(3.235.25.169) 您好!臺灣時間:2021/04/20 03:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉昆和
研究生(外文):Kun-ho Liu
論文名稱:鋅-氧化鋅奈米晶體之熱還原成長製程與物理特性研究
論文名稱(外文):Growth process and physical characteristics of Zn-ZnO nanocrystals via thermal reduction
指導教授:陳三元陳三元引用關係
指導教授(外文):San-Yuan Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:93
中文關鍵詞:氧化鋅熱蒸發與沉積製程特殊多面體晶體空心結構
外文關鍵詞:ZnZnOThermal evaporation and condensation processPolygon prismatic nanocrystalsHollow structure
相關次數:
  • 被引用被引用:1
  • 點閱點閱:107
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用熱蒸發與沉積的製程,成功地在矽基板上生長出六方結構的鋅-氧化鋅特殊多面體奈米結構。一般而言,結晶相與成核的種子的控制,對於奈米晶體在成長開始時的本質形狀是很重要的,因此在實驗中,將含有金屬鋅離子的有機溶液先塗佈在基板上,並以此作為成核的種子。再利用熱蒸氣傳輸製程以氧化鋅粉末為成長源,並通入純氬氣,而在基板溫度為250℃下即可成長。結果發現,未作任何後段處理的鋅-氧化鋅多面體奈米結構其實是由六方結構的金屬鋅與外層氧化後的氧化鋅薄膜所組成。並且隨著根據不同的成長溫度與反應氣氛,發現鋅-氧化鋅多面體奈米結構會有形貌上的變化。同時進一步施予不同的熱處理來觀察此鋅-氧化鋅多面體奈米結構的形貌與結晶性。可以確定其成長機制應該是由金屬鋅與氧化鋅間無機的架橋機制而來。另外,這些特殊多面體奈米結構在光激發光光譜中顯示出微弱的紫外光發光特性,但是可以藉由後段的氣氛處理來改善其光激發光特性與結晶性。
Novel hierarchical polygon prismatic nano-structures of wurtzite Zn-ZnO have been successfully grown on silicon by thermal vapor transport and condensation method. Generally, the crystalline phase and control of the seeds at the nucleating stage are critical for directing the intrinsic shapes of nanocrystals at the initial time. Thus, in this work, the organic solvent with zinc chemical compound was first coated and used as seeds on the patterned substrate. Subsequently, it was grown by thermal vapor transport with ZnO powder at 250°C (substrate) in Ar atmosphere. The samples were characterized using X-ray diffraction, scanning and transmission electron microscopy, and photoluminescence spectroscopy. The as-synthesized Zn-ZnO polygon prismatic nano-structure consisted of hexagonal metallic nuclei (Zn) covered with an oxidation outer thin film (ZnO). Depending on different working temperature and reaction atmosphere, Zn- ZnO polygon prismatic structure having various morphologies can be developed. In order to recognize the growth mechanism of Zn-ZnO polygon prismatic structure and temperature effect, different heat-treatment were designed to observe the morphology and crystallization of Zn-ZnO polygon prismatic structure. The possible formation mechanism for the Zn-ZnO polygon prismatic crystal structure is identified and proposed as the Zn-ZnO mineral bridge mechanism. The non-perfect Zn-ZnO polygon prismatic structure shows weakly UV emission and strongly deep-level emission. However, the PL properties and crystallization of Zn-ZnO polygon prismatic nanocrystals could be improved by suitable post-treatment.
Chinese abstract………………………………………………...………... i
English abstract…..………………………..……………………………... ii
Acknowledgements...…...………………………………………………... iv
Contents…...……..……………………………………………………….…v
List of symbols………………….………………………………………… viii
Table captions………..………………………………………………….… x
Figure captions………………………………………………………….…xi
Chapter 1 Introduction…………………………………………………. 01
1-1 Introduction…………………………………………………………. 01
1-2 Motivation…………………………………………………………... 03
Chapter 2 Literature reviews………………………………………….. 04
2-1 Nanostructure……………………………………………………….. 04
2-2 Nanocrystal growth mechanism via thermal evaporation and condensation process…………………………………………….……… 05
2-2-1 Thermal evaporation and condensation process….………….. 05
2-2-2 Screw dislocation mechanism……………………………….. 05
2-2-3 Vapor-liquid-solid mechanism……….……………………… 06
2-2-4 Solution-liquid-solid mechanism……………………………. 07
2-2-5 Nanobelt growth model……………………………………… 07
2-3 Zinc oxide nanostructure……………………………….…………… 08
2-3-1 The synthesis of zinc oxide nanostructure……………………08
2-3-1-1 Zero-dimension nanostructure of zinc oxide…………... 08
2-3-1-2 One-dimension nanostructure of zinc oxide………….... 10
2-3-1-3 Particular nanostructure of zinc oxide…………………. 12
2-4 The luminescence mechanism of zinc oxide………………….…….. 13
2-4-1 UV emission…………………………………………………. 13
2-4-2 Green emission………………..…………………………….. 15
2-5 The crystal growth of zinc oxide………………..………………….. 16
