跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/05 02:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫嘉良
研究生(外文):Chia-Liang Sun
論文名稱:鐵電記憶體場效式電晶體應用之鐵電薄膜材料製程及特性研究
論文名稱(外文):Physical characteristics, electrical properties, and processing development of ferroelectric thin films for ferroelectric memory field-effect transistor applications
指導教授:陳三元陳三元引用關係
指導教授(外文):San-Yuan Chen
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:91
語文別:英文
論文頁數:159
中文關鍵詞:鐵電記憶體電晶體
外文關鍵詞:ferroelectricmemorytransistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:794
  • 評分評分:
  • 下載下載:105
  • 收藏至我的研究室書目清單書目收藏:0
單一電晶體鐵電記憶體因其較小的元件面積和非破壞性讀寫的操作方式等優點而成為下一世代的鐵電記憶體。在本研究中,鋯鈦酸鉛和鑭取代鈦酸鉍這兩組鐵電薄膜同樣地被證實是可以整合在具有金屬-鐵電薄膜-絕緣層-半導體 (MFIS) 這樣疊層閘極結構的單一電晶體記憶體中,另外在這種MFIS的閘極電容中,氧化鋁因其比具有相同等效氧化層厚度的氧化矽較高的介電常數和較低的漏電流而被視為適當的絕緣層材料來使用。首先,比起傳統的MFM電容而言,MFIS閘極電容被證明不但具有類似的記憶效應而且其漏電流也比MFM電容來得低;在鋯鈦酸鉛/氧化鋁/矽基板的MFIS電容中,因為發現在氧化鋁基板上成長富鈦成分的鋯鈦酸鉛比起富鋯成分的鋯鈦酸鉛具有較低的的鈣鈦礦轉換溫度,所以鈦酸鉛緩衝層被用來抑止在鋯鈦酸鉛/氧化鋁/矽基板的MFIS電容中Pyrochlore相的生成,另外,和富鋯鋯鈦酸鉛/鈦酸鉛/氧化鋁/矽基板電容因電荷注入所得到的記憶效應來做比較,富鈦鋯鈦酸鉛/鈦酸鉛/氧化鋁/矽基板電容所得到的是鐵電式的記憶效應;在鑭取代鈦酸鉍/氧化鋁/矽基板電容中,和退火溫度相關的效應被研究後因而發現由較高溫度退火得到的鑭取代鈦酸鉍/氧化鋁/矽基板電容會有較大記憶窗和較低的漏電流,經由進一步地探討其界面反應後可以發現,氧化鋁絕緣層與鐵電薄膜和矽基板在退火時的反應應該是電容低漏電的主因,另外,較高溫度退火後所得到有較大晶粒的鑭取代鈦酸鉍鐵電薄膜亦是造成較大的記憶窗的原因之一;最後,單一電晶體記憶體元件的相關關鍵製程根據在之前在MFIS電容特性上的研究結果而被發展,經過實際上單一電晶體記憶體元件的記憶特性量測後可以發現,本研究所發展的鐵電薄膜製程不但可以在MFIS電容上具有優異的記憶特性,此外配合相關的半導體製程,本研究所發展的MFIS疊層閘極結構更是被證實可以進一步地應用在真實的記憶元件上。
Among many kinds of ferroelectric random access memories (FeRAMs), one-transistor (1T) ferroelectric MOSFET (FeMOSFET) type memory is very attractive due to the same small 1T cell and nondestructive read-out (NDRO) operation. Pb(ZrxTi1-x)O3 (PZT) and Bi3.25La0.75Ti3O12 (BLT) ferroelectric thin films have been integrated in 1T memory with metal-ferroelectric-insulator-semiconductor (MFIS) gate structure. Al2O3 was found to be a suitable insulator material in these MFIS capacitors due to the higher dielectric constant and lower leakage current than those of SiO2 with the same equivalent oxide thickness (EOT). Besides, the MFIS capacitors were demonstrated to have similar memory effect and lower leakage current in comparison with the metal-ferroelectric-metal (MFM) capacitors. In PZT/Al2O3/Si capacitors, the usage of PbTiO3 (PTO) seeding layer was found to be able to inhibit the formation of pyrochlore phase because Ti-rich PZT films have lower perovskite transformation temperatures than those of Zr-rich PZT films on Al2O3 buffered Si. Besides, the memory effect of Ti-rich PZT/PTO/Al2O3/Si capacitors was attributed to the ferroelectricity in contrast to those of Zr-rich PZT capacitors derived from charge injection. For BLT/Al2O3/Si capacitors, the effects of annealing temperature were investigated and the capacitors annealed in higher temperatures would have larger memory window and lower leakage current. Furthermore, the interface reaction was studied so that the lower leakage current of capacitors was suggested to be the result of the high temperature reaction of insulator with ferroelectric and Si though the larger grain size of BLT films annealed in the higher temperatures would correspond to the larger memory window of capacitors. The related processing for 1T memory devices were developed in this thesis and the device characteristics were also demonstrated.
