phys. Lett. 72, 1923 (1998). 32. K. Tagantsev, I. Stolichnov, E. L. Colla, and N. Setter, “Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features,” J. Appl. Phys. 90, 1387 (2001). 33. C.-C. Yang, M.-S. Chen, T.-J. Hong, C.-M. Wu, J.-M. Wu, and T.-B. Wu, “Preparation of (100)-oriented metallic LaNiO3 thin films on Si substrates by radio frequency magnetron sputtering for the growth of textured Pb(Zr0.53Ti0.47)O3,” Appl. Phys. Lett. 66, 2643 (1995). 34. M.-S. Chen, T.-B. Wu, and J.-M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films,” Appl. Phys. Lett. 68, 1430 (1996). 35. M. Madhukar, S. Aggarwai, A. M. Dhote, R. Ramesh, A. Kirshnan, D. Keeble, and E. Poindexter, “Effect of oxygen stoichiometry on the electrical properties of LaSrCoO3 electrodes,” J. Appl. Phys. 81, 3543 (1997). 36. Y. K. Wang, T. Y. Tseng, and Pang Lin, “Enhanced ferroelectric properties of Pb(Zr0.53Ti0.47)O3 thin films on SrRuO3/Ru/SiO2/Si substrates,” Appl. Phys. Lett. 80, 3790 (2002). 37. S.-Y. Chen and V.-C. Lee, “Aging behavior and recovery of polarization in Sr0.8Bi2.4Ta2O9 thin films,” J. Appl. Phys. 87, 3050 (2000). 38. S.-Y. Chen and V.-C. Lee, “Effect of lead additive on the ferroelectric properties and microstructure of SrxPbyBi2zTa2O9 thin films,” J. Appl. Phys. 87, 8024 (2000). 39. M. Miyayama and I.-S. Yi, “Electrical anisotropy in single crystals of Bi-layer structured ferroelectrics,” Ceramics International 26, 529 (2000). 40. S. K. Kim, M. Miyayama, and H. Yanagida, “Electrical anisotropy and plausible explanation for dielectric anomaly of Bi4Ti3O12 single crystal,” Materials Research Bulletin 31, 121 (1996). 41. S. K. Kim, M. Miyayama, and H. Yanagida, “Complex impedance and modulus analysis on electrical anisotropy of layer-structured BaBi4Ti4O15 single crystal in paraelectric phase,” Journal of the Ceramic Society of Japan 103, 315 (1995). 42. S. K. Kim, M. Miyayama, and H. Yanagida, “Electrical anisotropy of BaBi4Ti4O15 single crystal,” Journal of the Ceramic Society of Japan 8, 722 (1994). 43. K. Amanuma, T. Hase, and Y. Miyasak, “Preparation and ferroelectric properties of SrBi2Ta2O9 thin films,” Appl. Phys. Lett. 66, 221 (1995). 44. R. Dat, J. K. Lee, O. Auciello, and A. I. Kingon, “Pulsed laser ablation synthesis and characterization of layered Pt/SrBi2Ta2O9/Pt ferroelectric capacitors with practically no polarization fatigue,” Appl. Phys. Lett. 67, 572 (1995). 45. T. Li, Y. Zhu, S. B. Desu, C.-H. Peng, and M. Nagata, “Metalorganic chemical vapor deposition of ferroelectric SrBi2Ta2O9 thin films,” Appl. Phys. Lett. 68, 616 (1996). 46. B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, “Lanthanum-substituted bismuth titanate for use in non-volatile memories,” Nature (London) 401, 682 (1999). 47. S. Y. Wu, “A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor,” IEEE Trans. Electron Devices, 499 (1974). 