跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 20:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳冠吉
研究生(外文):Guan-Ji Chen
論文名稱:應用在低雜訊上之高三階交叉點磷化銦鎵/砷化銦鎵假晶式高電子遷移率電晶體
論文名稱(外文):An InGaP/InGaAs PHEMT with High IP3 for Low Noise Application
指導教授:張翼張翼引用關係
指導教授(外文):Edward Y. Chang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:39
中文關鍵詞:假晶式高電子遷移率電晶體低雜訊三階交叉點磷化銦鎵砷化銦鎵
外文關鍵詞:PHEMTlow noiseIP3InGaPInGaAs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是研究及製作出高線性度及低雜訊之磷化銦鎵高電子遷移率電晶體。此元件使用磷化銦鎵為蕭特基層(Schottky layer)之材料,利用磷化銦鎵之高能間隙特性,以降低元件之漏電流及雜訊;在阻隔層(Spacer)使用砷化鋁鎵以提高元件之電子遷移率,並利用兩層矽平面摻雜方式來增加元件電流分佈之均勻性,亦使得元件具有良好之線性度。
本論文所製作出之磷化銦鎵高電子遷移率電晶體,閘極長度為0.25μm。閘極寬度為160μm之直流特性具有240 mA/mm的飽和電流密度,傳導率(Transconductance)為414.2 mS/mm,截止電壓(Pinch-off voltage)為-0.8V,閘極-汲極間的崩潰電壓為15.6V,元件之截止頻率(fT )為70 GHz,最大震盪頻率(fmax)為210 GHz;而閘極寬度為300μm之直流特性則具有226 mA/mm的飽和電流密度,傳導率為394 mS/mm,截止電壓為-0.9V,閘極-汲極間的崩潰電壓為14.4V。
此結構之元件具有低雜訊之特性,閘極寬度為160μm之元件在頻率12 GHz時最低雜訊指數(Fmin)為0.45dB,且具有良好之線性度,在頻率6 GHz偏壓點汲極-源極間電壓為2.4V時輸出三階交叉點(OIP3) 可達到28.1 dBm,而此時輸入三階交叉點(IIP3) 則為7 dBm;由此驗證,此結構之元件,為一低雜訊及高線性度之高頻元件。

The purpose of this dissertation is to develop the high linearity and low noise high electron mobility transistors for wireless application. The device structure design has the following features: First, high band-gap InGaP material was used as the Schottky layer to reduce the leakage current and noise figure of the devices. Second, AlGaAs was used as the spacer layer to increase the device electron mobility. Third, two Si δ-doped layers above and below the InGaAs channel region in the structure were used to increase the uniformity of the distribution of the electric current, and improve the linearity of the devices.
In this study, the InGaP/InGaAs PHEMT developed with gate length of 0.25μm and gate width of 160μm had the following DC characteristics: Idss=240 mA/mm, gm=414.2 mS/mm, pich-off voltage=-0.8V, and gate-to-drain breakdown voltage BVgd=15.6V. The devices also demonstrated good RF characteristics with fT=70 GHz, and fmax=210 GHz.
The devices also exhibited excellent low noise characteristics. The 160μm HEMT had a noise figure of 0.45dB at 12 GHz, and demonstrated high linearity characteristics. The OIP3 and the IIP3 at 6 GHz and bias at Vds=2.4V were 28.1 dBm and 7 dBm, respectively. From the results of the RF measurement, the PHEMT developed is a high-frequency low noise device with excellent high linearity and is applicable for high frequency wireless applications.

Chapter 1 Introduction
Chapter 2 Indices of device performance
2-1 Device model
2-2 Noise figure (NF)
2-3 Linearity
2-4 Breakdown voltage (BVgd)
2-4-1 Physics for device breakdown
2-4-2 Analytic model for design
2-4-3 Improvement of the breakdown voltage
2-5 Extrinsic transconductance (gm)
2-6 Unit current gain cut-off frequency (fT) and
maximum frequency of oscillation (fmax)
Chapter 3 Experimental
3-1 Device structure
3-2 Device fabrication process
3-2-1 Wafer cleaning
3-2-2 Device isolation
3-2-3 Ohmic contact formation
3-2-4 Recess and gate formation
3-2-5 Device passivation
3-2-6 Air-bridge plating
Chapter 4 Instruments & Measurements
4-1 Instruments
4-2 DC characteristics measurement
4-2-1 Contact properties
4-2-2 Current-voltage curves
4-2-3 Pinch-off voltage (VPO) & Breakdown
voltage (VB)
4-2-4 Extrinsic transconductance (gm)
4-3 RF characteristics measurement
4-3-1 Scattering parameters (S-parameters)
4-3-2 Noise figure (NF)
4-3-3 Third-order intercept point (IP3)
Chapter 5 Results and Discussion
5-1 DC characteristics of the InGaP PHEMTs
5-2 RF characteristics of the InGaP PHEMTs
Chapter 6 Conclusions

[1] T. Mimura, S. Hiyamizu, T. Fujii and K. Nanbu, “A new field-effect transistor with selectively doped GaAs/n-AlxGa1-xAs Heterojunctions, ” in Jap. J. Appl. Phys. 19, pp. L225-L227, 1980.
[2] H. K. Huang, Y.H.Wang, “Super Low Noise InGaP Gated PHEMT,” in IEEE GaAs Didest, pp. 237-240, 2001.
[3] Y.Kwon, M. Tutt, G. I. Ng, D. Pavlidis, T. Brock and P. Marsh, “Gate-Recess and Device Geometry Impact on the Microwave Performance and Noise Properties of 0.1 μm InGaAs HEMT’s.”
[4] M.Chertouk, F.Stenhagen, H.Massler, W.H. Haydl, K. K hler and G. Weimann, “Optimised gate-drain feedback capacitance of W-band high gain passivated 0.15μm InAlAs/InGaAs HEMTs.”
[5] Y.Kwon, M. Tutt, G. I. Ng, D. Pavlidis, T. Brock and P. Marsh, “Gate-Recess and Device Geometry Impact on the Microwave Performance and Noise Properties of 0.1 μm InGaAs HEMT’s.”
[6] “Physics of Breakdown in InAlAs/n+-InGaAs Heterostructure Field-Effect Transistors”, IEEE Trans. On Electron Device, vol.41, no.12, December 1994.
[7] “Impact Ionization and light Emission in InAlAs/InGaAs Heterostructure Field-Effect Transistors”, IEEE Trans. On Electron Device, vol.42, no.4, April 1995.
[8] “High breakdown voltage and high fmax InAlAs/InGaAs HEMTs on GaAs,” 10th Intern. Conf. on Indium Phosphide and Related Materials.
[9] J. Tardy, X. Letartre, P.Viktorovitch, M.Gendry, D.A.Thompson and J.G.Simmons, “Spacer Design to Improve the Breakdown Voltage of InAlAs-InGaAs HEMT’s.”
[10] Sandeep R. Bahl, Michael H. Leary, and Jesús A. del Alamo, “Mesa-sidewall Gate Leakage in InAlAs/InGaAs Heterostructure Field-Effect Transistors”, IEEE Trans. On Electron Device, vol.39, no.9, September 1992.
[11] H.K.Hung, “Super Low Noise InGaP Gated PHEMT,” IEEE EDL, vol.23, no.2, February 2002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top