ABSTRACT (Chinese) i
ABSTRACT ii
DEDICATION iii
ACKNOWLEDGEMENT iv
CONTENTS v
LIST OF TABLES x
LIST OF FIGURES xi
CHAPTER 1 1
Introduction 1
1.1. High-k gate dielectric materials 1
1.2. Ferroelectric materials 4
1.2.1. Simple perovskite PZT 4
1.2.2. Bismuth layer-structured ferroelectric materials 5
1.3. FeRAMs progress 6
1.3.1. Nondestructive readout (NDRO) one transistor memory 6
1.3.2. Metal-ferroelectric-insulator-semiconductor (MFIS) structure 7
1.4. Literature review of MFIS structure 8
1.4.1. MFIS structure with PZT as the ferroelectric layer 9
1.4.2. MFIS structure with bismuth layered structure ferroelectric as the ferroelectric layer 11
CHAPTER 2 27
Experimental 27
2.1. Substrate preparation for different capacitor structures 27
2.1.1. Preparation of Pt/Ti/SiO2/Si substrates for the MIM capacitor 27
2.1.2. Preparation of Al2O3/Si substrates for the MFIS capacitor 27
2.2. Fabrication method of ferroelectric thin films 27
2.2.1 Chemical-solution-derived PZT films 27
2.2.1 Chemical-solution-derived BLT films 28
2.3. Preparation of MFM and MFIS capacitors 29
2.3.1. Preparation of MFM capacitors 29
2.3.1. Preparation of MFIS capacitors 29
2.4. Characteristic measurements 29
2.4.1. Measurement of capacitance-voltage (C-V) characteristics 29
2.4.2. Measurement of current density-voltage (J-V) characteristics 30
2.4.3. Other analytical instruments 30
CHAPTER 3 37
Ferroelectric characteristics of oriented Pb(Zr1-xTix)O3 films 37
3.1. Introduction 37
3.2. Experimental procedure 38
3.2.1. Preparation of stock solution and fabrication of thin film 38
3.2.2 Characterization and property measurement 39
3.3. Results and discussion 39
3.3.1 Structure analysis 39
3.3.2. Hysteresis loop 40
3.3.3. Fatigue property 42
3.4. Conclusions 45
CHAPTER 4 54
Electrical and structural characteristics of PbTiO3 thin films with ultrathin Al2O3 buffer layers 54
4.1. Introduction 54
4.2. Experimental procedure 55
4.3. Results and discussion 56
4.4. Conclusions 58
CHAPTER 5 64
Characteristics of Pb(Zr0.53Ti0.47)O3 on metal and Al2O3/Si substrates 64
5.1. Introduction 64
5.2. Experimental procedure 65
5.3. Results and discussion 66
5.4. Conclusions 69
CHAPTER 6 75
Effect of Zr/Ti ratios on the characteristics of Pb(ZrxTi1-x)O3 thin films on Al2O3-buffered Si 75
6.1. Introduction 75
6.2. Experimental procedure 76
6.2.1. PZT stock solution synthesis and thin film deposition 76
6.2.2. Preparation of Al2O3/Si and PTO/Al2O3/Si substrates 76
6.2.3. Film characterization 77
6.3. Results and discussion 77
6.3.1. Phase transformation of single-layer PZT on Al2O3/Si 77
6.3.2. Comparison of phase evolution of 650oC-annealed PZT on Al2O3/Si and those on PTO/Al2O3/Si 79
6.3.3. Electrical properties of PZT/PTO/Al2O3/Si capacitors 80
6.4. Conclusions 82
CHAPTER 7 98
Bi3.25La0.75Ti3O12 thin films on ultrathin Al2O3 buffered Si for ferroelectric memory application 98
7.1. Introduction 98
7.2. Experimental procedure 99
7.3. Results and discussion 100
7.4. Conclusions 102
CHAPTER 8 108
Effect of annealing temperature on physical and electrical properties of Bi3.25La0.75Ti3O12 thin films on Al2O3-buffered Si 108
8.1. Introduction 108
8.2. Experimental procedure 109
8.3. Results and discussion 109
8.4. Conclusions 111
CHAPTER 9 118
Role of the high temperature reaction of Al2O3 with Bi3.25La0.75Ti3O12 and Si in the metal-ferroelectric-insulator-semiconductor capacitors 118
9.1. Introduction 118
9.2. Experimental procedure 119
9.3. Results and discussion 120
9.4. Conclusions 123
CHAPTER 10 132
One-transistor PZT/Al2O3 and BLT/Al2O3 stacked gate memory 132
10.1. Introduction 132
10.2. Experimental procedure 132
10.3. Results and discussion 133
10.3.1 Composition dependent characteristics of PZT/Al2O3/Si 1T memory 133
10.3.2 Annealing temperature dependent characteristics of BLT/Al2O3/Si 1T memory 133
10.4. Conclusions 134
CHAPTER 11 139
Conclusions 139
11.1. One-transistor ferroelectric memory with Pb(ZrxTi1-x)O3 and Al2O3 as the ferroelectric and insulator layers 139
11.2. One-transistor ferroelectric memory with Bi3.25La0.75Ti3O12 and Al2O3 as the ferroelectric and insulator layers 139
REFERENCE 141
PUBLICATION 158
1. International Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, CA, (1999).
2. M. Koyama, K. Suguro, M. Yoshiki, Y. Kamimuta, M. Koike, M. Ohse, C. Hongo, and A. Nishiyama, “Thermally stable ultra-thin nitrogen incorporated ZrO2 gate dielectric prepared by low temperature oxidation of ZrN,” Tech. Dig. Int. Electron Devices Meet., 20.3.1 (2001).
3. E. P. Gusev, D. A. Buchanan, E. Cartier, A. Kumar, D. DiMaria, S. Guha, A. Callegari, S. Zafar, P. C. Jamison, D. A. Neumayer, M. Copel, M. A. Gribelyuk, H. Okorn-Schmidt, C. D Emic, P. Kozlowski, K. Chan, N. Bojarczuk, L. -A. Ragnarsson, and Rons, “Ultrathin high-K gate stacks for advanced CMOS devices,” Tech. Dig. Int. Electron Devices Meet., 20.1.1 (2001).
4. T. M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hedge, I. J. R. Baumvol, and G. N. Parsons, “Evidence of aluminum silicate formation during chemical vapor deposition of amorphous Al2O3 thin films on Si(100),” Appl. Phys. Lett. 75, 4001 (1999).
5. L. Manchanda, W. H. Lee, J. E. Bower, F. H. Baumann, W. L. Brown, C. J. Case, R. C. Keller, Y. O. Kim, E. J. Laskowski, M. D. Morris et al., “Gate quality doped high K films for CMOS beyond 100 nm: 3-10 nm Al2O3 with low leakage and low interface states,” Tech. Dig. Int. Electron Devices Meet., 605 (1998).
6. E. P. Gusev, M. Copel, E. Cartier, I. J. R. Buumann, C. Krug, and M. A. Gribelyuk, “High-resolution depth profiling in ultrathin Al2O3 films on Si,” Appl. Phys. Lett. 76, 176 (2000).
7. A. Chin, C. C. Liao, C. H. Lu, W. J. Chen, and C. Tsai, “Device and reliability of high-k Al2O3 gate dielectric with good mobility and low Dit,” Symp. on VLSI Tech., 135 (1999).