48. S. Y. Wu, “Memory retention and switching behavior of metal-ferroelectric-semiconductor transistors,” Ferroelectrics 11, 379 (1976). 49. Y. Shichi, S. Tanimoto, T. Goto, K. Kuroiwa, and Y. Tarui, “Interaction of PbTiO3 films with Si substrate,” Jpn. J. Appl. Phys. 33, 5172 (1994). 50. T. Hirai, K. Teramoto, T. Nishi, T. Goto, and Y. Tarui, “Formation of metal/ferroelectric/insulator/semiconductor structure with a CeO2 buffer layer,” Jpn. J. Appl. Phys. 33, 5219 (1994). 51. T. Hirai, K. Teramoto, K. Nagashima, H. Koike, and Y. Tarui, “Characterization of metal/ferroelectric/insulator/semiconductor structure with a CeO2 buffer layer,” Jpn. J. Appl. Phys. 34, 4163 (1995). 52. M. H. Yeh, K. S. Liu, Y. C. Ling, J. P. Wang, and I. N. Lin, “The growth behavior of Pb0.95La0.05(Zr0.7Ti0.3)0.9875O3 films on silicon substrates synthesized by pulsed laser deposition,” J. Appl. Phys. 77, 5335(1995). 53. E. Tokumitsu, K. Itani, B. K. Moon, and H. Ishiwara, “Crystalline quality and electrical properties of PbZrxTi1-xO3 thin films prepared on SrTiO3-covered Si substrates,” Jpn. J. Appl. Phys. 34, 5202 (1995). 54. I. Sakai, E. Tokumitu, and H. Ishiwara, “Preparation and characterization of PZT thin films on CeO2(111)/Si(111) structures,” Jpn. J. Appl. Phys. 35, 4987 (1996). 55. E. Tokumitsu, R. I. Nakamura, and H. Ishiwara, “Nonvolatile memory operations of metal-ferroelectric-insulator-semiconductor (MFIS) FET’s using PLZT/STO/Si(100) structures,” IEEE Electron Device Lett. 18, 160 (1997). 56. B. E. Park, I. Sakai, E. Tokumitsu, and H. Ishiwara, “Hysteresis characteristics of vacuum-evaporated ferroelectric PbZr0.4Ti0.6O3 films on Si(111) substrates using CeO2 buffer layers,” Appl. Surf. Sci. 117/118, 423 (1997). 57. B. E. Park, S. Shouriki, E. Tokumitsu, and H. Ishiwara, “Fabrication of PbZrxTi1-xO3 films on Si structures using Y2O3 buffer layers,” Jpn. J. Appl. Phys. 37, 5145 (1998). 58. E. Tokumitsu, D. Takahashi, and H. Ishiwara, “Characterization of metal-ferroelectric-(metal-)insulator-semiconductor (MF(M)IS) structures using (Pb,La)(Zr,Ti)O3 and Y2O3 films,” Jpn. J. Appl. Phys. 39, 5456 (2000). 59. J. Yu, Z. Hong, W. Zhou, G. Cao, J. Xie, and X. Li, “Formation and characteristics of Pb(Zr,Ti)O3 field-effect transistor with a SiO2 buffer layer,” Appl. Phys. Lett. 70, 490 (1997). 60. C. Byun, Y. I. Kim, W. J. Lee, and B. W. Lee, “Effect of a TiO2 buffer layer on the C-V properties of Pt/PbTiO3/TiO2/Si structure,” Jpn. J. Appl. Phys. 36, 5588 (1997). 61. N. A. Basit, H. K. Kim, and J. Blachere, “Growth of highly oriented Pb(Zr,Ti)O3 films on MgO-buffered oxidized Si substrates and its application to ferroelectric nonvolatile memory field-effect transistors,” Appl. Phys. Lett. 73, 3941 (1998). 62. D. J. Won, C. H. Wang, and D. J. Choi, “Characteristics of metal/ferroelectric/insulator/semiconductor using La2O3 thin film as an insulator,” Jpn. J. Appl. Phys. 40, L1235 (2001). 