Chapter 3 Experiment…………………………………….…………….. 19
3-1 Sample-preparation…………………………………………………. 19
3-1-1 Substrate……………………………………………………... 19
3-1-2 Source……………………………………….………………. 19
3-1-3 Low-vacuum tube furnace system………………..…………. 20
3-1-4 Thermal distributing and temperature gradient……………… 20
3-2 Experimental procedure…………………………………………….. 20
3-3 Characteristic measurements………………….…………………….. 21
3-3-1 Scanning electron microscope(SEM)……………………. 21
3-3-2 Transmission electron microscope(TEM)………..………. 22
3-3-3 X-ray diffraction analysis……………………………………. 22
3-3-4 Photoluminescence(PL)………………………………….. 22
3-3-5 Auger nano-probe electron Spectroscopy(AES)…….…… 22
Chapter 4 Low-temperature growth of Zn-ZnO polygon
prismatic nanocrystals.………………………………….………………. 23
4-1 Nucleation, growth, and agglomeration……….……………………. 23
4-2 Atmosphere treatment to stabilize the nanocrystal………………….. 24
Chapter 5 The Structure and morphology of the Zn-ZnO
polygon prismatic nanocrystals………………....…………………….. 28
5-1 Growth temperature effect…………………….…………………….. 28
5-2 Growth Time effect…………………………………………………..29
5-2-1 Lower temperature range……………………………………..30
5-2-2 higher temperature range………………………………….…. 31
5-3 The growth mechanism of the hollow structure…………………….. 32
Chapter 6 Physical Characterization of Zn-ZnO polygon prismatic hollow nanocrystals……………..…………………………... 34
6-1 XRD and SEM analysis under different atmosphere treatment…….. 34
6-2 AES analysis of the hollow structure……………………………….. 35
6-3 Photoluminescence analysis under different atmosphere treatment… 36
Chapter 7 Conclusion…………………………………………………. 38
Chapter 8 Prospective………………………………….……………... 40
Reference…………………………………………………………………... 41
Tables……………………………………………………………………….. 47
Figures……………………………………………………………………… 50
1. http:// oxide.rlem.titech.ac.jp/Kawasaki/ZnO/ZnO.htm
2. C. Klingshirn, “Properties of the electron-hole plasma in Ⅱ-Ⅵ seimconducor.” J. Cryst. Growth 117, 753, 1992.
3. Z. L. Wang, “Characterizing the Structure and Properties of Individual Wire-Like Nanoentities.” Adv. Mater. 12, 1295, 2000.
4. Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel Nanostructures of Functional Oxides Synthesised by Thermal Evaporation.” Adv. Mater. 13, pp.9-24, 2003.
5. G. W. Sears, “A mechanism of whisker growth.” Acta Metall. 3, 367, 1955.
6. Y. Wu and P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth.” J. Am. Chem. Soc. 123, 3165, 2001.
7. W. E. Buhro, T. J. Trentler, and K. M. Hickman, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth.” Science, 270, pp.1791, 1995.
8. X. Lu, T. Hanrath, K. P. Johnston, and B. A. Korgel, “Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate.” Nano. Lett. 3, 93, 2003.
9. 蘇品書,超微粒子材料技術,復漢出版社,1989年。
10. U. Koch, A. Fojtik, H. Weller, and A. Henglein, “Photochemistry of Semiconductor Colloids:Preparation of extremely small ZnO particles, Fluorescence Phenomena and Size Quantization effects.” Chem. Phys. Lett. 122, pp.507-511, 1985.
11. M. Haase, H. Weller, and A. Henglein, “Photochemistry and Radiation Chemistry of Colloidal Semiconductors. 23. Electron Storage on ZnO particles and Size Quantization.” J. Phys. Chem. 92, pp.482-487, 1988.
12. E. A. Meculenkamp, “Synthesis and Growth of ZnO Nanoparticles.” J. Phys. Chem. B, 102, pp.5566-5572, 1998.
13. C. —H. Lu, and C. —H. Yeh, “Influence of hydrothermal conditions on the morphology and particle size od zinc oxide powder.” Ceramics International, 26, pp.351-357, 2000.
14. R. Helstand, Y. Chia, “Synthesis, Isolation, and Chemical Reactivity Studies of NanocrystallineZinc Oxide.”, Mater. Res. Soc. Symp. Proc. 73, 93, 1996.
15. J. Xu, Q. Pan, Y. Shun, and Z. Tian, “Grain size control and gas sensing properties of ZnO gas sensor.”, Sensors and Actuator B, 66, 277, 2000.
16. P. Yang, H. Yan, S. Mao, R. russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. —J. Choi, “Controlled Growth of ZnO Nanowires and Their Optical Properties.” Adv. Funct. Mater. 12, 5, pp.323-331, 2002.