8. A. Chin, Y. H. Wu, S. B. Chen, C. C. Liao, W. J. Chen, “High quality La2O3 and Al2O3 gate dielectrics with equivalent oxide thickness 5-10 Å,” Symp. on VLSI Tech., 16 (2000).
9. D. G. Park, H. J. Cho, C. Lim, I. S. Yeo, J. S. Roh, C. T. Kim, and J. M. Hwamg, “Characteristics of Al2O3 gate dielectric prepared by atomic layer deposition for giga scale CMOS DRAM devices,” Tech. Dig. VLSI Symp., 46 (2000).
10. L. Manchanda and M. Gurvitch, “Yttrium oxide/silicon dioxide: a new dielectric structure for VLSI/ULSI circuits,” IEEE Electron Device Lett. 9, 180 (1988).
11. M. Gurvitch, L. Manchanda, and J. M. Gibson, “Study of thermally oxidized yttrium films on silicon,” Appl. Phys. Lett. 51, 919 (1987).
12. S. Guha, E. Cartier, M. A. Gribelyuk, N. A. Borjarczuk, and M. A. Copel, “Atomic beam deposition of lanthanum- and yttrium-based oxide thin films for gate dielectrics,” Appl. Phys. Lett. 77, 2710 (2000).
13. J. J. Chambers and G. N. Parsons, “Yttrium silicate formation on silicon: Effect of silicon preoxidation and nitridation on interface reaction kinetics,” Appl. Phys. Lett. 77, 2385 (2000).
14. G. B. Alers, D. J. Werder, Y. Chabal, H. C. Lu, E. P. Gusev, E. Garfunkel, T. Gustafsson, and R. S. Urdahl, “Intermixing at the tantalum oxide/silicon interface in gate dielectric structures,” Appl. Phys. Lett. 73, 1517 (1998).
15. Y. Nishioka, H. Shinriki, and K. Mukai, “Influence of SiO2 at the Ta2O5/Si interface on dielectric characteristics of Ta2O5 capacitors,” J. Appl. Phys. 61, 2335(1987).
16. R. M. Fleming, D. V. Lang, C. D. W. Jones, M. L. Steigerwald, D. W. Murphy, G. B. Alers, Y. H. Wong, R. B. van Dover, J. R. Kwo, and A. M. Sergent, “Defect dominated charge transport in amorphous Ta2O5 thin films,” J. Appl. Phys. 88, 850 (2000).
17. S. A. Campbell, D. C. Gilmer, X. Wang, M. T. Hsich, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permittivity TiO2 dielectrics,” IEEE Trans. Electron Devices 44, 104 (1997).
18. K. Guo, X. Wang, Z. Luo, T. P. Ma, and T. Tamagawa, “High quality ultra-thin (1.5 nm) TiO2-Si3N4 gate dielectric for deep sub-micron CMOS technology,” Tech. Dig. Int. Electron Devices Meet., 137 (1999).
19. R. B. van Dover, “Amorphous lanthanide-doped TiOx dielectric films,” Appl. Phys. Lett. 74, 3041 (1999).
20. B. H. Lee, L. Kang, R. Nieh, W. J. Qi, and J. C. Lee, “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing,” Appl. Phys. Lett. 76, 1926 (2000).
21. L. Kang, K. Onishi, Y. Jeon, H. L. Byoung, C. Kang, W.-J. Qi, R. Nieh, S. Gopalan, R. Choi, and J.C. Lee, “MOSFET devices with polysilicon on single-layer HfO2 high-K dielectrics,” Tech. Dig. Int. Electron Devices Meet., 35 (2000).
22. S. J. Lee, H. F. Luan, W. P. Bai, C. H. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, “High quality ultra thin CVD HfO2 gate stack with poly-Si gate electrode,” Tech. Dig. Int. Electron Devices Meet., 31 (2000).
23. W. J. Qi, R. Nieh, B. H. Lee, K. Onishi, L. Kang, Y. Jeon, J. C. Lee, V. Kaushik, B. Y. Nguyen, L. Prabhu, K. Eisenbeiser, and J. Finder, ”Performance of MOSFETs with ultra thin ZrO2 and Zr silicate gate dielectrics,” Symp. on VLSI Tech., 40 (2000).
24. T. Ngai, W. J. Qi, R. Sharma, J. Fretwell, X. Chen, J. C. Lee, and S. Banerjee, “Electrical properties of ZrO2 gate dielectric on SiGe,” Appl. Phys. Lett. 76, 502 (2000).
25. H. Zhang, R. Solanki, B. Roberds, G. Bai, and I. Banerjee, “High permittivity thin film nanolaminates,” J. Appl. Phys. 87, 1921 (2000).
26. Y. Sakashita, T. Ono, and H. Segawa, “Preparation and electrical properties of MOCVD-deposited PZT thin films,” J. Appl. Phys. 69, 8352 (1991).
27. R. E. Jones, Jr., P. D. Maniar, J. O. Olowolafe, A. C. Campbell, and C. J. Mogab, “Electrical characteristics of paraelectric lead zirconate titanate thin films for dynamic random access memory applications,” Appl. Phys. Lett. 60, 1022 (1992).
28. L. A. Bursill, and K. G. Brooks, “Crystallization of sol-gel derived lead-zirconate-titanate thin films in argon and oxygen atmospheres,” J. Appl. Phys. 75, 4501 (1994).
29. B. Yang, T. K. Song, S. Aggarwai, and R. Ramesh, “Low voltage performance of Pb(Zr,Ti)O3 capacitors through donor doping,” Appl. Phys. Lett. 71, 3578 (1997).
30. J. Lee, S. Esayan, A. Safari, and R. Ramesh, “Effect of ultraviolet light on fatigue of lead zirconate titianate thin-film capacitors,” Appl. Phys. Lett. 65, 254 (1994).
31. X. Du, and I.-W. Wang, “Model experiment on fatigue of Pb(Zr0.53Ti0.47)O3 ferroelectric thin films,” Appl. Phys. Lett. 72, 1923 (1998).