63. M. Liu, H. K. Kim, and J. Blachere, “Lead-zirconate-titanate-based metal/ferroelectric/insulator/semiconductor structure for nonvolatile memories,” J. Appl. Phys. 91, 5985 (2002). 64. K. Sugibuchi, Y. Kurogi, and N. Endo, “Ferroelectric field-effect memory device using Bi4Ti3O12 film,” J. Appl. Phys. 46, 2877 (1975). 65. H. Buhay, S. Sinharoy, W. H. Kasner, and M. H. Francombe, “Pulsed laser deposition and ferroelectric characterization of bismuth titanate films,” Appl. Phys. Lett. 58, 1470 (1991). 66. K. Nagashima, T. Hirai, H. Koike, Y. Fujisaki, and Y. Tarui, “Characteristics of metal/ferroelectric/insulator/semiconductor structure using SrBi2Ta2O9 as the ferroelectric material,” Jpn. J. Appl. Phys. 35, L1680 (1996). 67. K. Nagashima, T. Hirai, H. Koike, Y. Fujisaki, T. Hase, Y. Miyasaka, and Y. Tarui, “Effect of reducing process temperature for preparing SrBi2Ta2O9 in a metal/ferroelectric/semiconductor structure,” Jpn. J. Appl. Phys. 36, L619 (1997). 68. T. Hirai, Y. Fujisaki, K. Nagashima, H. Koike, and Y. Tarui, “Preparation of SrBi2Ta2O9 film at low temperatures and fabrication of a metal/ferroelectric/insulator/semiconductor field effect transistor using Al/SrBi2Ta2O9/CeO2/Si(100) structures,” Jpn. J. Appl. Phys. 36, 5908 (1997). 69. Y. T. Kim and D. S. Shin, “Memory window of Pt/SrBi2Ta2O9/CeO2/SiO2/Si structure for metal ferroelectric insulator semiconductor field effect transistor,” Appl. Phys. Lett. 71, 3507 (1997). 70. H. N. Lee, M. H. Lim, Y. T. Kim, T. S. Kalkur, and S. H. Choh, “Characteristics of metal/ferroelectric/insulator/semiconductor field effect transistors using a Pt/SrBi2Ta2O9/Y2O3/Si structure,” Jpn. J. Appl. Phys. 37, 1107 (1998). 71. Y. T. Kim, D. S. Shin, Y. K. Park, and I. H. Choi, “Effects of Bi-Pt alloy on electrical characteristics of Pt/SrBi2Ta2O9/CeO2/Si ferroelectric gate structure,” J. Appl. Phys. 86, 3387 (1999). 72. S. K. Lee, Y. T. Kim, and S. I. Kim, “Effects of coercive voltage and charge injection on memory windows of metal-ferroelectric-semiconductor and metal-ferroelectric-insulator-semiconductor gate structures,” J. Appl. Phys. 91, 9303 (2002). 73. Y. Oishi, Y. Matsumuro, and M. Okuyama, “Preparation and basic properties of SrBi2Ta2O9 films,” Jpn. J. Appl. Phys. 36, 5896 (1997). 74. J. P. Han and T. P. Ma, “SrBi2Ta2O9 memory capacitor on Si with a silicon nitride buffer,” Appl. Phys. Lett. 72, 1185 (1998). 75. T. Kijima and H. Matsunaga, “Preparation of Bi4Ti3O12 thin film on Si(100) substrate using Bi2SiO5 buffer layer and its electric characterization,” Jpn. J. Appl. Phys. 37, 5171 (1998). 76. K. J. Choi, W. C. Shin, J. H. Yang, and S. G. Yoon, “Metal/ferroelectric/insulator/semiconductor structure of Pt/SrBi2Ta2O9/YMnO3/Si using YMnO3 as the buffer layer,“ Appl. Phys. Lett. 75, 722 (1999). 77. S. B. Xiong and S. Sakai, “Memory properties of SrBi2Ta2O9 thin films prepared on SiO2/Si substrates,” Appl. Phys. Lett. 75, 1613 (1999). 