17. M. J. Zheng, L. D. Zhang, G. H. Li, and W. Z. Shen, “Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique.” Chem. Phys. Lett. 363, pp123-128, 2002.
18. B. B. Lakshmi, P. K. Dorhout, and C. R. Martin, “Sol-Gel Template Synthesis of Semiconductor Nanostructures.” Chem. Mater. 9, pp.857-862, 1997.
19. J. —J. Wu, and S. —C. Liu, “Low-Temperature Growth of Well-aligned ZnO Nanorods by Chemical Vapor Deposition.” Adv. Mater. 14, pp.215-218, 2002.
20. W. I. Park, D. H. Kim, S. —W. Jung, and G. —C. Yi, “Metalorganic vapor-phase epitazial growth of vertically well-aligned ZnO nanorods.” Appl. Phys. Lett. 80, pp.4232-4234, 2002.
21. L. Vayssieres, K. Keis, S. —E. Lindquist, and A. Hagfeldt, “Purpose-Built Anisotropic Metal Oxide Material:3D Highly Oriented Microrod Array of ZnO.” J. Phys. Chem. B, 105, pp.3350-3352, 2001.
22. J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, and C. Yan, “Control of ZnO Morphology via a Simple Solution Route.” Chem. Mater. 14, pp.4172-4177, 2002.
23. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport.” Adv. Mater. 13, pp.113-116, 2001.
24. S. C. Lyu, Y. Zhang, H. Ruh, H. —J. Lee, H. —W. Shim, U. —K. Suh, and C. J. Lee, “Low temperature growth and hotoluminescence of well-aligned zinc oxide nanowires.”., Chem. Phys. Lett. 363, pp.134-138, 2002.
25. S. Y. Li, C. Y. Lee, and T. Y. Tseng, “Copper-catalyzed ZnO nanowires on silicon(100)grown by vapor-liquid-solid process.” J. Cryst. Growth, 247, pp.357-362, 2003.
26. B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation.” Appl. Phys. Lett. 81, pp.757-759, 2002.
27. Y. Dai, Y. Zhang, Q. K. Li, and C. W. Nan, “Synthesis and optical properties of tetrapod-like zinc oxide nanorods.” Chem. Phys. Lett. 358, pp.83-86, 2002.
28. J. Y. Lao, J. G. Wen, and Z. F. Ren, “Hierarchical ZnO nanostructures.” Nano Lett. 2, 11, pp1287-1291, 2002.
29. J. Y. Lao, J. Y. Huang, D. Z. Wang, and Z. F. Ren, “ZnO Nanobridges and Nanonails.” Nano lett. 3, pp.235-238, 2003.
30. J. —J. Wu and S. —C. Liu, “Heterstructures of ZnO-Zn coaxial nanocables and ZnO nanotubes.” Appl. Phys. Lett. 81, pp.1312-1314, 2002.
31. H. Yao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonator formed by scattering in semiconductor polycrystalline films.” Appl. Phys. Lett. 73, 25, pp.3656-3658, 1998.
32. T. Makino, G. Isoya, Y. Segawa, C. H. Chia, T. Yasuda, M. Kawasaki, “Optical spectra in ZnO thin films on lattice-matched substrates grown with laser-MBE method.” J. Cryst. Growth. 214/215, pp.289-293, 2000.
33. T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Exciton spectra of ZnO epitaxial layers on lattice-matched substrates grown with laser-molecular-beam epitaxy.” Appl. Phys. Lett. 76, 24, pp.3549-3551, 2000.
34. X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films.” J. Lumin. 99, pp.149-154, 2002.
35. K. Vanheusden, W. L. Warren, C.H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders.” J. Appl. Phys. 79(10), 15, 1996.
36. B. Yu, C. Zhu, F. Gan, and Y. Huang, “Electron spin resonance properties of ZnO microcrystallites.” Mater. Lett. 33, pp247-250, 1998.
37. A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The luminescence of nanocrystalline ZnO particles:the mechanism of the ultraviolet and visible emission.” J. Lumin. 87-89, pp.454-456, 2000.
38. E. G. Bylander, “Surface effects on the low-energy cathodoluminescence of zinc oxide.” J. Appl. Phys. 49(3), pp.1188-1195, 1978.
39. B. Lin, Z. Fu, Y. Jia, and G. Liao, “Defect photoluminescence of Undoping ZnO films and Its Dependence on Annealing Conditions.” J. Electrochem. Soc. 148(3), pp.G110-G113, 2001.
40. W. —J. Li, E. —W. Shi, W. —Z. Zhong, and Z. —W. Yin, “Growth mechanism and growth habit of oxide crystal.” J. Cryst. Growth. 203, pp.186-196, 1999.
41. K. Yamada and S. Tobisawa, “Fine crystals of zinc oxide formed by a conically converging shock-wave technique.” J. Appl. Phys. 66(11), pp.5309-5314, 1989.
42. P. Hartman and P. Bennema, “The attachment energy as a habit controlling factor.” J. Cryst. Growth, 49, 145, 1980.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