32. K. Tagantsev, I. Stolichnov, E. L. Colla, and N. Setter, “Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features,” J. Appl. Phys. 90, 1387 (2001).
33. C.-C. Yang, M.-S. Chen, T.-J. Hong, C.-M. Wu, J.-M. Wu, and T.-B. Wu, “Preparation of (100)-oriented metallic LaNiO3 thin films on Si substrates by radio frequency magnetron sputtering for the growth of textured Pb(Zr0.53Ti0.47)O3,” Appl. Phys. Lett. 66, 2643 (1995).
34. M.-S. Chen, T.-B. Wu, and J.-M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films,” Appl. Phys. Lett. 68, 1430 (1996).
35. M. Madhukar, S. Aggarwai, A. M. Dhote, R. Ramesh, A. Kirshnan, D. Keeble, and E. Poindexter, “Effect of oxygen stoichiometry on the electrical properties of LaSrCoO3 electrodes,” J. Appl. Phys. 81, 3543 (1997).
36. Y. K. Wang, T. Y. Tseng, and Pang Lin, “Enhanced ferroelectric properties of Pb(Zr0.53Ti0.47)O3 thin films on SrRuO3/Ru/SiO2/Si substrates,” Appl. Phys. Lett. 80, 3790 (2002).
37. S.-Y. Chen and V.-C. Lee, “Aging behavior and recovery of polarization in Sr0.8Bi2.4Ta2O9 thin films,” J. Appl. Phys. 87, 3050 (2000).
38. S.-Y. Chen and V.-C. Lee, “Effect of lead additive on the ferroelectric properties and microstructure of SrxPbyBi2zTa2O9 thin films,” J. Appl. Phys. 87, 8024 (2000).
39. M. Miyayama and I.-S. Yi, “Electrical anisotropy in single crystals of Bi-layer structured ferroelectrics,” Ceramics International 26, 529 (2000).
40. S. K. Kim, M. Miyayama, and H. Yanagida, “Electrical anisotropy and plausible explanation for dielectric anomaly of Bi4Ti3O12 single crystal,” Materials Research Bulletin 31, 121 (1996).
41. S. K. Kim, M. Miyayama, and H. Yanagida, “Complex impedance and modulus analysis on electrical anisotropy of layer-structured BaBi4Ti4O15 single crystal in paraelectric phase,” Journal of the Ceramic Society of Japan 103, 315 (1995).
42. S. K. Kim, M. Miyayama, and H. Yanagida, “Electrical anisotropy of BaBi4Ti4O15 single crystal,” Journal of the Ceramic Society of Japan 8, 722 (1994).
43. K. Amanuma, T. Hase, and Y. Miyasak, “Preparation and ferroelectric properties of SrBi2Ta2O9 thin films,” Appl. Phys. Lett. 66, 221 (1995).
44. R. Dat, J. K. Lee, O. Auciello, and A. I. Kingon, “Pulsed laser ablation synthesis and characterization of layered Pt/SrBi2Ta2O9/Pt ferroelectric capacitors with practically no polarization fatigue,” Appl. Phys. Lett. 67, 572 (1995).
45. T. Li, Y. Zhu, S. B. Desu, C.-H. Peng, and M. Nagata, “Metalorganic chemical vapor deposition of ferroelectric SrBi2Ta2O9 thin films,” Appl. Phys. Lett. 68, 616 (1996).
46. B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, “Lanthanum-substituted bismuth titanate for use in non-volatile memories,” Nature (London) 401, 682 (1999).
47. S. Y. Wu, “A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor,” IEEE Trans. Electron Devices, 499 (1974).
48. S. Y. Wu, “Memory retention and switching behavior of metal-ferroelectric-semiconductor transistors,” Ferroelectrics 11, 379 (1976).
49. Y. Shichi, S. Tanimoto, T. Goto, K. Kuroiwa, and Y. Tarui, “Interaction of PbTiO3 films with Si substrate,” Jpn. J. Appl. Phys. 33, 5172 (1994).
50. T. Hirai, K. Teramoto, T. Nishi, T. Goto, and Y. Tarui, “Formation of metal/ferroelectric/insulator/semiconductor structure with a CeO2 buffer layer,” Jpn. J. Appl. Phys. 33, 5219 (1994).
51. T. Hirai, K. Teramoto, K. Nagashima, H. Koike, and Y. Tarui, “Characterization of metal/ferroelectric/insulator/semiconductor structure with a CeO2 buffer layer,” Jpn. J. Appl. Phys. 34, 4163 (1995).
52. M. H. Yeh, K. S. Liu, Y. C. Ling, J. P. Wang, and I. N. Lin, “The growth behavior of Pb0.95La0.05(Zr0.7Ti0.3)0.9875O3 films on silicon substrates synthesized by pulsed laser deposition,” J. Appl. Phys. 77, 5335(1995).
53. E. Tokumitsu, K. Itani, B. K. Moon, and H. Ishiwara, “Crystalline quality and electrical properties of PbZrxTi1-xO3 thin films prepared on SrTiO3-covered Si substrates,” Jpn. J. Appl. Phys. 34, 5202 (1995).
54. I. Sakai, E. Tokumitu, and H. Ishiwara, “Preparation and characterization of PZT thin films on CeO2(111)/Si(111) structures,” Jpn. J. Appl. Phys. 35, 4987 (1996).
55. E. Tokumitsu, R. I. Nakamura, and H. Ishiwara, “Nonvolatile memory operations of metal-ferroelectric-insulator-semiconductor (MFIS) FET’s using PLZT/STO/Si(100) structures,” IEEE Electron Device Lett. 18, 160 (1997).
56. B. E. Park, I. Sakai, E. Tokumitsu, and H. Ishiwara, “Hysteresis characteristics of vacuum-evaporated ferroelectric PbZr0.4Ti0.6O3 films on Si(111) substrates using CeO2 buffer layers,” Appl. Surf. Sci. 117/118, 423 (1997).
57. B. E. Park, S. Shouriki, E. Tokumitsu, and H. Ishiwara, “Fabrication of PbZrxTi1-xO3 films on Si structures using Y2O3 buffer layers,” Jpn. J. Appl. Phys. 37, 5145 (1998).