78. W. J. Lee, C. H. Shin, C. R. Cho, J. S. Lyu, B. W. Kim, B. G. Yu, and K. I. Cho, “Electrical properties of SrBi2Ta2O9/insulator/Si structures with various insulators,” Jpn. J. Appl. Phys. 38, 2039 (1999). 79. M. Noda, Y. Matsumuro, H. Sugiyama, and M. Okuyama, “A fatigue-tolerant metal-ferroelectric-oxide-semiconductor structure with large memory window using Sr-deficient and Bi-excess Sr0.7Bi2+yTa2O9 ferroelectric films prepared on SiO2/Si at low temperature by pulsed laser deposition,” Jpn. J. Appl. Phys. 38, 2275 (1999). 80. M. Noda, Y. Adachi, H. Sugiyama, T. Nakaiso, and M. Okuyama, “Low-temperature preparation of SrxBi2+yTa2O9 ferroelectric thin film by pulsed laser deposition and its application to a metal-ferroelectric-nitride-oxide-semiconductor structure,” Appl. Phys. A 71, 113 (2000). 81. H. Sugiyama, T. Nakaiso, Y. Adachi, M. Noda, and M. Okuyama, “An improvement C-V characteristics of metal-ferroelectric-insulator-semiconductor structure for ferroelectric gate FET memory using a silicon nitride buffer layer,” Jpn. J. Appl. Phys. 39, 2131 (2000). 82. T. Yamaguchi, M. Koyama, A. Takashima, and S. I. Takagi, “Improvement of memory characteristics of metal-ferroelectrics/insulating buffer layer/semiconductor structures by combination of pulsed laser deposited SrBi2Ta2O9 films and ultra-thin SiN buffer layers,” Jpn. J. Appl. Phys. 39, 2058 (2000). 83. B. E. Park and H. Ishiwara, “Electrical properties of LaAiO3/Si and Sr0.8Bi2.2Ta2O9/LaAIO3/Si structures,” Appl. Phys. Lett. 79, 806 (2001). 84. E. Rokuta, Y. Hotta, T. Kubota, H. Tabata, H. Kobayashi, and T. Kawai, “Effects of an ultrathin silicon oxynitride buffer layer on electrical properties of ferroelectric Bi4Ti3O12 thin films on p-Si(100) surfaces,“ Appl. Phys. Lett. 79, 403 (2001). 85. E. Rokuta, J. H. Choi, Y. Hotta, H. Tabata, H. Kobayashi, and T. Kawai, “Interface control of Bi4Ti3O12 film growth on Si(100) by use of an ultrathin silicon oxynitride buffer layer,” Appl. Phys. Lett. 79, 1858 (2001). 86. T. Choi, Y. S. Kim, C. W. Yang, and J. Lee, “Electrical properties of Bi3.25La0.75Ti3O12 thin films on Si for a metal-ferroelectric-insulator-semiconductor structure,” Appl. Phys. Lett. 79, 1516 (2001). 87. J. F. Scott and C. A. Paz De Araujo, “Ferroelectric memories,” Science 246, 1400 (1989). 88. C. A. Paz De Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and J. F. Scott, “Fatigue-free ferroelectric capacitors with platinum electrodes,” Nature (London) 374, 627 (1995). 89. I. K. Yoo and S. B. Desu, “Electrochemical models of failure in oxide perovskites”, Integrated Ferroelectrics 3, 365 (1993). 90. T. Ogawa, A. Senda, and T. Kasnami, “Controlling the crystal orientations of lead titanate thin films”, Jpn. J. Appl. Phys. 30, 2145 (1991). 91. W. L. Warren, D. Dimos, B. A. Tuttle, G. E. Pike, R. W. Schwartz, P. J. Clews, and D. C. Mclntyre, “Polarization suppression in Pb(Zr,Ti)O3 thin films”, J. Appl. Phys. 77, 6695 (1995). 