(34.204.185.54) 您好!臺灣時間:2021/04/16 19:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:盧正倫
研究生(外文):Cheng-Lun Lu
論文名稱:砷化鎵晶圓接合的界面型態及電性的探討
論文名稱(外文):Interface morphologies and electrical characteristic of bonded GaAs wafers
指導教授:吳耀銓
指導教授(外文):Yew Chung Sermon Wu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:晶圓接合技術砷化鎵界面微結構
外文關鍵詞:wafer bonding technologyGaAsinterface morphology
相關次數:
  • 被引用被引用:2
  • 點閱點閱:123
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本實驗利用直接晶圓接合技術接合砷化鎵晶圓,接合前只使用有機溶液(丙酮)作清潔以保留表面原生氧化層,並改變不同的退火溫度、不同的接合型式,探討接合後的電性,接合機械強度及接合界面微結構的的變化。
由拉伸試驗的結果發現退火溫度在600度時強度最低,因為界面的氧化層型態形成半球狀且不連續,經EDS分析和電子繞射圖案得知其中多為缺陷及非晶質物質,其強度是最脆弱的,拉伸時最易從此區發生裂痕。
I-V電壓電流特性曲線隨不同的摻雜物而有明顯差異,以矽為摻雜物( N-type)的試片其電性在850度變得非常差,原因乃高溫使氧擴散至基材內,形成受體能階,使多數載子濃度變低導致電阻變大;相反地,在鋅摻雜的試片(P-type)中,電性隨退火溫度越高而呈現大致變好的趨勢。
最後,討論二種不同接合界面的電性差異,其中反相界面比較容易捕捉缺陷及非晶質層形成能障,而在相同溫度下順相界面對載子傳輸較不會形成障礙,故以順相接合界面稍佳。

  In this study, direct wafer bonding technology was used to bond GaAs wafers .Before bonding, the organic solutions were only used to preserve native oxide layer. The annealing temperature, bonding type is our variables, the mechanical strength, electrical characteristic and interface morphologies were investigated by different conditions.
  The mechanical strength of bonded interfaces was measured by pull test.The minimum strength is presented at 600 degree. This is due to the morphologies of oxide layer become from continuous type to hemisphere type (discontinuous).From EDS and diffraction pattern of hemisphere region , it is composed of defects and amorphous substances. So the strength is very weak compared with other regions. The cracks often occurred here during pull test.
  The I-V curves were depend on the dopant in GaAs wafers , the resistances of N-type GaAs bonded wafer at 850 degree is large than that was at lower temperature , this is due to the acceptor level which was induced by the
diffusion of oxygen at high temperature .This would result in lower majority carrier (electron) ,and the slop of I-V curves could become small .On the other hand, the electrical properties of P-type GaAs bonded wafers are improved by the increase of annealing temperature .
  The different bonded type (anti- or in phase) have some effects on electrical properties.In general, the in-phase bonded type has better electrical properties than anti-phase. The defects and oxide layer are more easily trapped by anti- phase bonded interface which is a barrier for carrier transportation.

目 錄
中文摘要 …………………………………………………………………. I
英文摘要 …………………………………………………………………. II
誌謝…………………………………………………………………………..III
目錄………………………………………………………………………….. IV
表目錄……………………………………………………………………….. VI
圖目錄……………………………………………………………………. …VII
一、序論
1.1 前言…………………………………………………………………..1
1.2 研究動機……………………………………………………………..2
二、文獻回顧與理論背景
2.1 晶圓鍵和技術簡介…………………………………………………..5
2.1.1 定義…………………………………………………………….5
2.1.2 歷史背景……………………………………………………….5
2.1.3 技術基本要求………………………………………………….6
2.1.4 接合種類……………………………………………………….6
2.1.5 接合參數……………………………………………………….9
2.1.6 晶圓接合優點………………………………………………...11
2.2 三-五化合物半導體……………………………………………….12
2.2.1 砷化鎵的優勢……………………………..………………….12
2.2.2 砷化鎵的性質……………….….…………………………….13三、實驗方法
3.1實驗步驟…………………………………………………………….15
3.2 試片備製……………………………………………………………15
3.3 晶圓接合……………………………………………………………16
3.4 退火…………………………………………………………………17
3.5 接合品質分析………………………………………………………20
3.5.1 接合強度分析………………………………………………...20
3.5.2 接合電性分析………………………………………………...21
3.5.3 穿透式電子顯微鏡影像觀察………………………………...22
3.5.4 霍爾量測……………………………………………………...23
四、結果與討論
4.1 接合強度結果………………………………………………………24
4.2 電子繞射圖案………………………………………………………30
4.3 接合界面的電性探討………………………………………………32
4.3.1 N-type …………………………………………………………..32
4.3.2 氧的角色……………………………………………………….45
4.3.3 P-type……………………………………………………………48
五、結論……………………………………………………………………..53
六、參考文獻………………………………………………………………..55