58. E. Tokumitsu, D. Takahashi, and H. Ishiwara, “Characterization of metal-ferroelectric-(metal-)insulator-semiconductor (MF(M)IS) structures using (Pb,La)(Zr,Ti)O3 and Y2O3 films,” Jpn. J. Appl. Phys. 39, 5456 (2000).
59. J. Yu, Z. Hong, W. Zhou, G. Cao, J. Xie, and X. Li, “Formation and characteristics of Pb(Zr,Ti)O3 field-effect transistor with a SiO2 buffer layer,” Appl. Phys. Lett. 70, 490 (1997).
60. C. Byun, Y. I. Kim, W. J. Lee, and B. W. Lee, “Effect of a TiO2 buffer layer on the C-V properties of Pt/PbTiO3/TiO2/Si structure,” Jpn. J. Appl. Phys. 36, 5588 (1997).
61. N. A. Basit, H. K. Kim, and J. Blachere, “Growth of highly oriented Pb(Zr,Ti)O3 films on MgO-buffered oxidized Si substrates and its application to ferroelectric nonvolatile memory field-effect transistors,” Appl. Phys. Lett. 73, 3941 (1998).
62. D. J. Won, C. H. Wang, and D. J. Choi, “Characteristics of metal/ferroelectric/insulator/semiconductor using La2O3 thin film as an insulator,” Jpn. J. Appl. Phys. 40, L1235 (2001).
63. M. Liu, H. K. Kim, and J. Blachere, “Lead-zirconate-titanate-based metal/ferroelectric/insulator/semiconductor structure for nonvolatile memories,” J. Appl. Phys. 91, 5985 (2002).
64. K. Sugibuchi, Y. Kurogi, and N. Endo, “Ferroelectric field-effect memory device using Bi4Ti3O12 film,” J. Appl. Phys. 46, 2877 (1975).
65. H. Buhay, S. Sinharoy, W. H. Kasner, and M. H. Francombe, “Pulsed laser deposition and ferroelectric characterization of bismuth titanate films,” Appl. Phys. Lett. 58, 1470 (1991).
66. K. Nagashima, T. Hirai, H. Koike, Y. Fujisaki, and Y. Tarui, “Characteristics of metal/ferroelectric/insulator/semiconductor structure using SrBi2Ta2O9 as the ferroelectric material,” Jpn. J. Appl. Phys. 35, L1680 (1996).
67. K. Nagashima, T. Hirai, H. Koike, Y. Fujisaki, T. Hase, Y. Miyasaka, and Y. Tarui, “Effect of reducing process temperature for preparing SrBi2Ta2O9 in a metal/ferroelectric/semiconductor structure,” Jpn. J. Appl. Phys. 36, L619 (1997).
68. T. Hirai, Y. Fujisaki, K. Nagashima, H. Koike, and Y. Tarui, “Preparation of SrBi2Ta2O9 film at low temperatures and fabrication of a metal/ferroelectric/insulator/semiconductor field effect transistor using Al/SrBi2Ta2O9/CeO2/Si(100) structures,” Jpn. J. Appl. Phys. 36, 5908 (1997).
69. Y. T. Kim and D. S. Shin, “Memory window of Pt/SrBi2Ta2O9/CeO2/SiO2/Si structure for metal ferroelectric insulator semiconductor field effect transistor,” Appl. Phys. Lett. 71, 3507 (1997).
70. H. N. Lee, M. H. Lim, Y. T. Kim, T. S. Kalkur, and S. H. Choh, “Characteristics of metal/ferroelectric/insulator/semiconductor field effect transistors using a Pt/SrBi2Ta2O9/Y2O3/Si structure,” Jpn. J. Appl. Phys. 37, 1107 (1998).
71. Y. T. Kim, D. S. Shin, Y. K. Park, and I. H. Choi, “Effects of Bi-Pt alloy on electrical characteristics of Pt/SrBi2Ta2O9/CeO2/Si ferroelectric gate structure,” J. Appl. Phys. 86, 3387 (1999).
72. S. K. Lee, Y. T. Kim, and S. I. Kim, “Effects of coercive voltage and charge injection on memory windows of metal-ferroelectric-semiconductor and metal-ferroelectric-insulator-semiconductor gate structures,” J. Appl. Phys. 91, 9303 (2002).
73. Y. Oishi, Y. Matsumuro, and M. Okuyama, “Preparation and basic properties of SrBi2Ta2O9 films,” Jpn. J. Appl. Phys. 36, 5896 (1997).
74. J. P. Han and T. P. Ma, “SrBi2Ta2O9 memory capacitor on Si with a silicon nitride buffer,” Appl. Phys. Lett. 72, 1185 (1998).
75. T. Kijima and H. Matsunaga, “Preparation of Bi4Ti3O12 thin film on Si(100) substrate using Bi2SiO5 buffer layer and its electric characterization,” Jpn. J. Appl. Phys. 37, 5171 (1998).
76. K. J. Choi, W. C. Shin, J. H. Yang, and S. G. Yoon, “Metal/ferroelectric/insulator/semiconductor structure of Pt/SrBi2Ta2O9/YMnO3/Si using YMnO3 as the buffer layer,“ Appl. Phys. Lett. 75, 722 (1999).
77. S. B. Xiong and S. Sakai, “Memory properties of SrBi2Ta2O9 thin films prepared on SiO2/Si substrates,” Appl. Phys. Lett. 75, 1613 (1999).
78. W. J. Lee, C. H. Shin, C. R. Cho, J. S. Lyu, B. W. Kim, B. G. Yu, and K. I. Cho, “Electrical properties of SrBi2Ta2O9/insulator/Si structures with various insulators,” Jpn. J. Appl. Phys. 38, 2039 (1999).
79. M. Noda, Y. Matsumuro, H. Sugiyama, and M. Okuyama, “A fatigue-tolerant metal-ferroelectric-oxide-semiconductor structure with large memory window using Sr-deficient and Bi-excess Sr0.7Bi2+yTa2O9 ferroelectric films prepared on SiO2/Si at low temperature by pulsed laser deposition,” Jpn. J. Appl. Phys. 38, 2275 (1999).