92. W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike, “Electronic domain pinning in Pb(Zr,Ti)O3 thin films and its role in fatigue”, Appl. Phys., Lett. 65, 1018 (1994). 93. D. Dimos, H. N. Al-Shareef, W. L. Warren, and B. A. Tuttle, “Photoinduced changes in the fatigue behavior of SrBi2Ta2O9 and Pb(Zr,Ti)O3 thin films”, J. Appl. Phys. 80, 1682 (1996). 94. C. J. Kim, D. S. Yoon, J. S. Lee, and C. G. Choi, “Electrical characteristics of (100), (111), and randomly aligned lead zirconate titanate thin films”, J. Appl. Phys. 76, 7478 (1994). 95. X-H. Du, U. Belegundu, and K. Uchino, “Crystal orientation dependence of piezoelectric properties in lead zirconate titanate: theoretical expectation for thin films”, Jpn. J. Appl. Phys. 36, 5580 (1997). 96. K. Brooks, R. Klissurska, P. Moeckli, and N. Setter, “Investigation of Pb(Zr0.70Ti0.30)O3 thin films of different textures on Ti/Pt electrodes”, Microelectron. Eng. 29, 293 (1995). 97. B. A. Tuttle, J. A. Voigt, D. C. Goodnow, D. L. Lamppa, T. J. Headley, M. O. Eatough, G. Zender, R. D. Nasby, and S. M. Rodgeres, “Highly oriented, chemically prepared Pb(Zr,Ti)O3 thin films”, J. Am. Ceram. Soc. 76, 1537 (1993). 98. Y. Liu and P. P. Phule, “Nucleation- or growth-controlled orientation development in chemically derived ferroelectric lead zirconate titanate (Pb(ZrxTi1-x)O3, x=0.4) thin films”, J. Am. Ceram. Soc. 79, 495 (1996). 99. E. G. Lee, J. S. Park, and J. G. Lee, “Ferroelectric properties of crystalline oriented Pb(Zr,Ti)O3 thin films prepared by sol-gel technique”, Thin Solid Films 312, 228 (1998). 100. V. Bornand, S. Trolier-Mckinstry, K. Takemura, and C. A. Randall, “Orientation dependence of fatigue behavior in relaxor ferroelectric-PbTiO3 thin films”, J. Appl. Phys. 87, 3965 (2000). 101. J. F. Scott and M. Dawber, “Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics”, Appl. Phys. Lett. 76, 3801 (2000). 102. K. D. Budd, S. K. Dey, and D. A. Payne, “Sol-gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films”, Br. Ceram. Proc. 36, 107 (1985). 103. S. Y. Chen and I-W. Chen, “Texture development, microstructure evolution, and crystallization of chemically derived PZT thin films”, J. Am. Ceram. Soc. 81, 97 (1998). 104. S. A. Myers and L. N. Chapin, “Microstructural characterization of ferroelectric thin films for nonvolatile memory applications”, Mat. Res. Soc. Symp. Proc. 200, 231 (1990). 105. D. V. Taylor and D. Damjanovic, “Piezoelectric properties of rhombohedral Pb(Zr,Ti)O3 thin films with (100), (111), and random crystallographic orientation”, Appl. Phys. Lett. 76, 1615 (2000). 106. T. Mihara, H. Watanabe, and C. A. PAZ DE Araujo, “Characteristic change due to polarization fatigue of sol-gel ferroelectric Pb(Zr0.4Ti0.6)O3 thin-film capacitors”, Jpn. J. Appl. Phys. 33, 5281 (1994). 