1. Semiconductor wafer bonding: Science and Technology, Q.Y. Tong, U. Gösele , John Wiley & Sons, Inc .(1999)
2. G. E. Hofler, D. A. Vanderwater, D. C. DeFevere , F. A. Kish ,
M. D. Camras , F. M. Steranka , and I.-H. Tan , Appl. Phys. Lett. 69, 803 (1996).
3. H. C. Lin, K. L. Chang, K. C. Hsieh, K. Y. Cheng, and W. H. Wang , J. Appl. Phys. 92, 4132 (2002)
4. 以晶圓接合與金屬誘發使非晶矽薄膜結晶 , 詹俊彬, 國立交通大學碩士論文
5. L. Gordon, G. L. Woods, R. C. Eckhardt, R. R. Route, R. S. Feigelson,
M. M. Fejer, and R. L. Byer, Electron. Lett. 29, 1942 (1993)
6. D. J. Olego, Y. Okuno, T. Kawano, and M. Tamura, J. Appl. Phys. 71,
4503 (1992)
7. D. J. Olego, Y. Okuno, and T. Kawano, J. Appl. Phys. 71, 4493 (1992)
8. L. Lazzarini, G. Attolini, D. Bertone, P. Franzozi, C. Pelosi, and G.
Salviati, Inst. Phys. Conf. Ser. 134, 325 (1993)
9. Yae Okunoa , Appl. Phys. Lett. 68, 2855 (1996)
10. A. Fedotov , Anis M.H. Saad , K. Enisherlova , A. Mazanik, Materials Science and Engineering B91—92 ,384(2002)
11. E V Astrova, I V Grekhov, V A Kozlov, G I Kropotov, A A Lebedev, A V Patsekin and V B Voronkov, Semicond. Sci. Technol. 8 , 1700(1993)
12. Frank Shi, Kuo-Lih Chang, John Epple, Chao-Feng Xu, K. Y. Cheng, and K. C. Hsieh, J.Appl. Phys.92 ,7544 (2002)
13. 李天錫 , 林澤勝 , 彭成鑑 , 呂冠良 , 潘信宏 , 工業材料雜誌 170期 90年2月 p146-p157
14. Lord Rayleigh , ‘ A study of hlass surfaces in optical contact,’ Proc. Phys. Soc. A156,326(1936)
15. M.Shimbo, K.furukawa, K. Fukuda, and K. Tanzawa,
J.Appl.Phys.60.2987(1986)
16. Donato Pasquariello and Klas Hjort , Plasma-Assisted InP-to-Si Low
Temperature Wafer Bonding, IEEE Journal On Selected Topics In Quantumelectronics,Vol.8,No.1, 118( 2002)
17. P. Kopperschmidt, S. Senz, G. Kastner, D. Hesse, and U. M. Gosele, Appl.Phys.Lett.72, 3181(1998)
18. Ray-Hua Horng, Yi-Chung Lien, Wei-Chih Peng, Dong-Sing Wuu, Chung-Yang Tseng, Chi-Hua Seieh, Man-Fang Huang, Shi-Jen Tsai and Jin-Shiarng Liu, Jpn. J. Appl. Phys.40,2747 (2001)
19. Q.-Y. Tong,,W. J. Kim, T.-H. Lee, and U. Gösele , Electrochemical and Solid-State Letters, 1, 52 (1998)
20. G.Kastner, O.Breitenstein, R.Scholz, M.Reiche, J.Mater.Sci.13, 593(2002)
21. Y.S. Wu , R.S.Feigelson , R.K.Route , D. Zheng , L.A.Gordon , M. M.Fejer , and R. L. Byer , J.Electrochem.Soc.,Vol145,No.1 (1998)
22. United States Patent , Goesele et al. Patent number 4883215
23. V.Swaminathan, A. T. Macrander, Materials Aspects of GaAs and InP
Based Structure , Prentice Hall(1991)
24. Mitsuo Fukuda , Optical Semiconductor Devices , John Wiley & Sons, Inc .(1999) p7
25. Donald A.Neamen , Semiconductor Physics & Devices , McGraw-Hill ,p11(1998)
26. 李世鴻,陳勝利, 半導體物理元件 , 麥格羅-希爾 , 第641頁
27. C. T. Foxton, J. A. Harvey, and B. A. Joyce, J. PhysChem.Solids, 34,1963(1973)
28. Y.S. Wu , R.S.Feigelson , R.K.Route , D. Zheng , L.A.Gordon , M. M.Fejer , and R. L. Byer , J.Appl. Phys.83 ,5552 (1998)
29. Ben G.Streetman, Solid state Electronic Devices, Prentice-Hall,Inc.p89 (1995)
30. Frank Shi, Scott MacLaren, Chaofeng Xu, K. Y. Cheng, and K. C. Hsieh,
J.Appl. Phys.93 ,5750 (2003)
31. Frank F. Shi and K. C. Hsieh , J. Appl. Phys. 94, 2423 (2003)
32. J.Lagowski,H.C.Gatos,J.M.Psrsey,K.Wada , Appl.Phys.Lett.40,342(1982)
33. D. E. Holmes, R. T. Chen, and J. Yang , Appl. Phys. Lett. 42, 419 (1983)
34. B. E. Roberds, K. D. Choquette, K. M. Geib, S.H. Kravitz, R. D.Twesren, and S. N. Farrens, ProcElectrochm.Soc.97-36,592(1997)
35. D.A. Vanderwater, F. A.Kish, M.J. Peansky , S.J.Rosner , J. Crystal Growth ,174 ,213(1997)
36. Y. Okuno, K. Uomi, M. Aoki, T. Taniwatari, M. Suzuki, and M. Kondow , Appl. Phys. Lett. 66, 451 (1995)
37. Akihito Taguchi and Hiroyuki , Phy.RevB , 60 , 5383 ( 1999)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