80. M. Noda, Y. Adachi, H. Sugiyama, T. Nakaiso, and M. Okuyama, “Low-temperature preparation of SrxBi2+yTa2O9 ferroelectric thin film by pulsed laser deposition and its application to a metal-ferroelectric-nitride-oxide-semiconductor structure,” Appl. Phys. A 71, 113 (2000).
81. H. Sugiyama, T. Nakaiso, Y. Adachi, M. Noda, and M. Okuyama, “An improvement C-V characteristics of metal-ferroelectric-insulator-semiconductor structure for ferroelectric gate FET memory using a silicon nitride buffer layer,” Jpn. J. Appl. Phys. 39, 2131 (2000).
82. T. Yamaguchi, M. Koyama, A. Takashima, and S. I. Takagi, “Improvement of memory characteristics of metal-ferroelectrics/insulating buffer layer/semiconductor structures by combination of pulsed laser deposited SrBi2Ta2O9 films and ultra-thin SiN buffer layers,” Jpn. J. Appl. Phys. 39, 2058 (2000).
83. B. E. Park and H. Ishiwara, “Electrical properties of LaAiO3/Si and Sr0.8Bi2.2Ta2O9/LaAIO3/Si structures,” Appl. Phys. Lett. 79, 806 (2001).
84. E. Rokuta, Y. Hotta, T. Kubota, H. Tabata, H. Kobayashi, and T. Kawai, “Effects of an ultrathin silicon oxynitride buffer layer on electrical properties of ferroelectric Bi4Ti3O12 thin films on p-Si(100) surfaces,“ Appl. Phys. Lett. 79, 403 (2001).
85. E. Rokuta, J. H. Choi, Y. Hotta, H. Tabata, H. Kobayashi, and T. Kawai, “Interface control of Bi4Ti3O12 film growth on Si(100) by use of an ultrathin silicon oxynitride buffer layer,” Appl. Phys. Lett. 79, 1858 (2001).
86. T. Choi, Y. S. Kim, C. W. Yang, and J. Lee, “Electrical properties of Bi3.25La0.75Ti3O12 thin films on Si for a metal-ferroelectric-insulator-semiconductor structure,” Appl. Phys. Lett. 79, 1516 (2001).
87. J. F. Scott and C. A. Paz De Araujo, “Ferroelectric memories,” Science 246, 1400 (1989).
88. C. A. Paz De Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and J. F. Scott, “Fatigue-free ferroelectric capacitors with platinum electrodes,” Nature (London) 374, 627 (1995).
89. I. K. Yoo and S. B. Desu, “Electrochemical models of failure in oxide perovskites”, Integrated Ferroelectrics 3, 365 (1993).
90. T. Ogawa, A. Senda, and T. Kasnami, “Controlling the crystal orientations of lead titanate thin films”, Jpn. J. Appl. Phys. 30, 2145 (1991).
91. W. L. Warren, D. Dimos, B. A. Tuttle, G. E. Pike, R. W. Schwartz, P. J. Clews, and D. C. Mclntyre, “Polarization suppression in Pb(Zr,Ti)O3 thin films”, J. Appl. Phys. 77, 6695 (1995).
92. W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike, “Electronic domain pinning in Pb(Zr,Ti)O3 thin films and its role in fatigue”, Appl. Phys., Lett. 65, 1018 (1994).
93. D. Dimos, H. N. Al-Shareef, W. L. Warren, and B. A. Tuttle, “Photoinduced changes in the fatigue behavior of SrBi2Ta2O9 and Pb(Zr,Ti)O3 thin films”, J. Appl. Phys. 80, 1682 (1996).
94. C. J. Kim, D. S. Yoon, J. S. Lee, and C. G. Choi, “Electrical characteristics of (100), (111), and randomly aligned lead zirconate titanate thin films”, J. Appl. Phys. 76, 7478 (1994).
95. X-H. Du, U. Belegundu, and K. Uchino, “Crystal orientation dependence of piezoelectric properties in lead zirconate titanate: theoretical expectation for thin films”, Jpn. J. Appl. Phys. 36, 5580 (1997).
96. K. Brooks, R. Klissurska, P. Moeckli, and N. Setter, “Investigation of Pb(Zr0.70Ti0.30)O3 thin films of different textures on Ti/Pt electrodes”, Microelectron. Eng. 29, 293 (1995).
97. B. A. Tuttle, J. A. Voigt, D. C. Goodnow, D. L. Lamppa, T. J. Headley, M. O. Eatough, G. Zender, R. D. Nasby, and S. M. Rodgeres, “Highly oriented, chemically prepared Pb(Zr,Ti)O3 thin films”, J. Am. Ceram. Soc. 76, 1537 (1993).
98. Y. Liu and P. P. Phule, “Nucleation- or growth-controlled orientation development in chemically derived ferroelectric lead zirconate titanate (Pb(ZrxTi1-x)O3, x=0.4) thin films”, J. Am. Ceram. Soc. 79, 495 (1996).
99. E. G. Lee, J. S. Park, and J. G. Lee, “Ferroelectric properties of crystalline oriented Pb(Zr,Ti)O3 thin films prepared by sol-gel technique”, Thin Solid Films 312, 228 (1998).
100. V. Bornand, S. Trolier-Mckinstry, K. Takemura, and C. A. Randall, “Orientation dependence of fatigue behavior in relaxor ferroelectric-PbTiO3 thin films”, J. Appl. Phys. 87, 3965 (2000).
101. J. F. Scott and M. Dawber, “Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics”, Appl. Phys. Lett. 76, 3801 (2000).
102. K. D. Budd, S. K. Dey, and D. A. Payne, “Sol-gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films”, Br. Ceram. Proc. 36, 107 (1985).
103. S. Y. Chen and I-W. Chen, “Texture development, microstructure evolution, and crystallization of chemically derived PZT thin films”, J. Am. Ceram. Soc. 81, 97 (1998).
104. S. A. Myers and L. N. Chapin, “Microstructural characterization of ferroelectric thin films for nonvolatile memory applications”, Mat. Res. Soc. Symp. Proc. 200, 231 (1990).