107. H. M. Duiker, P. D. Batra, J. Scott, C. A. Paz De Araujo, B. M. Melnick, J. D. Cuchiaro, and L. D. McMillam, “Fatigue and switching in ferroelectric memories: theory and experiment”, J. Appl. Phys. 68, 5783 (1990). 108. K. Tominaga, A. Shirayanagi, T. Takagi, and M. Okada, “Switching and fatigue characteristics of (Pb,La)(Zr,Ti)O3 thin films by metalorganic chemical vapor deposition”, Jpn. J. Appl. Phys. 32, 4082 (1993). 109. M. Takahashi, “Space charge effect in lead zirconate titanate ceramics caused by the addition of impurities”, Jpn. J. Appl. Phys. 9, 1236 (1970). 110. W. L. Warren, B. A. Tuttle, and D. Dimos, “Ferroelectric fatigue in perovskite oxides”, Appl. Phys. Lett. 67, 1496 (1995). 111. S. B. Desu, C. H. Peng, L. Kammerdiner, and P. J. Schuele, “Size effects in sputtered PZT thin films”, Mat. Res. Soc. Symp. Proc. 200, 319 (1990). 112. X.-H. Du, J. Z. Zheng, U. Belegundu, and K. Uchino, “Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary”, Appl. Phys. Lett. 72, 2421 (1998). 113. S. L. Miller and P. J. MacWhorter, “Physics of the ferroelectric nonvolatile memory field effect transistor,” J. Appl. Phys. 72, 5999 (1992). 114. A. Chin, M. Y. Yang, S. B. Chen, C. L. Sun, and S. Y. Chen, “Fast write time and long retention 1T memory,” 59th Device Research Conference (DRC), 18 (2001). 115. N. W. Jang, Y. J. Song, H. H. Kim, D. J. Jung, B. J. Koo, S. Y. Lee, S. H. Joo, K. M. Lee, and K. Kim, “A novel 1T1C capacitor structure for high density FRAM,” in Symp. on VLSI Technology, 34 (2000). 116. A. Chin, M. Y. Yang, C. L. Sun, and S. Y. Chen, “Stack gate PZT/Al2O3 one transistor ferroelectric memory,” IEEE Electron Device Lett. 22, 336 (2001). 117. M. Y. Yang, S. B. Chen, A. Chin, C. L. Sun, B. C. Lan, and S. Y. Chen, “One-transistor PZT/Al2O3, SBT/Al2O3 and BLT/Al2O3 stacked gate memory,” Tech. Dig. Int. Electron Devices Meeting (IEDM) (Washington, DC, USA), 36_03.1 (2001). 118. C. L. Sun, S. Y. Chen, M. Y. Yang, and A. Chin, “Characteristics of Pb(Zr0.53Ti0.47)O3 on metal and Al2O3/Si substrates,” J. Electrochem. Soc. 148, F203 (2001). 119. J. Senzaki, O. Mitsunaga, T. Uhcida, T. Ueno, and K. Kuroiwa, “Fabrication of c-axis oriented Pb(Zr,Ti)O3 thin films on Si(100) substrates using MgO intermediate layer,” Jpn. J. Appl. Phys. 35, 4195 (1996). 120. Y. Lin, B. R. Zhao, H. B. Peng, B. Xu, H. Chen, F. Wu, H. J Tao, Z. X. Zhao, and J. S. Chen, “Growth and polarization features of highly (100) oriented Pb(Zr0.53Ti0.47)O3 films on Si with ultrathin SiO2 buffer layer,” Appl. Phys. Lett. 73, 2781 (1998). 121. A. Chin, W. J. Chen, T. Chang, R. H. Kao, B. C. Lin, C. Tsai, and J. C.-M. Huang, “Thin oxides with in situ native oxide removal [n-MOSFETs],” IEEE Electron Device Lett. 18, 417 (1997). 122. Y. H. Wu, W. J. Chen, S. L. Chang, A. Chin, S. Gwo, and C. Tsai, “Improved electrical characteristics of CoSi2 using HF-vapor pretreatment,” IEEE Electron Device Lett. 20, 200 (1999). 123. S. Y. Chen and C. L. Sun, “Ferroelectric characteristics of oriented Pb(Zr1-xTix)O3 films,” J. Appl. Phys. 90, 2970 (2001). 