105. D. V. Taylor and D. Damjanovic, “Piezoelectric properties of rhombohedral Pb(Zr,Ti)O3 thin films with (100), (111), and random crystallographic orientation”, Appl. Phys. Lett. 76, 1615 (2000).
106. T. Mihara, H. Watanabe, and C. A. PAZ DE Araujo, “Characteristic change due to polarization fatigue of sol-gel ferroelectric Pb(Zr0.4Ti0.6)O3 thin-film capacitors”, Jpn. J. Appl. Phys. 33, 5281 (1994).
107. H. M. Duiker, P. D. Batra, J. Scott, C. A. Paz De Araujo, B. M. Melnick, J. D. Cuchiaro, and L. D. McMillam, “Fatigue and switching in ferroelectric memories: theory and experiment”, J. Appl. Phys. 68, 5783 (1990).
108. K. Tominaga, A. Shirayanagi, T. Takagi, and M. Okada, “Switching and fatigue characteristics of (Pb,La)(Zr,Ti)O3 thin films by metalorganic chemical vapor deposition”, Jpn. J. Appl. Phys. 32, 4082 (1993).
109. M. Takahashi, “Space charge effect in lead zirconate titanate ceramics caused by the addition of impurities”, Jpn. J. Appl. Phys. 9, 1236 (1970).
110. W. L. Warren, B. A. Tuttle, and D. Dimos, “Ferroelectric fatigue in perovskite oxides”, Appl. Phys. Lett. 67, 1496 (1995).
111. S. B. Desu, C. H. Peng, L. Kammerdiner, and P. J. Schuele, “Size effects in sputtered PZT thin films”, Mat. Res. Soc. Symp. Proc. 200, 319 (1990).
112. X.-H. Du, J. Z. Zheng, U. Belegundu, and K. Uchino, “Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary”, Appl. Phys. Lett. 72, 2421 (1998).
113. S. L. Miller and P. J. MacWhorter, “Physics of the ferroelectric nonvolatile memory field effect transistor,” J. Appl. Phys. 72, 5999 (1992).
114. A. Chin, M. Y. Yang, S. B. Chen, C. L. Sun, and S. Y. Chen, “Fast write time and long retention 1T memory,” 59th Device Research Conference (DRC), 18 (2001).
115. N. W. Jang, Y. J. Song, H. H. Kim, D. J. Jung, B. J. Koo, S. Y. Lee, S. H. Joo, K. M. Lee, and K. Kim, “A novel 1T1C capacitor structure for high density FRAM,” in Symp. on VLSI Technology, 34 (2000).
116. A. Chin, M. Y. Yang, C. L. Sun, and S. Y. Chen, “Stack gate PZT/Al2O3 one transistor ferroelectric memory,” IEEE Electron Device Lett. 22, 336 (2001).
117. M. Y. Yang, S. B. Chen, A. Chin, C. L. Sun, B. C. Lan, and S. Y. Chen, “One-transistor PZT/Al2O3, SBT/Al2O3 and BLT/Al2O3 stacked gate memory,” Tech. Dig. Int. Electron Devices Meeting (IEDM) (Washington, DC, USA), 36_03.1 (2001).
118. C. L. Sun, S. Y. Chen, M. Y. Yang, and A. Chin, “Characteristics of Pb(Zr0.53Ti0.47)O3 on metal and Al2O3/Si substrates,” J. Electrochem. Soc. 148, F203 (2001).
119. J. Senzaki, O. Mitsunaga, T. Uhcida, T. Ueno, and K. Kuroiwa, “Fabrication of c-axis oriented Pb(Zr,Ti)O3 thin films on Si(100) substrates using MgO intermediate layer,” Jpn. J. Appl. Phys. 35, 4195 (1996).
120. Y. Lin, B. R. Zhao, H. B. Peng, B. Xu, H. Chen, F. Wu, H. J Tao, Z. X. Zhao, and J. S. Chen, “Growth and polarization features of highly (100) oriented Pb(Zr0.53Ti0.47)O3 films on Si with ultrathin SiO2 buffer layer,” Appl. Phys. Lett. 73, 2781 (1998).
121. A. Chin, W. J. Chen, T. Chang, R. H. Kao, B. C. Lin, C. Tsai, and J. C.-M. Huang, “Thin oxides with in situ native oxide removal [n-MOSFETs],” IEEE Electron Device Lett. 18, 417 (1997).
122. Y. H. Wu, W. J. Chen, S. L. Chang, A. Chin, S. Gwo, and C. Tsai, “Improved electrical characteristics of CoSi2 using HF-vapor pretreatment,” IEEE Electron Device Lett. 20, 200 (1999).
123. S. Y. Chen and C. L. Sun, “Ferroelectric characteristics of oriented Pb(Zr1-xTix)O3 films,” J. Appl. Phys. 90, 2970 (2001).
124. E. Sato, Y. Huang, M. Kosec, A. Bell, and Nava Setter, “Lead loss, preferred orientation, and the dielectric properties of sol-gel prepared lead titanate thin films,” Appl. Phys. Lett. 65, 2678 (1994).
125. J. F. Scott, “Ferroelectric memories,” Phys. World 8, 46 (1995).
126. W. Wu, K. H. Wong, C. L. Mak, C. L. Choy, and Y. Z. Zhang, “Epitaxial Pb(Zr0.52Ti0.48)O3/La0.35Nd0.35Sr0.3MnO3 heterostructures for fabrication of ferroelectric field-effect transistor,“ J. Appl. Phys. 88, 2068 (2000).
127. D. Bao, N. Mizutani, X. Yao, and L. Zhang, “Structural, dielectric, and ferroelectric properties of compositionally graded (Pb,La)TiO3 thin films with conductive LaNiO3 bottom electrodes,” Appl. Phys. Lett. 77, 1041 (2000).
128. F. Y. Chen, Y. K. Fang, M. J. Sun, and J. R. Chen, “Experimental characterization and modeling of a ferroelectric bulk channel field effect transistor with nonvolatile memory characteristics,” Appl. Phys. Lett. 69, 812 (1996).
129. S. H. Kim, D. J. Kim, J. P. Maria, A. I. Kingon, S. K. Streiffer, J. Kim, O. Auciello, and A. R. Krauss, “Influence of Pt heterostructure bottom electrodes on SrBi2Ta2O9 thin film properties,” Appl. Phys. Lett. 76, 496 (2000).
130. J. M. Schwartz, L. F. Francis, and L. D. Schmidt, “Microstructural characterization of sol-gel derived lead titanate deposited on silica”, Mat. Res. Soc. Symp. Proc., 281 (1993).
131. K. R. Udayakumar, P. J. Schuele, J. Chen, S. B. Krupanidhi, and L. E. Cross, “Thickness-dependent electrical characteristics of lead zirconate titanate thin films,” J. Appl. Phys. 77, 3981 (1995).
132. F. K. Chai, J. R. Brews, R .D. Schrimpf, and D. P. Birnie Ш, “Domain switching and spatial dependence of permittivity in ferroelectric thin films,” J. Appl. Phys. 82, 2505 (1997).
133. D. Dimos, R. W. Schwartz, and S. J. Lockwood, “Control of leakage resistance in Pb(Zr,Ti)O3 thin-films by donor doping,” J. Am. Ceram. Soc. 77, 3000 (1994).
134. S. Y. Wu, “Polarization reversal and film structure in ferroelectric Bi4Ti3O12 films deposited on silicon,” J. Appl. Phys. 50, 4314 (1979).
135. N. Maffei and S. B. Krupanidhi, “Electrical characteristics of excimer laser ablated bismuth titanate films on silicon,” J. Appl. Phys. 72, 3617 (1992).
136. C. L. Sun, S. Y. Chen, S. B. Chen, and A. Chin, “Effect of annealing temperature on physical and electrical properties of Bi3.25La0.75Ti3O12 thin films on Al2O3 buffered Si,” Appl. Phys. Lett. 80, 1984 (2002).
137. W. Zhu, Z. Q. Liu, W. Lu, M. S. Tse, H. S. Tan, and X. Yao, “A systematic study on structural and dielectric properties of lead zirconate titanate/(Pb,La)(Zr(1—x)Ti(x))O3 thin films deposited by metallo-organic decomposition technology,” J. Appl. Phys. 79, 4283 (1996).
138. A. J. Moulson and J. M. Herbert, Electroceramics, Chapman & Hall Press, London, 265 (1990).
139. M. Klee, R. Eusemann, R. Waser, W. Brand, and H. V. Hal, “Processing and electrical properties of Pb(ZrxTi1—x)O3 (x=0.2—0.75) films: Comparison of metallo-organic decomposition and sol-gel processes,” J. Appl. Phys. 72, 1566 (1992).
140. S. Kobayashi, K. Amanuma, H. Mori, N. Kasai, Y. Maejima, A. Seike, N. Tanabe, T. Tatsumi, J. Yamada, T. Miwa, H. Koike, H. Hada, and H. Toyoshima, “64 Kbit CMVP FeRAM macro with reliable retention/imprint characteristics,” Tech. Dig. Int. Electron Devices Meet., 783 (2000).
141. D. Jung, H. Kim, Y. Song, N. Jang, B. Koo, S. Lee, S. Park, Y. Park, and K. Kim, “A novel Ir/IrO2/Pt-PZT-Pt/IrO2/Ir capacitor for a highly reliable mega-scale FRAM,” Tech. Dig. Int. Electron Devices Meet., 801 (2000).
142. C. K. Kwok and S. B. Desu, “Formation kinetics of PbZrxTi1-xO3 thin films,” J. Mater. Res. 8, 339 (1993).
143. N. Floquet, J. Hector, and P. Gaucher, “Correlation between structure, microstructure, and ferroelectric properties of PbZr0.2Ti0.8O3 integrated film: Influence of the sol-gel process and the substrate,” J. Appl. Phys. 84, 3815 (1998).
144. Y. Liu, C. N. Wu, and T. Watanabe, “Preparation and characterization of preferred oriented PZT films on amorphous substrates,” J. Mater. Sci. 34, 4129 (1999).
145. Y. Hou, X. H. Wu, H. Wang, M. Wang, and S. X. Shang, “Bi3.25La0.75Ti3O12 thin films prepared on Si (100) by metalorganic decomposition method,” Appl. Phys. Lett. 78, 1733 (2001).
146. M. Sedlar and M. Sayer, “Study of electrical properties of rapid thermally processed lead iron niobate films synthesized by a sol gel method,” J. Appl. Phys. 80, 372 (1996).
147. T. Watanabe, H. Funakubo, and K. Saito, “Ferroelectric property of epitaxial Bi4Ti3O12 films prepared by metalorganic chemical vapor deposition,” J. Mater. Res. 16, 303 (2001).
148. Y. Noguchi and M. Miyayama, “Large remanent polarization of vanadium-doped Bi4Ti3O12,” Appl. Phys. Lett. 78, 1903 (2001).
149. Y. Taur and T. H. Ning, Fundamental Modern VLSI Devices, Cambridge University Press, (1998) p. 286.
150. Y. Noguchi, M. Miyayama, and T. Kudo, “Ferroelectric properties of intergrowth Bi4Ti3O12—SrBi4Ti4O15 ceramics,” Appl. Phys. Lett., 77, 3639 (2000).
151. X. Du and I-W. Chen, “Ferroelectric thin films of bismuth-containing layered perovskites: Part I, Bi4Ti3O12,” J. Am. Ceram. Soc. 81, 3253 (1998).
152. S. T. Tay, X. H. Jiang, C. H. A. Huan, A. T. S. Wee, and R. Liu, “Influence of annealing temperature on ferroelectric properties of SrBi2Ta2O9 thin films prepared by off-axis radio frequency magnetron sputtering,” J. Appl. Phys. 88, 5928 (2000).
153. Y. Fujisaki, T. Kijima, and H. Ishiwara, “High-performance metal—ferroelectric—insulator—semiconductor structures with a damage-free and hydrogen-free silicon—nitride buffer layer,” Appl. Phys. Lett., 78, 1285 (2001).
154. T. P. Ma and J. P. Han, “Why is nonvolatile ferroelectric memory field-effect transistor still elusive,” IEEE Electron Device Lett. 23, 386 (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