124. E. Sato, Y. Huang, M. Kosec, A. Bell, and Nava Setter, “Lead loss, preferred orientation, and the dielectric properties of sol-gel prepared lead titanate thin films,” Appl. Phys. Lett. 65, 2678 (1994). 125. J. F. Scott, “Ferroelectric memories,” Phys. World 8, 46 (1995). 126. W. Wu, K. H. Wong, C. L. Mak, C. L. Choy, and Y. Z. Zhang, “Epitaxial Pb(Zr0.52Ti0.48)O3/La0.35Nd0.35Sr0.3MnO3 heterostructures for fabrication of ferroelectric field-effect transistor,“ J. Appl. Phys. 88, 2068 (2000). 127. D. Bao, N. Mizutani, X. Yao, and L. Zhang, “Structural, dielectric, and ferroelectric properties of compositionally graded (Pb,La)TiO3 thin films with conductive LaNiO3 bottom electrodes,” Appl. Phys. Lett. 77, 1041 (2000). 128. F. Y. Chen, Y. K. Fang, M. J. Sun, and J. R. Chen, “Experimental characterization and modeling of a ferroelectric bulk channel field effect transistor with nonvolatile memory characteristics,” Appl. Phys. Lett. 69, 812 (1996). 129. S. H. Kim, D. J. Kim, J. P. Maria, A. I. Kingon, S. K. Streiffer, J. Kim, O. Auciello, and A. R. Krauss, “Influence of Pt heterostructure bottom electrodes on SrBi2Ta2O9 thin film properties,” Appl. Phys. Lett. 76, 496 (2000). 130. J. M. Schwartz, L. F. Francis, and L. D. Schmidt, “Microstructural characterization of sol-gel derived lead titanate deposited on silica”, Mat. Res. Soc. Symp. Proc., 281 (1993). 131. K. R. Udayakumar, P. J. Schuele, J. Chen, S. B. Krupanidhi, and L. E. Cross, “Thickness-dependent electrical characteristics of lead zirconate titanate thin films,” J. Appl. Phys. 77, 3981 (1995). 132. F. K. Chai, J. R. Brews, R .D. Schrimpf, and D. P. Birnie Ш, “Domain switching and spatial dependence of permittivity in ferroelectric thin films,” J. Appl. Phys. 82, 2505 (1997). 133. D. Dimos, R. W. Schwartz, and S. J. Lockwood, “Control of leakage resistance in Pb(Zr,Ti)O3 thin-films by donor doping,” J. Am. Ceram. Soc. 77, 3000 (1994). 134. S. Y. Wu, “Polarization reversal and film structure in ferroelectric Bi4Ti3O12 films deposited on silicon,” J. Appl. Phys. 50, 4314 (1979). 135. N. Maffei and S. B. Krupanidhi, “Electrical characteristics of excimer laser ablated bismuth titanate films on silicon,” J. Appl. Phys. 72, 3617 (1992). 136. C. L. Sun, S. Y. Chen, S. B. Chen, and A. Chin, “Effect of annealing temperature on physical and electrical properties of Bi3.25La0.75Ti3O12 thin films on Al2O3 buffered Si,” Appl. Phys. Lett. 80, 1984 (2002). 137. W. Zhu, Z. Q. Liu, W. Lu, M. S. Tse, H. S. Tan, and X. Yao, “A systematic study on structural and dielectric properties of lead zirconate titanate/(Pb,La)(Zr(1—x)Ti(x))O3 thin films deposited by metallo-organic decomposition technology,” J. Appl. Phys. 79, 4283 (1996). 138. A. J. Moulson and J. M. Herbert, Electroceramics, Chapman & Hall Press, London, 265 (1990). 139. M. Klee, R. Eusemann, R. Waser, W. Brand, and H. V. Hal, “Processing and electrical properties of Pb(ZrxTi1—x)O3 (x=0.2—0.75) films: Comparison of metallo-organic decomposition and sol-gel processes,” J. Appl. Phys. 72, 1566 (1992). 140. S. Kobayashi, K. Amanuma, H. Mori, N. Kasai, Y. Maejima, A. Seike, N. Tanabe, T. Tatsumi, J. Yamada, T. Miwa, H. Koike, H. Hada, and H. Toyoshima, “64 Kbit CMVP FeRAM macro with reliable retention/imprint characteristics,” Tech. Dig. Int. Electron Devices Meet., 783 (2000). 141. D. Jung, H. Kim, Y. Song, N. Jang, B. Koo, S. Lee, S. Park, Y. Park, and K. Kim, “A novel Ir/IrO2/Pt-PZT-Pt/IrO2/Ir capacitor for a highly reliable mega-scale FRAM,” Tech. Dig. Int. Electron Devices Meet., 801 (2000). 142. C. K. Kwok and S. B. Desu, “Formation kinetics of PbZrxTi1-xO3 thin films,” J. Mater. Res. 8, 339 (1993). 143. N. Floquet, J. Hector, and P. Gaucher, “Correlation between structure, microstructure, and ferroelectric properties of PbZr0.2Ti0.8O3 integrated film: Influence of the sol-gel process and the substrate,” J. Appl. Phys. 84, 3815 (1998). 144. Y. Liu, C. N. Wu, and T. Watanabe, “Preparation and characterization of preferred oriented PZT films on amorphous substrates,” J. Mater. Sci. 34, 4129 (1999). 145. Y. Hou, X. H. Wu, H. Wang, M. Wang, and S. X. Shang, “Bi3.25La0.75Ti3O12 thin films prepared on Si (100) by metalorganic decomposition method,” Appl. Phys. Lett. 78, 1733 (2001). 146. M. Sedlar and M. Sayer, “Study of electrical properties of rapid thermally processed lead iron niobate films synthesized by a sol gel method,” J. Appl. Phys. 80, 372 (1996). 147. T. Watanabe, H. Funakubo, and K. Saito, “Ferroelectric property of epitaxial Bi4Ti3O12 films prepared by metalorganic chemical vapor deposition,” J. Mater. Res. 16, 303 (2001). 148. Y. Noguchi and M. Miyayama, “Large remanent polarization of vanadium-doped Bi4Ti3O12,” Appl. Phys. Lett. 78, 1903 (2001). 149. Y. Taur and T. H. Ning, Fundamental Modern VLSI Devices, Cambridge University Press, (1998) p. 286. 150. Y. Noguchi, M. Miyayama, and T. Kudo, “Ferroelectric properties of intergrowth Bi4Ti3O12—SrBi4Ti4O15 ceramics,” Appl. Phys. Lett., 77, 3639 (2000). 151. X. Du and I-W. Chen, “Ferroelectric thin films of bismuth-containing layered perovskites: Part I, Bi4Ti3O12,” J. Am. Ceram. Soc. 81, 3253 (1998). 152. S. T. Tay, X. H. Jiang, C. H. A. Huan, A. T. S. Wee, and R. Liu, “Influence of annealing temperature on ferroelectric properties of SrBi2Ta2O9 thin films prepared by off-axis radio frequency magnetron sputtering,” J. Appl. Phys. 88, 5928 (2000). 153. Y. Fujisaki, T. Kijima, and H. Ishiwara, “High-performance metal—ferroelectric—insulator—semiconductor structures with a damage-free and hydrogen-free silicon—nitride buffer layer,” Appl. Phys. Lett., 78, 1285 (2001). 154. T. P. Ma and J. P. Han, “Why is nonvolatile ferroelectric memory field-effect transistor still elusive,” IEEE Electron Device Lett. 23, 386 (2002).
|